L3 MAPES — Topologie 2010-11

Examen final, 3 janvier 2011

On attachera la plus grande importance à la correction et à la rigueur de la rédaction! Chaque réponse devra être soigneusement argumentée. Aucun point ne sera attribué à une réponse seulement partiellement correcte.

- 1. Question de cours. Soit E un espace de Hilbert et soit $K \subset E$ convexe non vide. Montrer que pour tout $x \in E$, l'élément y de K qui réalise la distance de x à K (qu'on appelle la projection de x sur K) est unique. (On ne demande pas de montrer l'existence de y, seulement son unicité.)
- 2. Exercice. Soit E un espace de Hilbert, soit V un sous-espace vectoriel de E.
 - 1. Montrer que $(V^{\perp})^{\perp} \supset V$.
 - 2. Montrer que l'adhérence \overline{V} de V est contenue dans $(V^{\perp})^{\perp}$.
- 3. Montrer que $(V^{\perp})^{\perp} \subset \overline{V}$. (Indication. On pourra considérer un point $x \notin \overline{V}$, puis le projeté orthogonal y de x sur \overline{V}).
- **3. Exercice.** Soit (X,d) un espace métrique compact. On note $L^{\infty}(X)$ l'ensemble des fonctions bornées de X dans \mathbb{R} , et D la fonction de $L^{\infty}(X) \times L^{\infty}(X)$ dans \mathbb{R} qui à (f,g) associe

$$D(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

- 1. Montrer que D est bien définie, puis que $(L^{\infty}(X), D)$ est un espace métrique.
- 2. A chaque $x \in X$ on associe la fonction $d_x : X \to \mathbb{R}$ définie par $d_x(y) = d(x,y)$ pour tout $y \in X$. Montrer que, pour tout $x \in X$, $d_x \in L^{\infty}(X)$.
- 3. Montrer que l'application de X dans $L^{\infty}(X)$ qui à x associe d_x préserve la distance.
 - 4. Cette application est-elle injective? Surjective?
- **4. Exercice.** Soit E l'espace vectoriel des fonctions à valeurs dans \mathbb{R} , définies, continues et dérivables sur [0,1] et vérifiant f(0)=0. On définit sur cet espace deux fonctions N_1 et N_2 à valeurs réelles comme suit :

$$N_1(f) = \sup_{x \in [0,1]} |f(x)| \text{ et } N_2(f) = \sup_{x \in [0,1]} |f'(x)|.$$

- 1. Montrer que N_1 et N_2 sont des normes sur E.
- 2. Montrer que $N_1(f) \leq N_2(f)$ pour tout $f \in E$. En déduire que l'application identité de (E, N_2) dans (E, N_1) est continue.
- 3. A l'aide des fonctions $f_n(x) = \frac{x^n}{n}$, montrer que l'application identité de (E, N_1) dans (E, N_2) n'est pas continue.