L3 MAPES — Topologie 2010-2011 Feuille d'exercice no 3

1. On considère une isométrie u de \mathbf{R} , muni de sa distance usuelle, dans (\mathbf{R}^2, d_E) . Montrer que l'image de u est une droite. Qu'en est-il si on remplace d_E par la distance d_{∞} définie par

$$d_{\infty}((x,y),(x',y')) = \max(|x'-x|,|y'-y|) ?$$

- 2. Montrer que $(C^0([0,1]), d_\infty)$, l'espace des fonctions continues sur [0,1] muni de la distance sup, est complet.
- **3.** 1. Montrer que l_{∞} est complet pour la distance sup d_{∞} .
- 2. Montrer que le sous-ensemble de l_{∞} constitué des suites dont tous les termes sont dans [-1,1] est compact. Indication: On pourra utiliser le procédé diagonal vu en cours pour extraire une suite d'une suite de suites...
- 4. Soit (E, d) un espace métrique.
 - 1. Montrer que $d'(x,y) = \sqrt{d(x,y)}$ est une distance sur E.
- 2. Montrer que l'application d'' définie sur $E \times E$ par $d''(x,y) = \frac{d(x,y)}{1+d(x,y)}$ est une distance sur E. Indication : On utilisera la croissance de la fonction $u \longrightarrow \frac{u}{1+u}$.
 - 3. Comparer les distances d et d''.
- 4. Dans le cas où E est l'ensemble des nombres réels et où d est la valeur absolue, construire $B_{d''}(0,a)$ où a est un réel.
- **5.** On note L^2 l'ensemble des fonctions $f: \mathbf{R} \to \mathbf{R}$ telles que $\int f^2(t)dt$ converge.
 - 1. Montrer que si $f, g \in L^2$, alors $\int f(t)g(t)dt$ converge, et que

$$\left| \int f(t)g(t)dt \right|^2 \le \int f(t)^2 dt \int g(t)^2 dt \ .$$

2. Pour $f \in L^2$, on pose

$$N(f) = \left(\int f(t)^2 dt\right)^{1/2} .$$

Montrer que si $f, g \in L^2$ alors $N(f+g) \leq N(f) + N(g)$.

- 7. Soit (E, d) un espace métrique compact, soit $\epsilon > 0$.
 - 1. Montrer qu'il existe un sous-ensemble fini F de E tel que tout point de E est à distance au plus ϵ de F.
 - 2. Montrer qu'il existe un sous-ensemble fini F de E tel que
 - tout point de E est à distance au plus ϵ de F,
 - deux points de F sont à distance au moins $\epsilon/2$.
- 8. (Théorème de Cantor-Baire) Soit (E, d) un espace métrique, démontrer l'équivalence des deux assertions suivantes :
 - 1. (E,d) est complet
 - 2. Pour toute suite décroissante de fermés non vides (F_n) de E telle que $D(F_n) \longrightarrow 0$ lorsque $n \to 0$, on a :

$$\exists l \in E, \, \bigcap_{n \in \mathbf{N}} F_n = \{l\}.$$

9. Soit (E,d) un espace métrique compact. Montrer que tout suite (u_n) de E qui admet une unique valeur d'adhérence λ converge vers λ .

1

10. Soit (E,d) un espace métrique compact et $f:E\to E$ une application vérifiant :

$$\forall x \neq y, \quad d(f(x), f(y)) < d(x, y).$$

- 1. Montrer que f admet un unique point fixe, que l'on notera l.
- 2. Soit $a_0 \in E$ et (a_n) définie par $a_{n+1} = f(a_n)$. Montrer que (a_n) converge vers l. Indication : Considérer la suite $\delta_n := d(a_n, l)$.