Exercice 1. Montrer qu'un sous-groupe d'indice 2 est distingué.

Exercice 2. Soit G un groupe non restreint l'Iment neutre. Montrer que G est cyclique d'ordre premier ssi G et $\{e\}$ sont les seuls sous-groupes de G.

Exercice 3. Utiliser l'équation des classes afin de déterminer l'ordre du groupe G^+ des isométries directes du cube. Même question pour le groupe G des isométries du cube. Mêmes questions pour le tétraèdre régulier.

Exercice 4. Démontrer que :

- a) dans A_n , les produits de deux transpositions de supports disjoints sont conjugués (pour $n \ge 4$),
- b) dans A_5 et A_6 , les 5-cycles se répartissent en deux classes de conjugaison,
- c) dans A_n , les produits de deux 3-cycles de supports disjoints sont conjugués (pour $n \ge 6$).

Exercice 5.

- a) Si $n \geq 5$, démontrer que le seul sous-groupe distingué et propre de S_n est A_n .
- b) En déduire que si $n \geq 5$, S_n est non résoluble (i.e. : il n'existe pas de suite décroissante de sous-groupes $S_n = G_0 \supset G_1 \supset \ldots \supset G_m = \{e\}$ telle que chacun soit distingué dans le précédent avec quotient abélien).
- c) Soient $P(X) = X^5 3X 1$, $\alpha_1, \ldots, \alpha_5$ ses racines dans \mathbf{C} , $k = \mathbf{Q}(\alpha_1, \ldots, \alpha_5)$, G le groupe des automorphismes du corps k. On pourra admettre (ou démontrer) que P est irréductible sur \mathbf{Q} (si bien que G agit transitivement sur $\{\alpha_1, \ldots, \alpha_5\}$) et que P possède exactement G racines réelles (si bien que la conjugaison, qui appartient à G, agit sur les G racines comme une transposition). En déduire que G est isomorphe à G, donc non résoluble (le théorème d'Abel dit qu'alors, l'équation G0 n'est pas "résoluble par radicaux").

Exercice 6.

- a) Montrer que le produit direct est un cas particulier de produit semi-direct.
- b) Montrer qu'un produit semi-direct n'est jamais commutatif, sauf lorsque c'est un produit direct de deux groupes commutatifs.

Exercice 7. Démontrer que S_n est un produit semi-direct de A_n par $\mathbb{Z}/2\mathbb{Z}$.

Exercice 8. Soit G un groupe d'ordre pq avec p et q premiers, p < q.

- a) Montrer que G a un seul sous-groupe d'ordre q. En déduire que G est un produit semi-direct.
- b) Montrer que si q n'est pas congru à 1 modulo p alors G est abélien, et même cyclique.
- c) Montrer que si p = 2, G est cyclique ou diédral.

Exercice 9. Soit G un groupe d'ordre p^rq^s avec p,q premiers distincts et $r,s \in \{1,2\}$ t.q. $p \not| q^s-1$ et $q \not| p^r-1$. Montrer que G est abélien. (exemple : |G|=45)

Exercice 10. Soit G d'ordre mp^n avec p premier > m. Montrer que G n'est pas simple. (exemples : |G| = 20, 28). Généraliser ce résultat au cas $|G| = mp^n$ (avec p premier ne divisant pas m) sous l'hypothèse : "le seul diviseur d de m pour lequel p|d-1 est d=1". (exemple : |G| = 200)

Exercice 11. Soit G d'ordre 2^rp avec p premier impair $\geq 2^r - 1$. Montrer que G n'est pas simple (exemples : |G| = 12, 56). (Remarque : lorsque $p \geq (\text{donc} >) 2^r$, on retrouve un cas particulier de "G d'ordre mp^n avec p premier > m", mais pour $p = 2^r - 1$ c'est un nouveau résultat).

Exercice 12.

- a) Exprimer les groupes suivants comme produits directs de p-groupes cycliques : $\mathbb{Z}/24\mathbb{Z}$, $\mathbb{Z}/30\mathbb{Z}$ et $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$.
- b) $Z/24\mathbf{Z} \times \mathbf{Z}/30\mathbf{Z}$ est un groupe d'ordre $720 = 2^4 \times 3^2 \times 5$. Quel est l'ordre des composantes cycliques primaires que vous trouvez ?
- c) Comparer la décomposition de $Z/24\mathbf{Z} \times \mathbf{Z}/30\mathbf{Z}$ en p-groupes et en p-groupes cycliques.

Exercice 13. Déterminer à isomorphisme près tous les groupes commutatifs d'ordre ≤ 17 .

Exercice 14. Soient $G = \mathbf{Z} \times \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z}$ et f un morphisme de G dans $\mathbf{Z}/2\mathbf{Z}$. Démontrer que la composante de f sur $\mathbf{Z}/3\mathbf{Z}$ est nulle. A quelle condition f se factorise-t-il par un morphisme de G dans \mathbf{Z} ?