M1 MAF GÉOMÉTRIE DIFFÉRENTIELLE 2012-13

TD 2: COURBES PLANES

Exercice 1. Soit $\Gamma = \varphi(I)$ une courbe géométrique paramétrée par sa longueur d'arc $\varphi : I \to \mathbb{R}^2$. Montrer que la courbure de Γ en $\varphi(s)$ est

$$\kappa(s) = \det(\varphi'(s), \varphi''(s)).$$

En déduire que si ψ : $t \in J \mapsto (x(t), y(t)) \in \mathbb{R}^2$ est une paramétrisation arbitraire de Γ , alors la courbure de Γ au point $\psi(t)$ est donnée par

$$k(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{\left[x'(t)^2 + y'(t)^2\right]^{3/2}}.$$

Exercice 2.

1) Etudier, tracer et calculer la courbure de la cycloïde

$$\varphi: t \in \mathbb{R} \mapsto (at - a\sin t, a - a\cos t) \in \mathbb{R}^2, \ a > 0.$$

2) Même question pour la tractrice

$$\varphi: t \in]0, \pi[\mapsto a\left(\sin t, \cos t + \ln \tan \frac{t}{2}\right) \in \mathbb{R}^2.$$

3) Idem pour la spirale logarithmique

$$\varphi: t \in \mathbb{R} \mapsto (ae^{bt}\cos t, ae^{bt}\sin t) \in \mathbb{R}^2, \ a, b \in \mathbb{R}.$$

Exercice 3. Montrer qu'une courbe géométrique $\mathcal{C} \subset \mathbb{R}^2$ a une courbure constante si et seulement si c'est une (portion) de droite ou de cercle.

Exercice 4. Soit $\varphi : \mathbb{R} \to \mathbb{R}^2$ une application lisse, avec $\varphi(0) = (0,0)$, dont l'image Γ est incluse dans la cubique cuspidale

$$C := \{(x, y) \in \mathbb{R}^2 / y^2 = x^3\}.$$

Montrer qu'on a nécessairement $\varphi'(0) = (0,0)$.

Exercice 5. Soit a, b > 0. Déterminer le lieu géométrique défini par la paramétrisation

$$\varphi:t\in\mathbb{R}\mapsto\left(a\frac{1-t^2}{1+t^2},b\frac{2t}{1+t^2}\right)\in\mathbb{R}^2.$$

Exercice 6. Soit $\varphi: t \in]0, +\infty[\mapsto (t^2, t^3) \in \mathbb{R}^2$. Montrer que la longueur d'arc comptée à partir du point (0,0) est

$$\ell(t) = \frac{1}{27}(4+9t^2)^{3/2} - \frac{8}{27}.$$

Exercice 7. Soit $\varphi: I \to \mathbb{R}^2$ une courbe paramétrée telle que $||\varphi(t) - \varphi(s)||$ est une fonction de |t - s|. Montrer que la courbe géométrique associée est une portion de droite ou de cercle.

Exercice 8. On considère la cardioïde définie en coordonnées polaires par

$$r(\theta) = a(1 + \cos \theta), \ o\dot{u} \ a > 0.$$

- 1) Tracer son graphe et calculer sa courbure.
- 2) Calculer le périmètre et l'aire de l'intérieur de la cardioïde.

Exercice 9. Savez vous calculer le périmètre d'une ellipse? Et son aire?

Exercice 10. La développée d'une courbe plane Γ de paramétrisation $\varphi(t)$ est le lieu de ses centres de courbure. Elle admet la paramétrisation

$$\psi(t) = \varphi(t) + \kappa(t)^{-1} N(t),$$

où N(t) est le vecteur normal unitaire à Γ en $\varphi(t)$.

- 1) Montrer que la tangente en $\psi(t)$ à la développée est portée par la normale en $\varphi(t)$ à Γ .
- 2) Montrer que la développée de la parabole d'équation $y = ax^2$ est la courbe d'équation $27ay^2 = 8(x-a)^3$.

Exercice 11. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique et

$$q: t \in \mathbb{R} \mapsto q(t) = f(t) + t \in \mathbb{R}.$$

Montrer que g induit une application $G: S^1 \to S^1$ dont on calculera le degré.

Exercice 12. Soit $f: S^1 \to S^1$ une application continue. Montrer que le nombre P(f) de points fixes de f vérifie

$$P(f) \ge |\deg f - 1|.$$

Exercice 13. Soit $f, g: S^1 \to S^1$ deux applications continues. Montrer que $\deg(f \circ g) = \deg f \circ \deg g$.

En déduire que f a beaucoup de points périodiques si $|\deg f| \geq 2$.