U.P.S. 2010-2011, L3 Maths Fonda Algèbre, feuille 7 Anneaux euclidiens, principaux, factoriels

Exercice 1.

- a) Soient A un anneau, I un idéal de A et π la projection canonique $A \to A/I$. Montrer que les idéaux premiers de A/I sont en bijection avec les idéaux premiers de A contenant I.
- b) Quels sont les idéaux premiers de $\mathbb{R}[X]/(X^2+X+1)$?

Exercice 2. Soit A un anneau intègre.

- a) Montrer que les éléments inversibles de A[X] sont les inversibles de A.
- b) Montrer que tout élément irréductible de A est un élément irréductible de A[X].
- c) Trouver un élément inversible de $(\mathbf{Z}/4\mathbf{Z})[X]$ de degré non nul.

Exercice 3. Soient A un anneau commutatif unitaire intgre, s un élément non nul de A, et A_s le sous-anneau du corps des fractions de A formé des éléments de la forme $\frac{a}{s^n}$ avec $a \in A$ et $n \in \mathbb{N}$.

- a) Montrer que si A est factoriel alors A_s aussi.
- b) Montrer que si A est euclidien alors A_s aussi.

Exercice 4.

- a) Montrer que $\mathbf{Z}[i]$ est euclidien et factoriel.
- b) Expliquer pourquoi les égalités (2+i)(2-i) = 5 = (-1-2i)(-1+2i) ne mettent pas en défaut la factorialité de $\mathbf{Z}[i]$.
- c) Calculer le pgcd de 1-13i et de 4+i et celui de 1+7i et de -8-i.

Exercice 5. Le théorème des deux carrés. Dans cet exercice, on considère p un nombre premier et on note $\Sigma = \{a^2 + b^2, a, b \in \mathbf{N}\}$. On sait maintenant que $\mathbf{Z}[i]$ est un anneau euclidien.

a) Montrer l'équivalence suivante :

$$p \in \Sigma \Leftrightarrow p$$
 n'est pas irréductible dans $\mathbf{Z}[i]$.

b) En déduire que

$$p \in \Sigma \Leftrightarrow p = 2 \text{ ou } p \cong 1 \text{ mod } 4.$$

(Indication : on remarquera que $\mathbf{Z}[i]/p\mathbf{Z}[i]$ est isomorphe à $(\mathbf{Z}/p\mathbf{Z})[X]/(X^2+1)$.)

c) Soit $n \in \mathbb{N}$ et $n = \prod p^{v_p(n)}$ sa décomposition en facteurs premiers. Montrer que :

$$n \in \Sigma \Leftrightarrow v_n(n)$$
 pair pour $p \equiv 3 \mod 4$

d) Déterminer les irréductibles de $\mathbf{Z}[i]$.

Exercice 6.

- a) Montrer que $\mathbf{Z}[X,Y]$ est un anneau factoriel.
- b) Montrer que $X^2 + Y^2 + 1$ est irréductible dans $\mathbf{Z}[X, Y]$.
- c) Calculer le pgcd de $X^{3}Y^{2} + XY^{4} + XY^{2}$ et de $X^{3} + X^{2} + XY^{2} + Y^{2} + X + 1$.

Exercice 7.

- a) Montrer que pour tout nombre premier p, le polynôme $X^p + p$ est irréductible dans $\mathbf{Z}[X]$.
- b) Montrer que $3X^4 + 10X + 15$ est irréductible dans $\mathbb{Z}[X]$ mais pas dans $\mathbb{R}[X]$.
- c) Montrer que $X^2 + X + 2$ est irréductible dans $\mathbf{Z}[X]$ en faisant un changement de variable simple (une translation).

Exercice 8. Dans l'anneau $\mathbf{Z}[\sqrt{10}]$, montrer que 2 est irréductible, mais pas premier.

Exercice 9. Dans l'anneau $\mathbf{Z}[i\sqrt{5}]$, montrer que 3 et $2 + i\sqrt{5}$ n'ont pas de ppcm et que 9 et $3(2 + i\sqrt{5})$ n'ont pas de ppcd.

Exercice 10. Soit A un anneau commutatif intègre dans lequel tout élément non nul est produit d'irréductibles et toute paire d'éléments non nuls a un ppcm.

- a) Montrer que toute paire d'éléments non nuls a aussi un pgcd et que $ab = \operatorname{ppcm}(a, b) \times \operatorname{pgcd}(a, b)$.
- b) Montrer que $(a) \cap (b) = (ppcm(a, b))$.
- c) Montrer que A vérifie le lemme d'Euclide, donc que A est factoriel.

Exercice 11. Soit A un anneau factoriel vérifiant le théorème de Bézout (i.e. pour tous $a, b \in A$, l'idéal (a, b) est principal). Montrer que A est principal.

Exercice 12. Soient K un corps, P un polynôme de degré p, Q un polynôme de degré q. On considère l'application :

$$R_{P,Q}: K_{q-1}[X] \times K_{p-1}[X] \to K_{p+q-1}[X], \ (A,B) \mapsto AP + BQ$$
.

On appelle Res(P,Q) le déterminant de $R_{P,Q}$.

- a) Que peut-on dire de P et de Q lorsque Res(P,Q) = 0?
- b) On appelle nombre algébrique tout nombre complexe qui est la racine d'un polynôme à coefficients dans \mathbf{Q} . Montrer que si α et β sont deux nombres algébriques alors leur somme $\gamma = \alpha + \beta$ l'est aussi en déterminant un polynôme qui s'annule en γ . (Indication : Il faut ici considérer le résultant prenant en argument les polynômes P(X) et $Q(\gamma X)$ où P et Q sont les polynômes à coefficients rationnels qui vérifient $P(\alpha) = 0$ et $Q(\beta) = 0$.)