On the error bound in a combinatorial Central Limit Theorem

Louis H. Y. Chen (National University of Singapore)

Abstract. Let \(\{X_{ij} : i, j = 1, \ldots, n\} \) be an \(n \times n \) array of independent random variables with finite third moments and let \(\pi \) be a random permutation of \(\{1, \ldots, n\} \) independent of the \(X_{ij} \). Let \(U = \sum_{i=1}^{n} X_{i\pi(i)} \) and \(W = (U - \mathbb{E}U)/(\text{Var}(U))^{1/2} \). A third-moment error bound on the Kolmogorov distance with an explicit constant is obtained for the central limit theorem for \(W \) by using Stein’s method of exchangeable pairs and a concentration inequality. This result is more general than that of Bolthausen (1984), which is on an \(n \times n \) array of real numbers and does not have an explicit constant in the error bound. This result also yields a result for sampling without replacement from a finite set of random variables whose means are not necessarily zero. This is more general than the case considered by Wolff (2012), who assumed zero means and obtained a bound on the Wasserstein distance. It is also more general than the case of sampling without replacement from a finite set of real numbers, considered by Goldstein (2007), who also obtained a bound on the Wasserstein distance.

This talk is based on a joint paper with Xiao Fang.