M2 MAF — Géométrie riemannienne 2012-13 Feuille d'exercices no 4

- 1. Volume des boules. On note $V^a(r)$ le volume de la boule de rayon r dans l'espace simplement connexe à courbure constante a. Ici v_n est l'aire de la sphère de rayon 1 dans \mathbf{R}^n .
- 1. Boules euclidiennes. Montrer que $V^0(r) = v_n r^n / n$.
- 2. Calcul dans les quadriques. Déterminer V^1 et V^{-1} en utilisant la réalisation de S^n dans \mathbf{R}^{n+1} et de H^n dans $\mathbf{R}^{n,1}$.
- 3. Champs de Jacobi. Retrouver le résultat en utilisant le comportement des champs de Jacobi.
- 4. Autres valeurs de la courbure. Déterminer $V^a(r)$ pour tout $a \in \mathbf{R}$. (On pourra utiliser une homothétie pour se ramener au cas où $a \in \{-1,0,1\}$.
- 2. L'espace projectif complexe comme variété riemannienne. On considère une variété riemannienne (M,g) munie d'une action par isométries de S^1 , $\rho: S^1 \times M \to M$. On suppose que ρ est propre (l'application induite $S^1 \times M \to M \times M$, $(t,m) \mapsto (t.m,m)$ est propre), et libre (sans point fixe).

On admettra que $N=M/S^1$ est alors une variété.

- 1. Métrique sur N. Montrer qu'il existe une unique métrique riemannienne \overline{g} sur N telle que la projection canonique p de M sur N est une submersion : en tout $m \in M$, $dp: T_mM \to T_{p(m)}N$ est de rang maximal et sa restriction à l'orthogonal de son noyau est une isométrie.
- 2. $\mathbb{C}P^n$. On suppose que $M=S^{2n+1}\subset \mathbb{R}^{2n+2}\simeq \mathbb{C}^{n+1}$, et on considère l'action de S^1 donnée par la multiplication complexe. Montrer que cette action est isométrique pour la métrique induite sur S^{2n+1} . En déduire une métrique canonique sur le quotient S^{2n+1}/S^1 , qu'on notera $\mathbb{C}P^n$.
- 3. Structure complexe. Montrer que $\mathbb{C}P^n$ est muni d'une structure complexe.
- 4. n = 1. Montrer que pour n = 1, $\mathbb{C}P^1$ est isométrique à S^2 muni de la métrique égale à 1/4 fois la métrique canonique.
- 5^* . Courbure. Calculer le tenseur de courbure de $\mathbb{C}P^n$. Montrer que sa courbure sectionnelle varie de 1 à 4.
- 3. Déformation d'une hypersurface. Soit $(\overline{M}, \overline{g})$ une variété riemannienne. On considère une famille à un paramètre $(\phi_t)_{t \in [0,1]}$ de plongements $\phi_t : M \to \overline{M}$, et on suppose que $(\partial_t \phi_t)_{|t=0} = fN$, où $f : M \to \mathbf{R}$ est régulière et où N est un champ de vecteurs normaux unitaires à $\phi_0(M)$.
- 1. Variation première de la métrique induite. On note g_t la métrique induite sur M par ϕ_t . Montrer que $(\partial_t g_t)_{|t=0}$ ne dépend que de f, et en donner une expression.
- 2. Hypersurfaces minimales. En déduire la variation première de l'aire totale de M, en supposant par exemple que M est fermée. Montrer que ϕ_0 est un point critique de l'aire, par rapport aux variations à support compact, si et seulement si sa courbure moyenne H = TrB s'annule.
- 3^* . Seconde forme fondamentale. On note II_t la seconde forme fondamentale de M pour ϕ_t . Montrer que $(\partial_t II_t)_{|t=0}$ ne dépend que de f, et en donner une expression.