Factoring $N = p^r q^s$ in Polynomial Time for Large r, s

Jean-Sébastien Coron

University of Luxembourg

April 14, 2015
Coppersmith’s technique for finding small roots of polynomial equations [Cop97]
- Based on the LLL lattice reduction algorithm
- Numerous applications in cryptography.

Application: factoring with high bits known
- Factor $N = pq$ in polynomial time if 1/2 of the bits of p are known. [Cop97]

Polynomial time factorization of $N = p^r q$ for large r [BDHG99]
- Factor $N = p^r q$ in polynomial time if $1/(r + 1)$ of the bits of p are known
 - Therefore polynomial time for $r \sim \log p$.

Polynomial time factorization of $N = p^r q^s$ for large r or s
 (this talk).
Solving $f(x) = 0 \mod N$ when $N = pq$ is of unknown factorization: hard problem.
- For $f(x) = x^2 - a$, equivalent to factoring N.
- For $f(x) = x^e - a$, equivalent to inverting RSA.

Coppersmith showed (E96) that finding small roots is easy.
- When $\deg f = \delta$, finds in polynomial time all integer x_0 such that $f(x_0) = 0 \mod N$ and $|x_0| \leq N^{1/\delta}$.
- Based the LLL lattice reduction algorithm.

Can be heuristically extended to more variables.
Coppersmith’s algorithm has numerous applications in cryptanalysis:

- Cryptanalysis of plain RSA when some part of the message is known:
 - If $c = (B + x_0)^3 \mod N$, let $f(x) = (B + x)^3 - c$ and recover x_0 if $x_0 < N^{1/3}$.
- Breaking RSA for $d < N^{0.29}$

Applications in provable security:

- Improved security proof for RSA-OAEP with low-exponent e (Shoup, C01).
Coppersmith’s Technique

- We want to find a small root x_0 of $f(x) \equiv 0 \pmod{N}$.
- Find a small linear integer combination $h(x)$ of the polynomials:

 $$q_{ik}(x) = x^i \cdot N^{\ell-k} \cdot f^k(x) \pmod{N^\ell}$$

- for some ℓ and $0 \leq i < \delta$ and $0 \leq k \leq \ell$.
- $f(x_0) = 0 \pmod{N} \Rightarrow f^k(x_0) = 0 \pmod{N^k} \Rightarrow q_{ik}(x_0) = 0 \pmod{N^\ell}$.
- Then $h(x_0) = 0 \pmod{N^\ell}$.
- If the coefficients of $h(x)$ are small enough:
 - Then $h(x_0) = 0$ holds over \mathbb{Z}.
 - x_0 can be found using any standard root-finding algorithm.
Illustration with a polynomial of degree 2:
- Let \(f(x) = x^2 + ax + b \mod N \).
- We must find \(x_0 \) such that \(f(x_0) = 0 \mod N \) and \(|x_0| \leq X \).

We are interested in finding a small linear integer combination of the polynomials:
- \(f(x) \), \(N x \) and \(N \).
- Then \(h(x_0) = 0 \mod N \).

If the coefficients of \(h(x) \) are small enough:
- Then \(h(x_0) = 0 \) also holds over \(\mathbb{Z} \),
- which enables to recover \(x_0 \).
Howgrave-Graham lemma

Given \(h(x) = \sum h_i x^i \), let \(\| h \|^2 = \sum h_i^2 \).

Howgrave-Graham lemma:

- Let \(h \in \mathbb{Z}[x] \) be a sum of at most \(\omega \) monomials. If \(h(x_0) = 0 \mod N \) with \(|x_0| \leq X \) and \(\| h(xX) \| < N/\sqrt{\omega} \), then \(h(x_0) = 0 \) holds over \(\mathbb{Z} \).

Proof:

\[
|h(x_0)| = \left| \sum h_i x_0^i \right| = \left| \sum h_i X^i \left(\frac{x_0}{X} \right)^i \right|
\leq \sum \left| h_i X^i \left(\frac{x_0}{X} \right)^i \right| \leq \sum \left| h_i X^i \right|
\leq \sqrt{\omega} \| h(xX) \| < N
\]

Since \(h(x_0) = 0 \mod N \), this gives \(h(x_0) = 0 \).
Factoring $N = p^r q^s$ in Polynomial Time for Large r, s
The coefficients of $h(xX)$ must be small:

- $h(xX)$ is a linear integer combination of the polynomials

\[
\begin{align*}
 f(xX) &= X^2 \cdot x^2 + aX \cdot x + b \\
 q_1(xX) &= NX \cdot x \\
 q_2(xX) &= N
\end{align*}
\]

We must find a small integer linear combination of the vectors:

- $[X^2, aX, b]$, $[0, NX, 0]$ and $[0, 0, N]$

Tool: LLL algorithm.
We must find a small linear integer combination $h(xX)$ of the polynomials $f(xX)$, xXN and N.

Let L be the corresponding lattice, with a basis of row vectors:

$$\begin{bmatrix}
X^2 & aX & b \\
xN & b \\
N & N
\end{bmatrix}$$

Using LLL, one can find a lattice vector b of norm:

$$\|b\| \leq 2(\det L)^{1/3} \leq 2N^{2/3}X$$

Then if $X < N^{1/3}/4$, then $\|h(xX)\| = \|b\| < N/2$

Howgrave-Graham lemma applies and $h(x_0) = 0$.

Jean-Sébastien Coron

Factoring $N = p^r q^s$ in Polynomial Time for Large r, s
Lattice

Definition:
Let $u_1, \ldots, u_\omega \in \mathbb{Z}^n$ be linearly independent vectors with $\omega \leq n$. The lattice L spanned by the u_i's is

$$L = \left\{ \sum_{i=1}^{\omega} n_i \cdot u_i | n_i \in \mathbb{Z} \right\}$$

If L is full rank ($\omega = n$), then $\det L = |\det M|$, where M is the matrix whose rows are the basis vectors u_1, \ldots, u_ω.

The LLL algorithm:
The LLL algorithm, given (u_1, \ldots, u_ω), finds in polynomial time a vector b_1 such that:

$$\|b_1\| \leq 2^{(\omega-1)/4} \det(L)^{1/\omega}$$
The previous bound gives $|x_0| \leq N^{1/3}/4$.

But Coppersmith’s bound gives $|x_0| \leq N^{1/2}$.

Technique: work modulo N^k instead of N.

Let $q(x) = (f(x))^2$. Then $q(x_0) = 0 \mod N^2$.

$q(x) = x^4 + a'x^3 + b'x^2 + c'x + d'$.

Find a small linear combination $h(x)$ of the polynomials $q(x), Nx f(x), N f(x), N^2 x$ and N^2.

Then $h(x_0) = 0 \mod N^2$.

If the coefficients of $h(x)$ are small enough, then $h(x_0) = 0$.
Details when working modulo N^2

- **Lattice basis:**

 \[
 \begin{bmatrix}
 X^4 & a' X^3 & b' X^2 & c' X & d' \\
 NX^3 & NaX^2 & NbX & NaX & Nb \\
 NX^2 & NaX & N^2 X & N^2 & N^2
 \end{bmatrix}
 \]

- Using LLL, one gets:
 - $\|h(xX)\| \leq 2 \cdot (\det L)^{1/5} \leq 2X^2 N^{6/5}$
 - If $X \leq N^{2/5}/6$, then $\|h(xX)\| \leq N^2/3$ and $h(x_0) = 0$.

- We get $X \sim N^{2/5}$ instead of $X \sim N^{1/3}$
 - By further increasing the lattice dimension, we can get Coppersmith’s bound $X \sim N^{1/2}$.
Let \(N = p \cdot q \). Assume that we know half of the most significant bits of \(p \).

Write \(p = P + x_0 \) for some known \(P \) and unknown \(x_0 \) with \(x_0 < p^{1/2} \).

Consider the system:

\[
\begin{align*}
N &\equiv 0 \pmod{P + x_0} \\
x + P &\equiv 0 \pmod{P + x_0}
\end{align*}
\]

\(x_0 \) is a small root of both polynomial equations.

We can apply Coppersmith’s technique: the only difference is that the modulus is unknown, but this is not a problem for Howgrave-Graham’s Lemma.

We can recover \(x_0 \) if \(x_0 < p^{1/2} \)

Polynomial time factorization of \(N = pq \) if half of the high order (or low order) bits of \(p \) are known.
Factoring $N = p^r q$ in Polynomial Time

- Extension to $N = p^r q$ from [BDHG99]
 - Polynomial-time factorization of $N = p^r q$ when $1/(r + 1)$ of the bits of p are known.

- Polynomial-time factorization of $N = p^r q$ for large r
 - When $r \approx \log p$, only a constant number of bits of p need to be known.
 - Exhaustive search of these bits is then polynomial-time
Factoring $N = p^r q^s$ in Polynomial Time

- Polynomial time factorization of $N = p^r q^s$ when r or s is greater than $(\log p)^3$
- Particular case: $N = p^{r+1} q^r$.
 - We can write $N = (pq)^r \cdot p$ and apply [BDHG99] to factor in polytime, again when $r \simeq \log p$
- More generally: $N = p^{\alpha \cdot r + a} \cdot q^{\beta \cdot r + b}$
 - Write $N = (p^\alpha q^\beta)^r \cdot (p^a q^b)$
 - Still factor in polytime if $r \simeq \log p$, for small α, β, a, b.
- More generally for $N = p^r q^s$.
 - Write: \[
 \begin{cases}
 r = u \cdot \alpha + a \\
 s = u \cdot \beta + b
 \end{cases}
 \]
 for some small enough α, β, a, b, and large enough u.
 - $N = P^u Q$ where $P := p^\alpha q^\beta$ and $Q := p^a q^b$
 - Apply [BDHG99] to factor $N = P^u Q$ in polytime.