Publications and communications of Martin Schlichenmaier

Legend , , etc: full text of the document available in Open Access , , etc: full text of the document available in restricted access Peer reviewed (verified by ORBilu) : the information is available in the ORBilu journals database

Dissertations and Theses

Post-doctoral Thesis

1)
Schlichenmaier, M. (1996). Zwei Anwendungen algebraisch-geometrischer Methoden in der Physik: Berezin-Toeplitz quanisierung und globale Algebren der konformen Feldtheorie, Habilitationsschrift. Unpublished postdoctoral thesis, University of Mannheim, ​Mannheim, ​​Germany.

Doctoral Thesis

1)
Schlichenmaier, M. (1990). Verallgemeinerte Krichever - Novikov Algebren und deren Darstellungen Dissertation, University of Mannheim, June 1990. Unpublished doctoral thesis, University of Luxembourg, ​​Luxembourg.

Publications

1. Articles in Academic Journals

With peer reviewing

With an international target audience
1)
Schlichenmaier, M. (in press). An elementary proof of the vanishing of the second cohomology of the Witt and Virasoro algebra with values in the adjoint module. Forum Mathematicum.
Peer reviewed
2)
Schlichenmaier, M. (2013). Lie superalgebras of Krichever-Novikov type and their central extensions. Anal. Math. Phys, 3(3), 235--261.
Peer reviewed
3)
Schlichenmaier, M. (2012). Krichever-Novikov type algebras - personal recollections of Julius Wess. International Journal of Modern Physics: Conference Series, 13, 158-173.
Peer reviewed
4)
Schlichenmaier, M. (2012). Some naturally defined star products for Kähler manifolds. Travaux Mathématiques, 187--204.
Peer reviewed
5)
Schlichenmaier, M. (2011). Almost-Graded Central Extensions of Lax Operator Algebras. Banach Center Publications, 93, 129-144.
Peer reviewed
6)
Schlichenmaier, M. (2011). Berezin - Toeplitz quantization for compact Kähler manifolds. An introduction. Travaux Mathématiques, 19, 97-124.
Peer reviewed
7)
Schlichenmaier, M. (2010). Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Advances in Mathematical Physics, 1(203), 38.
Peer reviewed
8)
Schlichenmaier, M, & Sheinman, O. K. (2008). Central extensions of Lax operator algebras. Russian Mathematical Surveys, 63(4), 131-172.
Peer reviewed
9)
Fialowski, A, & Schlichenmaier, M. (2007). Global Geometric Deformations of the Virasoro algebra, current and affine algebras by Krichever-Novikov type algebras. Communications in Mathematical Physics, 46(11), 2708-2724.
Peer reviewed
10)
Schlichenmaier, M. (2007). Berezin-Toeplitz quantization of the moduli space of flat SU(N) connections. Journal of Geometry and Symmetry in Physics, 9, 33-34.
Peer reviewed
11)
Schlichenmaier, M, & Fialowski, A. (2007). Global Deformations of the Virasoro algebra, current and affine algebra by Krichever-Novikov type algebras. International Journal of Theoretical Physics, 46, 2708-2724.
Peer reviewed
12)
Schlichenmaier, M. (2006). Deformations of the Virasoro algebra of Krichever-Novikov type. Journal of Geometry and Symmetry in Physics, 5, 95--105.
Peer reviewed
13)
Schlichenmaier, M. (2006). Higher genus affine Lie algebras of Krichever-Novikov type. Journal of Geometry and Symmetry in Physics, 5, 103-113.
Peer reviewed
14)
Fialowski, A, & Schlichenmaier, M. (2005). Global geometric deformations of current algebras as Krichever-Novikov type algebras. Communications in Mathematical Physics, 260(3), 579-612.
Peer reviewed
15)
Schlichenmaier, M. (2004). Deformation quantization for almost-Kähler manifolds. Journal of Nonlinear Mathematical Physics, 11(Supplement), 49-54.
Peer reviewed
16)
Schlichenmaier, M, & Sheinman, O. K. (2004). Knizhnik-Zamolodchikov equations for positive genus and Krichever-Novikov algebras. Russian Mathematical Surveys, 59(4), 737-770.
Peer reviewed
17)
Fialowski, A, & Schlichenmaier, M. (2003). Global deformations of the Witt algebra of Krichever-Novikov type. Communications in Contemporary Mathematics, 5(6), 921-946.
Peer reviewed
18)
Schlichenmaier, M. (2003). Higher genus affine Lie algebras of Krichever-Novikov type. Moscow Mathematical Journal, 3, 1395-1427.
Peer reviewed
19)
Schlichenmaier, M. (2003). Local cocycles and central extensions for multi-point algebras of Krichever-Novikov type. Journal für die Reine und Angewandte Mathematik, 559, 53-94.
Peer reviewed
20)
Karabegov, A, & Schlichenmaier, M. (2001). Almost Kähler deformation quantization. Letters in Mathematical Physics, 57(2), 135-148.
Peer reviewed
21)
Karabegov, A, & Schlichenmaier, M. (2001). Identification of Berezin-Toeplitz deformation quantization. Journal für die Reine und Angewandte Mathematik, 540, 49-76.
Peer reviewed
22)
Berceanu, S, & Schlichenmaier, M. (2000). Coherent state embeddings, polar divisors and Cauchy formulas. Journal of Geometry & Physics, 34, 336-358.
Peer reviewed
23)
Schlichenmaier, M. (1999). Sugawara operators for higher genus Riemann surfaces. Reports on Mathematical Physics, 43, 323-339.
Peer reviewed
24)
Schlichenmaier, M, & Sheinman, O. K. (1999). Wess-Zumino-Witten-Novikov theory, Knizhnik-Zamolodchikov equations, and Krichever-Novikov algebras, I. Russian Mathematical Surveys, 54(1), 213-250.
Peer reviewed
25)
Schlichenmaier, M, & Sheinman, O. K. (1998). Sugawara construction and Casimir operators for Krichever-Novikov algebras. Journal of Mathematical Sciences, 92(2), 3807-3834.
Peer reviewed
26)
Bordemann, M, Meinrenken, E, & Schlichenmaier, M. (1994). Toeplitz quantization of Kähler manifolds and gl(N), N to infinity, limits. Communications in Mathematical Physics, 165, 281-296.
Peer reviewed
27)
Schlichenmaier, M. (1993). Degenerations of generalized Krichever-Novikov algebras on tori. Journal of Mathematical Physics, 34, 3809-3824.
Peer reviewed
28)
Ruffing, A, Deck, T, & Schlichenmaier, M. (1992). String branchings on complex tori and algebraic representations of generalized Krichever-Novikov algebras. Letters in Mathematical Physics, 26(1), 23-32.
Peer reviewed
29)
Bordemann, M, Hoppe, J, Schaller, P, & Schlichenmaier, M. (1991). $ gl(\infty)$ and geometric quantization. Communications in Mathematical Physics, 138(2), 209--244.
Peer reviewed
30)
Bordemann, M, Hoppe, J, Schaller, P, & Schlichenmaier, M. (1991). gl(infinity) and geometry quantization. Communications in Mathematical Physics, 138, 209-244.
Peer reviewed
31)
Schlichenmaier, M. (1990). Central extensions and semi-infinite wedge representations of Krichever-Novikov algebras for more than two points. Letters in Mathematical Physics, 20, 33-46.
Peer reviewed
32)
Schlichenmaier, M. (1990). Krichever-Novikov algebras for more than two points. Lett. Math. Phys, 19(2), 151--165.
Peer reviewed
33)
Schlichenmaier, M. (1990). Krichever-Novikov algebras for more than two points: explicit generators. Letters in Mathematical Physics, 19(4), 327-336.
Peer reviewed

Without peer reviewing

With an international target audience
1)
Fialowski, A. E, Fröhlich, J. M. E, & Schlichenmaier, M. (2010). Deformation methods in mathematics and physics. Abstracts from the workshop held September 25th--October 1st, 2010. Oberwolfach Rep, 7(3), 2503-2560.
2)
Schlichenmaier, M, Fialowski, A, Montigny, M, & Novikov, S. (2006). Deformations and contractions in mathematics and physics. Oberwolfach Reports, 3(1), 119--186.

2. Books

Written as unique author

1)
Schlichenmaier, M. (2007). An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces 2nd enlarged edition. Berlin: Springer.
2)
Schlichenmaier, M. (1989). An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces. New York: Springer.

Director and/or editor of collective works

1)
Kielanowski, P, Ali, S. T, Alexander, Odzijewicz, A, Schlichenmaier, M, & Voronov, T. (Eds.). (2013). Geometric methods in physics. XXXI workshop, Biaowieza, Poland June 24--30, 2012. Selected papers based on the presentations at the workshop. Basel: Birkhäuser/Springer.
2)
Kielanowski, P, Ali, S. T, Anatol (ed.), O, Schlichenmaier, M, & Voronov, T. (Eds.). (2013). Geometric methods in physics. XXX workshop, Bialowieza, Poland June 26 --July 2, 2011. Selected papers based on the presentations at the workshop. Basel: Birkhäuser.
3)
Bordemann, M, Ebrahimi-Fard, K, Abdenacer, M, Schlichenmaier, M, & Waldmann, S. (Eds.). (2012). Nikolai Neumaier. Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg.
4)
Schlichenmaier, M, Sergeev, A. E, & Sheinman, O. E. (Eds.). (2011). Geometry and quantization. Lectures presented at the 3rd international school and conference, Geoquant, Luxembourg City, Luxembourg, August 31--September 5, 2009. Travaux Mathématiques 19. Luxembourg: University of Luxembourg Faculty of Science, Technology and Communication. 277~p.
5)
Kielanowski, P. E, Buchstaber, V. E, Anatol (ed.), O, Schlichenmaier, M, & Voronov, T. E. (Eds.). (2010). XXIX workshop on geometric methods in physics, Bia\lowie\Dza Poland, June 27 -- July 3, 2010. Selected papers based on the presentations at the workshop. AIP Conference Proceedings 1307. Melville, NY: American Institute of Physics (AIP). ix, 220~p. EUR~129.95/net; SFR~151.00; \sterling~95.00 \$~142.00.
6)
Kielanowski, P, Odzijewicz, A, & Schlichenmaier, M. (Eds.). (2009). XXVIII Workshop on Geometrical Methods in Physics, Bialowieza, Poland, 28 June - 4 July 2009. AIP.
7)
Schlichenmaier, M, Kielianowski, P, Odzijewicz, A, & Voronov, T. (Eds.). (2008). Proceedings of the XXVII Workshop on Geometric Methods in Physics, Bialowieza July 2008. AIP.
8)
Kielanowski, P, Odzijewicz, A, Schlichenmaier, M, & Voronov, T. (Eds.). (2007). Proceedings of the XXVI Workshop on Geometrical Methods in Physics AIP Conference Proceedings / Mathematical and Statistical Phsyics. American Institute of Physics.
9)
Schlichenmaier, M, Kielanoswski, P, Odzijewicz, A, Voronov, T, Bohm, A, & Mladenov, I. (Eds.). (2007). Proceedings of the XXV Workshop on Geometric Methods in Physics, Bialowieza July 2006. Bulgarian Academy of Science.
10)
Ali, S. T, Gazeau, J.-P, Goldin, G. A, Neeb, K.-H, Odzijewicz, A, & Schlichenmaier, M. (Eds.). (2006). XXIV Workshop on Geometric Methods in Physics, Bialowieza, Poland, June 26 - July 2, 2005, Proceedings Special issue of the Journal of Geometry and Symmetry in Physics, containting vol. 5 and 6. Institute of Biophysics, Bulgarian Academy of Sciences.
11)
Ali, S. T, Emch, G, Odzijewicz, A, Schlichenmaier, M, & Woronowicz, S. L. (Eds.). (2005). Twenty Years of Bialowieza: A Mathematical Anthology Aspects of differential geometric methods in physics. World Scientific.
12)
Molitor-Braun, C, Poncin, N, & Schlichenmaier, M. (Eds.). (2005). Proceedings of the 4th Conference on Poisson Geometry 2004 Travaux mathématiques, Vol. XVI. Luxembourg: University of Luxembourg.
13)
Schlichenmaier, M, Ali, S. T, Odzijewicz, A, & Kielanowski, P. (Eds.). (2004). Recent Developments in Quantuzation. Proceedings of the XXI Workhsop on Geometric Methods in Physics, Bialowieza June 2002. JNLS.
14)
Landsman, K, Pflaum, M, & Schlichenmaier, M. (Eds.). (2001). Quantization of singular symplectic quotients. Birkhäuser.
15)
Schlichenmaier, M, Ali, T. S, Strasburger, A, & Odzijewicz, A. (Eds.). (2001). Coherent states, quantization and Gravity, Proceedings of Bialowieza workshop on Geometric Methods in Physics XVII, July, 1998. Warsaw University Press.
16)
Schlichenmaier, M, Strasburger, A, Ali, S. T, & Odzijewicz, A. (Eds.). (1999). Coherent states, differential and quantum goemetry, Proceedings of Bialowieza workshop on Geometric Methods in Physics, June 30-Jly6, 1997. Warsawa, Poland: Polish Scientific Publisher.

3. Chapters of Collective Works

1)
Schlichenmaier, M. (2014). From the Virasoro Algebra to Krichever–Novikov Type Algebras and Beyond. In A., Vasil'ev (Ed.), Harmonic and Complex Analysis and its Applications (pp. 325-358). Springer International Publishing.
Peer reviewed
2)
Schlichenmaier, M. (2013). Berezin's coherent states, symbols and transform for compact Kähler manifolds. Geometric Methods in Physics, XXX Workshop 2011 (pp. 101-116). Springer.
Peer reviewed
3)
Schlichenmaier, M. (2013). An elementary proof of the formal rigidity of the WItt and Virasoro Algebra. In P., Kielanowski, T., Ali, A. E., Odesskii, A., Odzzijewicz, M., Schlichenmaier, & T., Voronov (Eds.), Geometric Methods in Physics, XXXI Workshop 2012 (pp. 143--153). Springer.
Peer reviewed
4)
Schlichenmaier, M. (2013). Symmetries and infinite dimensional Lie algebras. In C., Bartholmé, T., Connor, Y., Dominicy, L., Kidzinski, N., Richard, & Y., Swan (Eds.), Notes de la cinquième BSSM (pp. 67-97). Bruxelles, Belgium: ULB.
Peer reviewed
5)
Schlichenmaier, M. (2012). Berezin-Toeplitz quantization and star products for compact Kähler manifolds. Mathematical aspects of quantization (pp. 257--294). Providence, RI: Amer. Math. Soc.
Peer reviewed
6)
Schlichenmaier, M. (2009). Classification of central extensions of Lax operator algebras. Proceedings of the XXVII Workshop on Geometric Methods in Physics (pp. 227-234). AIP (American Institute of Physics).
Peer reviewed
7)
Schlichenmaier, M. (2009). Deformations of the Witt, Virasoro, and Current Algebra. In S., Silvestrov, E., Paal, V., Abramov, & A., Stolin (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond (pp. 219-234). Springer.
Peer reviewed
8)
Schlichenmaier, M. (2008). Classification of central extensions of Lax operator algebras. Geometric methods in physics (pp. 227--234). Melville, NY: Amer. Inst. Phys.
Peer reviewed
9)
Schlichenmaier, M. (2007). A global operator approach to Wess-Zumino-Novikov-Witten models. Proceedings of the XXVI Workshop on Geometrical Methods in Physics (pp. 107-119).
Peer reviewed
10)
Schlichenmaier, M. (2007). Higher genus affine Lie algebras of Krichever-Novikov type. Proceedings of the International Conference “Difference Equations, special functions and orthogonal polynomials” (pp. 589-599). World Scientific.
Peer reviewed
11)
Schlichenmaier, M. (2003). Algebra. In Walz (Ed.), Faszination Mathematik (pp. 58-69). Heidelberg: Spektrum Verlag.
12)
Schlichenmaier, M. (2003). Several entries. In J., Bagger, S., Duplij, & W., Siegel (Eds.), Concise Encyclopedia on supersymmetry and non-commutative structures in mathematics and physics. Kluwer.
13)
Schlichenmaier, M. (2003). several entries in the field algebra, algebraic topology, homological algebra, categories. In Walz (Ed.), Lexikon der Mathematik. Spektrum Verlag.
14)
Schlichenmaier, M. (2001). Berezin-Toeplitz Quantization and Berezin Transform. Long Time Behaviour of Classical Quantum Systems. Proceedings of the Bologna APTEX International Conference (pp. 271-287). World Scientific.
Peer reviewed
15)
Schlichenmaier, M. (2001). Berezin-Toeplitz quantization of compact Kähler manifolds. Coherent States, Quantization and Gravity, Proceedings of the XVII Workshop on Geometric Methods in Physics (pp. 45-56). Warsaw University Press.
Peer reviewed
16)
Schlichenmaier, M. (2000). Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization. Conférence Moshé Flato 1999: Quantization, Deformations, and Symmetries (pp. 289-306). Kluwer.
Peer reviewed
17)
Schlichenmaier, M. (2000). Elements of a Global Operator Approach to Wess-Zumino-Novikov-Witten Models. Lie Theory and its Applications in Physics III: Proceedings of the Third International Workshop, Clausthal, Germany, 11-14 July 1999 (pp. 204-220). World Scientific.
Peer reviewed
18)
Schlichenmaier, M. (2000). W_(1+\infty) algebras. In Hazewinkel (Ed.), Encycloppedia of Mathematics, Suppl. II (pp. 486-487). Kluwer.
19)
Schlichenmaier, M. (1998). Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kähler manifolds. Quantization, Coherent States and Poisson Structures. Proceedings of the XIV’th Workshop on Geometric Methods in Physics, Bialowieza, Poland, 9-15 July 1995 (pp. 101-115).
Peer reviewed
20)
Schlichenmaier, M. (1997). Deformation quantization of compact Kähler manifolds via Berezin-Toeplitz operators. Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras: Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics (pp. 396-400).
Peer reviewed
21)
Schlichenmaier, M. (1994). Differential operator algebras on compact Riemann surfaces. Generalized Symmetries in Physics, Clausthal 1993 (pp. 425-434). World Scientific.
Peer reviewed

6. Reports

8. Learning Materials

1)
Schlichenmaier, M. (2011). Basic Algebraic Structures - Lecture notes for the MICS (University of Luxembourg, Basic Algebraic Structures MICS).
2)
Schlichenmaier, M. (1997). Operaden und Vertex algebebren (University of Mannheim, University of Heidelberg, Arbeitsgemeinschaft Mannheim-Heidelberg).
3)
Schlichenmaier, M. (1997). Vertexaleebren eine Einführung (University of Mannheim, University of Heidelberg, Arbeitsgemeinschaft Mannheim-Heidelberg).

Communications

Symposia and Conferences with an international target audience

By invitation

1)
Schlichenmaier, M. (2013, October 17). Some naturally defined star products on K\"ahler manifolds. Paper presented at Q-days in Barcelona, CRM, Barcelona, Spain.
2)
Schlichenmaier, M. (2013, September 10). Some naturally defined star products on K\"ahler manifolds. Paper presented at Lens topology and geometry meeting, Lens, France.
3)
Schlichenmaier, M. (2013, July 02). Some naturally defined star products on K\"ahler manifolds. Paper presented at XXXII Workshop on geometric methods in Physics, Bialowieza, Poland.
4)
Schlichenmaier, M. (2012, September 19). Berezin-Toeplitz quantization of compact Kaehler manifolds and its application. Paper presented at DMV annual meeting, Saarbruecken, Germany.
5)
Schlichenmaier, M. (2012, July 18). Toeplitz operators and TQFT. Paper presented at Workshop K-theory and Quantum fields, Vienna, Austria.
6)
Schlichenmaier, M. (2011, October). Berezin's coherent states, symbols and transform revisited. Paper presented at AGMP-7, Mulhouse, France.
7)
Schlichenmaier, M. (2011, September). Berezin's coherent states, symbols and transform revisited. Paper presented at International Conference Geoquant 2011, Tianjin, China.
8)
Schlichenmaier, M. (2011, September). Berezin-Toeplitz quantization for compact Kähler manifolds. An introduction (3 Lectures). Paper presented at International School Geoquant 2011, Bejing, China.
9)
Schlichenmaier, M. (2011, February 22). Berezin-Toeplitz quantization of moduli spaces. Paper presented at NCTS(Taiwan)- CPT(France) Joint workshop on symplectic geometry and Quantum symmetries in Mathematical Physics, Taiwan.
10)
Schlichenmaier, M. (2011, January 11). Almost-graded central extensions of Lax operator algebras. Paper presented at Workshop Harmonic and Complex Analysis and its Applications, Vienna, Austria.
11)
Schlichenmaier, M. (2011, January 07). Almost-graded central extensions of Lax operator algebras. Paper presented at 40th Meeting Of Seminar Sophus Lie, Marburg, Castle Rauischholzhausen, Germany.
12)
Schlichenmaier, M. (2010, December 14). Berezin symbols and Berezin transform revisited. Paper presented at Conference on Quantization of Singular Spaces, Aarhus, Denmark.
13)
Schlichenmaier, M. (2010, October 21). Berezin-Toeplitz quantization of moduli spaces. Paper presented at Colloque ``Analyse et Symetries'', Reims, France.
14)
Schlichenmaier, M. (2010, June 08). Berezin-Toeplitz quantization of moduli spaces. Paper presented at Workshop on Algebraic Geometry and Physics, Saint Jean de Monts, France.
15)
Schlichenmaier, M. (2009, October). Berezin-Toeplitz quantization of moduli spaces. Paper presented at CIRM, Saarbrücken, Germany.
16)
Schlichenmaier, M. (2009, May). Almost-graded extensions of Lax operator algebras. Paper presented at Workshop Noncommutativity and Physics, Bayrischzell, Germany.
17)
Schlichenmaier, M. (2009, March). Berezin-Toeplitz quantization of moduli spaces. Paper presented at Conference on Number Theory and Physics, Vienna, Austria.

Scientific Presentations in Universities or Research Centres

1)
Schlichenmaier, M. (2013, March 07). An overview on some star products for K\"ahler manifolds. Paper presented at Mathematics Seminar at University of Aarhus.
2)
Schlichenmaier, M. (2011, April 20). More about Berezin-Toeplitz quantization II. Paper presented at Courant lecture series.
3)
Schlichenmaier, M. (2011, April 19). More about Berezin-Toeplitz quantization I. Paper presented at Courant lecture series.
4)
Schlichenmaier, M. (2011, April 18). Berezin-Toeplitz quantization of moduli spaces. Paper presented at Courant lecture series.
5)
Schlichenmaier, M. (2010, June 01). An introduction to Krichever-Novikov type algebras. Paper presented at Analysis Seminar, Bergen, Norway.
6)
Schlichenmaier, M. (2010, January 14). Berezin-Toeplitz quantization of compact Kähler manifolds. Paper presented at Mathematisches Seminar, Saarbrücken, Germany.
7)
Schlichenmaier, M. (2010, January). Berezin-Toeplitz quantization of moduli space. Paper presented at Mathemstisches Seminar, Augsburg, Germany.
8)
Schlichenmaier, M. (2010, January). Quantisierung - 3 Vortraege. Paper presented at Vortragsserie LMU, München, Germany.
9)
Schlichenmaier, M. (2009, December 03). Berezin-Toeplitz quantization of moduli spaces. Paper presented at Mathematisches Seminar, Dijon, France.
10)
Schlichenmaier, M. (2009, November 06). Berezin-Toeplitz quantization of moduli spaces. Paper presented at Mathematisches Seminar, Cologne, Germany.

E-Prints/Working Papers

1)
Schlichenmaier, M. (2013). Multipoint Lax operator algebras. Almost-graded structure and central extensions. Eprint/Working paper retrieved from http://xxx.lanl.gov/abs/1304.3902.
2)
Schlichenmaier, M. (2013). From the Virasoro Algebra to Krichever--Novikov Type Algebras and Beyond. Eprint/Working paper retrieved from http://xxx.lanl.gov/abs/1301.7725.

Miscellaneous

Articles for the General Public

1)
Mortini, R, & Schlichenmaier, M. (2009). Abel-Preis für Mathematiker Mischa Gromov. Luxemburger Wort, 19 June 2009, p. 16-16.
2)
Mortini, R, & Schlichenmaier, M. (2008). Bahnbrechende Leistungen. "Nobelpreis in Mathematik": Abelpreis an Thompson und Tits. Luxemburger Wort, p. 24-24.

Seminars for the General Public

1)
Schlichenmaier, M. (2011). Die Clay Milleniumsprobleme und ihr historischer Vorgänger die 23 mathematischen Probleme von Hilbert aus dem Jahr 1900. Paper presented at Vortragsserie fuer Lehrer, Luxembourg.
2)
Schlichenmaier, M. (2009). Symmetrien in der Natur. Was sagt uns die Mathematik hierzu. Paper presented at Leonardo School, Luxembourg, Luxembourg.