Calculation of complete hairy graph cohomology with the connecting differential

Marko Živković
University of Luxembourg
Luxembourg, June 24, 2019

Introduction

We study hairy graph complex $\mathrm{fHGC}_{-1,-1}$:

- Vertices odd of degree -1 ,
- Edges even of degree 2,
- Hairs odd of degree 1 ,
- Edge orientation is odd,
- $d=-v+2 e+h+1$.

Introduction

We study hairy graph complex $\mathrm{fHGC}_{-1,-1}$:

- Vertices odd of degree -1 ,
- Edges even of degree 2,
- Hairs odd of degree 1 ,
- Edge orientation is odd,
- $d=-v+2 e+h+1$.

Standard differential δ splits vertices.

Introduction

We study hairy graph complex $\mathrm{fHGC}_{-1,-1}$:

- Vertices odd of degree -1 ,
- Edges even of degree 2,
- Hairs odd of degree 1 ,
- Edge orientation is odd,
- $d=-v+2 e+h+1$.

Standard differential δ splits vertices.

$$
(\mathrm{fHGC}, \delta)=\left(\mathrm{H}^{\geq 1} \mathrm{fHGC}, \delta\right) \oplus\left(\mathrm{fGC}_{-1}, \delta\right)
$$

New differential

We are interested in another differential Δ that connects a hair. (Introduced by KWZ in 2016)

New differential

We are interested in another differential Δ that connects a hair. (Introduced by KWZ in 2016)

Lemma

- $\Delta^{2}=0 \Rightarrow \Delta$ is a differential.
- $\delta \Delta+\Delta \delta=0 \Rightarrow \delta+\Delta$ is a differential.

New differential

We are interested in another differential Δ that connects a hair. (Introduced by KWZ in 2016)

Lemma

- $\Delta^{2}=0 \Rightarrow \Delta$ is a differential.
- $\delta \Delta+\Delta \delta=0 \Rightarrow \delta+\Delta$ is a differential.

Known result:

Theorem

$\left(\mathrm{H}^{\geq 1} \mathrm{fHGC}, \delta+\Delta\right)$ is acyclic.

New differential

We are interested in another differential Δ that connects a hair. (Introduced by KWZ in 2016)

Lemma

- $\Delta^{2}=0 \Rightarrow \Delta$ is a differential.
- $\delta \Delta+\Delta \delta=0 \Rightarrow \delta+\Delta$ is a differential.

Known result:

Theorem

$\left(\mathrm{H}^{\geq 1} \mathrm{fHGC}, \delta+\Delta\right)$ is acyclic.

Our goal today: study $\mathcal{H}(f H G C, \Delta)$.

Splitting into subcomplexes

The differential Δ does not change the number of vertices v, and does not change $a:=e+h$, so

$$
(\mathrm{fHGC}, \Delta)=\bigoplus_{v}\left(\mathrm{~V}^{v} \mathrm{fHGC}, \Delta\right)=\bigoplus_{v, a}\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}, \Delta\right)
$$

Splitting into subcomplexes

The differential Δ does not change the number of vertices v, and does not change $a:=e+h$, so

$$
(\mathrm{fHGC}, \Delta)=\bigoplus_{v}\left(\mathrm{~V}^{v} \mathrm{fHGC}, \Delta\right)=\bigoplus_{v, a}\left(\mathrm{~V}^{v} \mathrm{~A}^{\mathrm{a}} \mathrm{fHGC}, \Delta\right)
$$

In any such subcomplex $d=-v+2 e+h+1=(-v+2 a+1)-h$.

Step 1

> Proposition
> $\mathcal{H}^{d}\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}, \Delta\right)=0$ unless $d=-v+2 a+1(h=0)$ or $d=-v+2 a$ $(h=1)$

Step 1

Proposition

$\mathcal{H}^{d}\left(\mathrm{~V}^{v} \mathrm{~A}^{\mathrm{a}} \mathrm{fHGC}, \Delta\right)=0$ unless $d=-v+2 a+1(h=0)$ or $d=-v+2 a$ ($h=1$).

Strategy of the proof

Taking cohomology commutes with the action of permuting vertices. \Rightarrow It is enough to prove the proposition for distinguishable vertices.

Step 1

Proposition

$\mathcal{H}^{d}\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}, \Delta\right)=0$ unless $d=-v+2 a+1(h=0)$ or $d=-v+2 a$ ($h=1$).

Strategy of the proof

Taking cohomology commutes with the action of permuting vertices. \Rightarrow It is enough to prove the proposition for distinguishable vertices.

Chose one vertex and set up a spectral sequence on the total valence of non-chosen vertices.
\Rightarrow The first differential Δ_{0} connects a hair from non-chosen vertex to the chosen vertex.

Step 1

Proposition

$\mathcal{H}^{d}\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}, \Delta\right)=0$ unless $d=-v+2 a+1(h=0)$ or $d=-v+2 a$ ($h=1$).

Strategy of the proof

Taking cohomology commutes with the action of permuting vertices. \Rightarrow It is enough to prove the proposition for distinguishable vertices.

Chose one vertex and set up a spectral sequence on the total valence of non-chosen vertices.
\Rightarrow The first differential Δ_{0} connects a hair from non-chosen vertex to the chosen vertex.

There is a homotopy β such that $\Delta_{0} \beta+\beta \Delta_{0}=0$. \Rightarrow The homology is 0 unless $C=0$, what is possible only if $h=0$ or $h=1$.

Table of results

We need to find numbers

$$
\begin{aligned}
\mathrm{H}^{0} \mathrm{~V}^{\vee} \mathrm{A}^{a} & :=\operatorname{dim}\left(\mathcal{H}^{-v+2 a+1}\left(\mathrm{~V}^{\vee} \mathrm{A}^{a} \mathrm{fHGC}, \Delta\right)\right) \\
\mathrm{H}^{1} \mathrm{~V}^{\vee} \mathrm{A}^{a} & :=\operatorname{dim}\left(\mathcal{H}^{-v+2 a}\left(\mathrm{~V}^{\vee} \mathrm{A}^{a} \mathrm{fHGC}, \Delta\right)\right)
\end{aligned}
$$

Table of results

We need to find numbers

$$
\begin{aligned}
\mathrm{H}^{0} \mathrm{~V}^{\vee} \mathrm{A}^{a} & :=\operatorname{dim}\left(\mathcal{H}^{-v+2 a+1}\left(\mathrm{~V}^{\vee} \mathrm{A}^{a} \mathrm{fHGC}, \Delta\right)\right) \\
\mathrm{H}^{1} \mathrm{~V}^{\vee} \mathrm{A}^{a} & :=\operatorname{dim}\left(\mathcal{H}^{-v+2 a}\left(\mathrm{~V}^{\vee} \mathrm{A}^{a} \mathrm{fHGC}, \Delta\right)\right)
\end{aligned}
$$

Let us arrange them in a table:

	0	1	2	3	4	5	6	6		7		
1	1	1					
2					- .			.				
3	. .	1	1	1	1	. 1	1			1	1	
4				1	1	1	1	1	1	2	2	1
5			1	1	. 2	2		8	8	2	2	16
6					. 2	21	1	9	9	10	10	38
7				1	1	3	3	2	2	27	27	40
8					. .		2		1	22	22	42
9					1	1		3	3	4	4	51
10				.	.	.			2		1	
11			1	1		.	3	3	
12	2	2	

Step 2

We introduce another differential χ, adding a hair.

Lemma

- $\chi^{2}=0 \Rightarrow \chi$ is a differential.
- $\Delta \chi+\chi \Delta=0 \Rightarrow \Delta+\chi$ is a differential.
- (fHGC, χ) is acyclic \Rightarrow (fHGC, $\Delta+\chi$) is acyclic.

Step 2

We set up a spectral sequence on $a=e+h$:

$$
\begin{aligned}
& \xrightarrow{\Delta} C_{1}^{3} \xrightarrow[\underbrace{\Delta}]{\Delta} C_{0}^{3}{ }_{\chi}
\end{aligned}
$$

Step 2

We set up a spectral sequence on $a=e+h$:

$$
\begin{aligned}
& \xrightarrow{\Delta} C_{1}^{3} \xrightarrow[\underbrace{\Delta}]{\Delta} C_{0}^{3}{ }_{\chi}
\end{aligned}
$$

Proposition

$$
\mathrm{H}^{0} \mathrm{~V}^{v} \mathrm{~A}^{a}=\mathrm{H}^{1} \mathrm{~V}^{v} \mathrm{~A}^{a+1}
$$

Step 3

Characters of the action of symmetric groups can be used to calculate number of graphs with chosen number of vertices, edges and hairs. (This is the extension of the method used by WZ in 2015.)

Step 3

Characters of the action of symmetric groups can be used to calculate number of graphs with chosen number of vertices, edges and hairs. (This is the extension of the method used by WZ in 2015.)
\rightarrow Euler characteristics $E\left(\mathrm{~V}^{v} \mathrm{~A}^{\mathrm{a}} \mathrm{fHGC}, \Delta\right)$.

Step 3

Characters of the action of symmetric groups can be used to calculate number of graphs with chosen number of vertices, edges and hairs.
(This is the extension of the method used by WZ in 2015.)
\rightarrow Euler characteristics $E\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}, \Delta\right)$.

$$
E\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}, \Delta\right)=\mathrm{H}^{0} \mathrm{~V}^{v} \mathrm{~A}^{a}-\mathrm{H}^{1} \mathrm{~V}^{v} \mathrm{~A}^{a}
$$

The result

	0		1		2		3		4		5		6		7		8		9
1	1	1			
2						
3	- .	.	1	1	.		1	1			1	1			1	1			
4	. .	.					1	1			1	1	1	1	2	2	1	1	
5	- .	.	.		1	1	.	.	2	2	.	.	8	8	2	2	16	16	
6			2	2	1	1	9	9	10	10	38	38	54
7		1	1			3	3	2	2	27	27	40	40	170
8	2	2	1	1	22	22	42	42	230
9	1	1	.	.	3	3	4	4	51	51	154
10	2	2	1	1	30	30	83
11	1	1	.		3	3	4	4	6
12	-		2	2	1	1	32
13	1	1	.	.	3	3	
14	\cdot	2	2	
15	-	1	1	.	.	
16		
17					1	1	
18	. .	-	-	.		.	\cdot		
19	

At least 1 -valent vertices

- Step 1: $\mathcal{H}^{d}\left(\mathrm{~V}^{v} \mathrm{~A}^{\mathrm{a}} \mathrm{fHGC}^{\geq 1}, \Delta\right)=0$ unless $h=0$ or $h=1$.
- Step 2: $\left(\mathrm{fHGC}^{\geq 1}, \chi\right)$ is almost acyclic
$\Rightarrow \quad\left(\mathrm{fHGC}^{\geq 1}, \Delta+\chi\right)$ is almost acyclic
$\Rightarrow \quad\left(\mathrm{H}^{0} \mathrm{~V}^{v} \mathrm{~A}^{a}\right)^{\geq 1}$ is almost equal to $\left(\mathrm{H}^{1} \mathrm{~V}^{v} \mathrm{~A}^{a+1}\right)^{\geq 1}$.
- Step 3: Number of graphs in $\mathrm{fHGC}^{\geq 1}$

$$
\rightarrow \quad E\left(\mathrm{~V}^{v} \mathrm{~A}^{a} \mathrm{fHGC}^{\geq 1}, \Delta\right)
$$

The result for at least 1 -valent vertices

Results on further complexes

	Step 1	Step 2	Step 3
All graphs	Done	Done	Done
At least 1-valent vertices	Done	Done	Done
At least 2-valent vertices	Doable	Done	Done
At least 3-valent vertices	Doable	Doable	Doable
Connected graphs	Maybe	Done	Done
Conn., at least 1-val.	Maybe	Done	Done
Conn., at least 2-val.	Maybe	Done	Done
Conn., at least 3-val.	Maybe	Doable	Doable

Conjectured result for connected graphs

	0	1	2	3	4	5		6		7				
1	1	1				
2	. .	1	1					
3		1	1	1	1			1	1			1
4	1	1	.	2	2	1	1	2	2	2
5	1	11	1	6	6	3	3	15	15	9
6		2	2	3	3	15	15	24	24	62
7		2	2	13	13	31	31	130
8	3	3	29	29	108
9			9	9	59
10	-				19
11	.	-	-	-	

Thank you for your attention!

