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Abstract In this article, functional inequalities for diffusion semigroups on Riemannian
manifolds (possibly with boundary) are established, which are equivalent to pinched Ricci
curvature, along with gradient estimates, Lp-inequalities and log-Sobolev inequalities. These
results are further extended to differential manifolds carrying geometric flows. As applica-
tion, it is shown that they can be used in particular to characterize general geometric flow
and Ricci flow by functional inequalities.
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1 Introduction

Let (M,g) be a d-dimensional Riemannian manifold, possibly with boundary. Let ∇ and ∆

be the Levi-Civita connection and the Laplacian associated with the Riemannian metric g,
respectively. For a given C1-vector field Z on M and tangent vectors X ,Y on M, let

RicZ(X ,Y ) := Ric(X ,Y )−〈∇X Z,Y 〉 ,

where Ric is the Ricci curvature tensor with respect to g and 〈·, ·〉 := g(·, ·). We denote by
C(M), Cb(M), C∞(M) and C∞

0 (M) the sets of continuous functions, bounded continuous
functions, smooth functions, smooth test functions on M, respectively.

Given a C1-vector field Z on M, we consider the elliptic operator L := ∆ +Z. Let Xx
t

be a diffusion process starting from Xx
0 = x with generator L, called a L-diffusion process.
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2 Characterization of pinched Ricci curvature

We assume that Xx
t is non-explosive for each x ∈M. Let Bt = (B1

t , . . . ,B
d
t ) be a Rd-valued

Brownian motion on a complete filtered probability space (Ω ,{Ft}t≥0,P) with the natu-
ral filtration {Ft}t≥0. The L-diffusion process Xx

t starting from x solves the Stratonovich
equation

dXx
t =
√

2ux
t ◦dBt +Z(Xx

t )dt, Xx
0 = x, (1.1)

where ux
t is the horizontal process of Xx

t taking values in the orthonormal frame bundle
O(M) over M such that π(ux

0) = x. Note that

//s,t := ux
t ◦ (ux

s)
−1 : TXx

s M→ TXx
t
M, s≤ t,

defines parallel transport along the paths r 7→ Xx
r . By convention, an orthonormal frame u ∈

O(M) is interpreted as isometry u : Rd → TxM where π(u) = x. Note that parallel transport
//s,t is independent of the choice of the initial frame ux

0 above x.
The diffusion process Xx

t gives rise to a Markov semigroup Pt with infinitesimal gener-
ator L: for f ∈Cb(M), we have

Pt f (x) = E[ f (Xx
t )], t ≥ 0,

where E stands for expectation with respect to the underlying probability measure P.
The problem of characterizing boundedness of RicZ from below in terms of gradient

estimates and other functional inequalities for the semigroup Pt , has been thoroughly studied
in the literature, e.g. [14,18,19]. For instance, it is well-known that the curvature condition

RicZ(X ,X)≥ κ|X |2, X ∈ T M,

is equivalent to each of the following inequalities:

1) (gradient estimate) for all f ∈C∞
0 (M),

|∇Pt f |2 ≤ e−2κt Pt |∇ f |2;

2) (Poincaré inequality) for all p ∈ (1,2] and f ∈C∞
0 (M),

p
4(p−1)

(
Pt f 2− (Pt f 2/p)p)≤ 1− e−2κt

2κ
Pt |∇ f |2;

3) (log-Sobolev inequality) for all f ∈C∞
0 (M),

Pt( f 2 log f 2)−Pt f 2 logPt f 2 ≤ 2(1− e−2κt)

κ
Pt |∇ f |2.

If Pt has a non-trivial invariant measure µ , such inequalities can be used to obtain the
corresponding functional inequalities with respect to µ instead of the heat kernel measure
(see [19, Section 2.4]). Typically, one takes Z = ∇V for some V ∈C2(M), then

µ(dx) = eV (x) vol(dx)

where vol denotes the Riemannian volume measure on M. Assuming that µ is a probability
measure, this allows to recover classical versions of the Poincaré and log-Sobolev inequality.

The question how to use functional inequalities for Pt to characterize upper bounds on
RicZ is much more delicate. When it comes to stochastic analysis on path space, there is a
lot of former work based on bounds of RicZ , see e.g. [4,5,8,13]. Recently, A. Naber [16]
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and R. Haslhofer and A. Naber [12] established gradient inequalities on path space which
are shown to characterize boundedness of RicZ . These results have been extended by F.-
Y. Wang and B. Wu [20] to manifolds with boundary, where RicZ may also vary along the
manifold and may be unbounded, see also [10] and [7] for related results.

Let us briefly describe R. Haslhofer and A. Naber’s work. Among other things, they
prove that the functional inequality,

|∇EF(X[0,T ])|2 ≤ eκT E
[
|D//

0 F |2 +κ

∫ T

0
eκ(r−T ) |D//

r F |2 dr
]
, F ∈FC∞

0 , (1.2)

is equivalent to the curvature condition

|RicZ | ≤ κ (1.3)

for some non-negative constant κ , where

X[0,T ] := {Xt : 0≤ t ≤ T},

FC∞
0 :=

{
f (Xt1 , . . . ,XtN ) : 0≤ t1 < .. . < tN ≤ T, f ∈C∞

0 (M
N)
}
,

and

D//
t F(X[0,T ]) :=

N

∑
i=1

1{t≤ti} //
−1
t,ti ∇iF(X[0,T ]), F ∈FC∞

0 .

From the proof in [16] it is clear that it is sufficient to have gradient estimate (1.2) for
very special test functionals F ∈FC∞

0 on path space, namely

– for F(X[0,T ]) = f (Xt), and
– for 2-point cylindrical functions of the form

F(X[0,T ]) = f (x)− 1
2

f (Xt)

where x = X0. In other words, if one replaces the full path space inequality (1.2) by the one
for these special test functions, it is still enough to characterize (1.3). From this observation
it is easy to see that the subsequent items (i) and (ii) are equivalent:

(i) |RicZ | ≤ κ for some κ ≥ 0;
(ii) for f ∈C∞

0 (M) and t > 0,

|∇Pt f |2 ≤ e2κt Pt |∇ f |2 and∣∣∣∣∇ f − 1
2

∇Pt f
∣∣∣∣2 ≤ eκt E

[∣∣∣∣∇ f − 1
2
//−1

0,t ∇ f (Xt)

∣∣∣∣2 + 1
4
(
eκt−1

)
|∇ f (Xt)|2

]
.

The two inequalities in (ii) can be combined to the single condition:

|∇Pt f |2− e2κt Pt |∇ f |2

≤ 4
(
(eκt−1)|∇ f |2 + 〈∇ f ,∇Pt f 〉−

〈
∇ f ,eκt E[//−1

0,t ∇ f (Xt)]
〉)
∧0.

The discussion above gives rise to a natural question: Are there gradient inequalities on
M which allow to characterize pinched curvature with arbitrary upper and lower bounds?

Our paper is organized as follows. In Section 2 we give a positive answer to the question
above. In Section 3, we extend these results to characterize simultaneous bounds on RicZ
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and II on Riemannian manifolds with boundary, where the curvature bounds are not given
by constants, but may vary over the manifold. In Section 4 finally, we present gradient and
functional inequalities for the time-inhomogeneous semigroup Ps,t on manifolds carrying
a geometric flow. We show that these inequalities can be used to characterize solutions to
some geometric flows, including Ricci flow.

After finishing our paper we learned of work in progress of Bo Wu [21] aiming at results
on path space in a similar direction.

2 Characterizations for Ricci curvature

We start the section by introducing our main results.

Theorem 2.1 Let (M,g) be a complete Riemannian manifold. Let k1,k2 be two real con-
stants such that k1 ≤ k2. The following conditions are equivalent:

(i) k1 ≤ RicZ ≤ k2;
(ii) for f ∈C∞

0 (M) and t > 0,

|∇Pt f |2− e−2k1t Pt |∇ f |2

≤ 4
[(

e
k2−k1

2 t−1
)
|∇ f |2 + 〈∇ f ,∇Pt f 〉− e−k1t E

〈
∇ f ,//−1

0,t ∇ f (Xt)
〉]
∧0;

(ii’) for f ∈C∞
0 (M) and t > 0,

|∇Pt f |2− e−2k1t Pt |∇ f |2 ≤ 4
(

e
k2−k1

2 t |∇Pt f |2− e−k1t E
〈
∇Pt f ,//−1

0,t ∇ f (Xt)
〉)
∧0;

(iii) for f ∈C∞
0 (M), p ∈ (1,2] and t > 0,

p(Pt f 2− (Pt f 2/p)p)

4(p−1)
− 1− e−2k1t

2k1
Pt |∇ f |2

≤ 4
∫ t

0

[(
e

k2−k1
2 (t−r)−1

)
Pr|∇ f |2

+E
〈
∇ f (Xr),∇Pt−r f (Xr)− e−k1(t−r) //−1

r,t ∇ f (Xt)
〉]

dr∧0;

(iii’) for f ∈C∞
0 (M), p ∈ (1,2] and t > 0,

p(Pt f 2− (Pt f 2/p)p)

4(p−1)
− 1− e−2k1t

2k1
Pt |∇ f |2

≤ 4
∫ t

0

[
e

k2−k1
2 (t−r) Pr|∇Pt−r f |2− e−k1(t−r)E

〈
∇ f (Xr),//

−1
r,t ∇ f (Xt)

〉]
dr∧0;

(iv) for f ∈C∞
0 (M) and t > 0,

1
4
(
Pt( f 2 log f 2)−Pt f 2 logPt f 2)− 1− e−2k1t

2k1
Pt |∇ f |2

≤ 4
∫ t

0

[(
e

k2−k1
2 (t−r)−1

)
Pr|∇ f |2

+E
〈
∇ f (Xr),∇Pt−r f (Xr)− e−k1(t−r) //−1

r,t ∇ f (Xt)
〉]

dr∧0;
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(iv’) for f ∈C∞
0 (M) and t > 0,

1
4
(
Pt( f 2 log f 2)−Pt f 2 logPt f 2)− 1− e−2k1t

2k1
Pt |∇ f |2

≤ 4
∫ t

0

[
e

k2−k1
2 (t−r) Pr|∇Pt−r f |2− e−k1(t−r)E

〈
∇ f (Xr),//

−1
r,t ∇ f (Xt)

〉]
dr∧0.

Remark 2.2 The inequalities in (iv) and (iv’) can be understood as limits of the inequalities
(iii) and (iii’) as p ↓ 1 respectively.

Remark 2.3 As application, Theorem 2.1 can be used to characterize Einstein manifolds
where Ric is a multiple of the metric g (constant Ricci curvature). The case Ric = ∇Z can be
characterized by all/some of the inequalities in (ii)-(iv) and (ii’)-(iv’) for k1 = k2 = 0, where
the inequalities in (iii), (iii’), (iv) and (iv’) may be understood as k2 = k1 and k1→ 0.

Proof (Proof of Theorem 2.1.) We divide the proof into two parts. In Part I, we will derive
the functional inequalities from the curvature condition; in Part II, we will prove the reverse.

Part I. We already know that the curvature condition RicZ ≤ k1 is equivalent to each of
the following functional inequalities (see e.g. [19, Theorem 2.3.1]):

1) for all f ∈C∞
0 (M),

|∇Pt f |2 ≤ e−2k1t Pt |∇ f |2;

2) for all p ∈ (1,2] and f ∈C∞
0 (M),

p
4(p−1)

(
Pt f 2− (Pt f 2/p)p

)
≤ 1− e−2k1t

2k1
Pt |∇ f |2;

3) for all f ∈C∞
0 (M),

Pt( f 2 log f 2)−Pt f 2 logPt f 2 ≤ 2(1− e−2k1t)

k1
Pt |∇ f |2.

Now, we prove that under the curvature condition (i) in Theorem 2.1, the remaining bounds
in (ii)-(iv) and (ii’)-(iv’) hold true.

(a) (i)⇒ (ii) and (ii’): We start with well-known stochastic representation formulas for
diffusion semigroups. By Bismut’s formula (see [3,9]), we have

(∇Pt f )(x) = E[Qt//
−1
0,t ∇ f (Xx

t )].

Here Qt is the Aut(TxM)-valued process defined by the linear pathwise differential equation

d
dt

Qt =−Qt RicZ
//0,t

, Q0 = idTxM, (2.1)

where
RicZ

//0,t
:= //−1

0,t ◦RicZ
Xt ◦//0,t ∈ End(TxM) (2.2)

and //0,t is parallel transport in T M along Xt . As usual, RicZ
x operates as a linear homomor-

phism on TxM via RicZ
x v = RicZ(·,v)], v ∈ TxM.
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Let a and b be two constants such that a+b = 1. We first observe that

2a∇ f +2b∇Pt f −Qt//
−1
0,t ∇ f (Xt)

= 2a∇ f +2b∇Pt f − e−
k2+k1

2 t //−1
0,t ∇ f (Xt)+ e−

k2+k1
2 t

(
id− e

k2+k1
2 t Qt

)
//−1

0,t ∇ f (Xt)

which implies that ∣∣∣2(a∇ f +b∇Pt f )−Qt//
−1
0,t ∇ f (Xt)

∣∣∣
≤
∣∣∣∣2(a∇ f +b∇Pt f )− e−

k2+k1
2 t //−1

0,t ∇ f (Xt)

∣∣∣∣
+

∣∣∣∣e− k2+k1
2 t

(
id− e

k2+k1
2 t Qt

)
//−1

0,t ∇ f (Xt)

∣∣∣∣ . (2.3)

We now turn to estimate the last term on the right-hand side above,∣∣∣∣(id− e
k2+k1

2 t Qt

)
//−1

0,t ∇ f (Xt)

∣∣∣∣≤ ∥∥∥∥id− e
k2+k1

2 t Qt

∥∥∥∥ |∇ f (Xt)|.

To estimate ‖id− e
k2+k1

2 t Qt‖, we rewrite the involved operator as

id− e
k2+k1

2 t Qt =
∫ t

0
e

k2+k1
2 s Qs

(
RicZ

//0,s
−k1 + k2

2
id
)

ds.

Hence, by the curvature condition (i), we have∥∥∥∥id− e
k2+k1

2 t Qt

∥∥∥∥≤ ∫ t

0
e

k2+k1
2 s ‖Qs‖

∣∣∣∣RicZ
//0,s
−k1 + k2

2
id
∣∣∣∣ ds

≤
∫ t

0
e

k2+k1
2 s e−k1s k2− k1

2
ds = e

(k2−k1)t
2 −1

which implies∣∣∣∣e− k2+k1
2 t
(

id− e
k2−k1

2 t Qt

)
//−1

0,t ∇ f (Xt)

∣∣∣∣≤ e−
k1+k2

2 t
(

e
k2−k1

2 t−1
)
|∇ f |(Xt).

By this and Eq. (2.3), we have∣∣∣2(a∇ f +b∇Pt f )−Qt//
−1
0,t ∇ f (Xt)

∣∣∣2
≤
[∣∣∣2(a∇ f +b∇Pt f )− e−

k1+k2
2 t //−1

0,t ∇ f (Xt)
∣∣∣+ e−

k1+k2
2 t
(

e
k2−k1

2 t−1
)
|∇ f |(Xt)

]2

=

∣∣∣∣2(a∇ f +b∇Pt f )− e−
k1+k2

2 t //−1
0,t ∇ f (Xt)

∣∣∣∣2
+2e−

k1+k2
2 t
(

e
k2−k1

2 t−1
)∣∣∣∣2(a∇ f +b∇Pt f )− e−

k1+k2
2 t //−1

0,t ∇ f (Xt)

∣∣∣∣ |∇ f |(Xt)

+ e−(k1+k2)t
(

e
k2−k1

2 t−1
)2

|∇ f |2(Xt). (2.4)
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By Cauchy’s inequality, we have

2e−
k1+k2

2 t
(

e
k2−k1

2 t−1
)∣∣∣∣2(a∇ f +b∇Pt f )− e−

k1+k2
2 t //−1

0,t ∇ f (Xt)

∣∣∣∣ |∇ f |(Xt)

= 2

√
e

k2−k1
2 t−1

∣∣∣∣2(a∇ f +b∇Pt f )− e−
k1+k2

2 t //−1
0,t ∇ f (Xt)

∣∣∣∣e− k1+k2
2 t
√

e
k2−k1

2 t−1 |∇ f |(Xt)

≤
(

e
k2−k1

2 t−1
)∣∣∣∣2(a∇ f +b∇Pt f )− e−

k1+k2
2 t //−1

0,t ∇ f (Xt)

∣∣∣∣2
+ e−(k1+k2)t

(
e

k2−k1
2 t−1

)
|∇ f |2(Xt).

Thus, combining this inequality with (2.4), we obtain

∣∣∣2(a∇ f +b∇Pt f )−Qt//
−1
0,t ∇ f (Xt)

∣∣∣2
≤ e

k2−k1
2 t
∣∣∣∣2(a∇ f +b∇Pt f )− e−

k2+k1
2 t //−1

0,t ∇ f (Xt)

∣∣∣∣2
+ e−(k2+k1)t

(
e

k2−k1
2 t−1

)
e

k2−k1
2 t |∇ f |2(Xt)

≤ 4e
k2−k1

2 t |a∇ f +b∇Pt f |2−4e−k1t 〈a∇ f +b∇Pt f ,//−1
0,t ∇ f (Xt)

〉
+ e−2k1t |∇ f |2(Xt).

Expanding the terms above yields

∣∣∣Qt//
−1
0,t ∇ f (Xt)

∣∣∣2− e−2k1t |∇ f |2(Xt)

≤ 4
[(

e
k2−k1

2 t−1
)
|a∇ f +b∇Pt f |2

+
〈
a∇ f +b∇Pt f ,Qt//

−1
0,t ∇ f (Xt)− e−k1t //−1

0,t ∇ f (Xt)
〉]
. (2.5)

We observe that |∇Pt f |2 ≤E(|Qt//
−1
0,t ∇ f (Xt)|2). Hence, by taking expectation on both sides

of inequality (2.5), we arrive at

|∇Pt f |2− e−2k1t Pt |∇ f |2 (2.6)

≤ 4
[(

e
k2−k1

2 t−1
)
|a∇ f +b∇Pt f |2 +

〈
a∇ f +b∇Pt f ,∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉]

.

Thus, letting a = 1, b = 0, respectively a = 0, b = 1, we complete the proof of (ii) and (ii’).

(b) (i)⇒ (iii), (iii’): By Itô’s formula, we have

d(Pt−s f 2/p)p(Xs) = dMs +(L+∂s)
(

Pt−s f 2/p(Xs)
)p

ds

= dMs + p(p−1)
(

Pt−s f 2/p(Xs)
)p−2

|∇Pt−s f 2/p|2(Xs)ds (2.7)
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where Ms is a local martingale. In addition,∣∣∣∇Pt−s f 2/p(Xs)
∣∣∣2 = ∣∣∣E[//−1

0,s Qs,t//
−1
s,t ∇ f 2/p(Xt)|Fs

]∣∣∣2
=

4
p2

∣∣∣E[ f (2−p)/p(Xt)//
−1
0,s Qs,t//

−1
s,t ∇ f (Xt)|Fs

]∣∣∣2
≤ 4

p2 (Pt−s f 2(2−p)/p)(Xs)E
[
|Qs,t//

−1
s,t ∇ f (Xt)|2|Fs

]
, (2.8)

where for fixed s ≥ 0, the two-parameter family Qs,t of random automorphisms of TXs M
solves the pathwise equation

dQs,t

dt
=−Qs,t RicZ

//s,t
, Qs,s = idTXs M, t ≥ s.

Analogously to Eq. (2.2) we have RicZ
//s,t

= //−1
s,t ◦RicZ

Xt ◦//s,t .
As 2− p ∈ [0,1], by Jensen’s inequality, we first observe that

Pt−s f 2(2−p)/p ≤ (Pt−s f 2/p)2−p.

Combining this with (2.7) and (2.8), we obtain

d(Pt−s f 2/p)p(Xs)≤ dMs +
4(p−1)

p
E
[
|Qs,t//

−1
s,t ∇ f (Xt)|2|Fs

]
ds.

Integrating both sides from 0 to t and taking expectation, we arrive at

p(Pt f 2− (Pt f 2/p)p)

4(p−1)
≤
∫ t

0
E
[
|Qs,t//

−1
s,t ∇ f (Xt)|2

]
ds. (2.9)

Now, using similar arguments as in (a), we obtain

E
[
|Qs,t//

−1
s,t ∇ f (Xt)|2|Fs

]
≤ e−2k1(t−s) Pt−s|∇ f |2(Xs)+4

(
e

k2−k1
2 (t−s)−1

)
|∇ f |2(Xs)

+4E
[〈

∇ f (Xs),∇Pt−s f (Xs)− e−k1(t−s) //−1
s,t ∇ f (Xt)

〉∣∣Fs

]
(2.10)

and

E
[
|Qs,t//

−1
s,t ∇ f (Xt)|2|Fs

]
≤ e−2k1(t−s) Pt−s|∇ f |2(Xs)+4e

k2−k1
2 (t−s) |∇Pt−s f |2(Xs)

−4e−k1(t−s)E
[〈

∇ f (Xs),//
−1
s,t ∇ f (Xt)

〉∣∣Fs
]
. (2.11)

Together with (2.9), the proof of (iii) and (iii’) is completed.

(c) (i)⇒ (iv) and (iv’): By Itô’s formula, we have

d(Pt−s f 2)(Xs) log(Pt−s f 2)(Xs) = dM̃s +(L+∂s)(Pt−s f 2)(Xs) log(Pt−s f 2)(Xs)ds

= dM̃s +
1

Pt−s f 2(Xs)
|∇Pt−s f 2|2(Xs)ds (2.12)
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where M̃s is a local martingale. Furthermore, using the derivative formula, we have

|∇Pt−s f 2|2(Xs) =
∣∣∣E[//−1

0,s Qs,t//
−1
s,t ∇ f 2(Xt)|Fs

]∣∣∣2
≤ 4Pt−s f 2(Xs)E

[
|Qs,t//

−1
s,t ∇ f (Xt)|2|Fs

]
.

Combining this with (2.12), we obtain

d(Pt−s f 2)(Xs) log(Pt−s f 2)(Xs)≤ dM̃s +4E
[
|Qs,t//

−1
s,t ∇ f (Xt)|2|Fs

]
ds.

Using the estimates in (2.10) and (2.11) for E[|Qs,t//
−1
s,t ∇ f (Xt)|2|Fs], we finish the proof by

integrating from 0 to t and taking expectation on both sides. ut

Remark 2.4 Actually, when k1 6= k2, the following inequality can be derived by minimizing
the upper bound in (2.6) over a,b under the restriction a+b = 1:

|∇Pt f |2− e−2k1t Pt |∇ f |2

≤

{
4
[(

e
k2−k1

2 t−1
)
|∇ f |2 + 〈∇ f ,∇Pt f 〉− e−k1t

〈
∇ f ,E//−1

0,t ∇ f (Xt)
〉]

−

〈
∇Pt f −∇ f ,2

(
e

k2−k1
2 t−1

)
∇ f +∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉2

(
e

k2−k1
2 t−1

)
|∇Pt f −∇ f |2

}
∧0

=

{
4
[

e
k2−k1

2 t |∇Pt f |2− e−k1t
〈

∇Pt f ,E//−1
0,t ∇ f (Xt)

〉]

−

〈
∇Pt f −∇ f ,

(
2e

k2−k1
2 t−1

)
∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉2

(
e

k2−k1
2 t−1

)
|∇Pt f −∇ f |2

}
∧0. (2.13)

It is easy to see that this bound is sharper than the ones given in Theorem 2.1 (ii) and (ii’).

Proof Inequality (2.13) can be checked as follows. First recall estimate (2.6):

|∇Pt f |2− e−2k1t Pt |∇ f |2

≤ 4
[(

e
k2−k1

2 t−1
)
|a∇ f +b∇Pt f |2 +

〈
a∇ f +b∇Pt f ,∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉]

.

Taking b = 1−a in the terms of the right-hand side, we get

4
[(

e
k2−k1

2 t−1
)
|a∇ f +b∇Pt f |2 +

〈
a∇ f +b∇Pt f ,∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉]

= 4
[(

e
k2−k1

2 t−1
)
|∇ f −∇Pt f |2a2

+
〈
∇ f −∇Pt f ,(2e

k2−k1
2 t−1)∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉
a

+ e
k2−k1

2 t |∇Pt f |2− e−k1t 〈
∇Pt f ,E//−1

0,t ∇ f (Xt)
〉]
. (2.14)
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For the value

a = a0 =−

〈
∇ f −∇Pt f ,(2e

k2−k1
2 t−1)∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉

2
(

e
k2−k1

2 t−1
)
|∇ f −∇Pt f |2

, (2.15)

the expression in (2.14) reaches its minimum as a function of a:

4
[

e
k2−k1

2 t |∇Pt f |2− e−k1t
〈

∇Pt f ,E//−1
0,t ∇ f (Xt)

〉]

−

〈
∇ f −∇Pt f ,(2e

k2−k1
2 t−1)∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉2

(
e

k2−k1
2 t−1

)
|∇ f −∇Pt f |2

.

Similarly, substituting a = 1−b in the terms on the left-hand side of Eq. (2.14), we get

4
[(

e
k2−k1

2 t−1
)
|a∇ f +b∇Pt f |2 +

〈
a∇ f +b∇Pt f ,∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉]

= 4
[(

e
k2−k1

2 t−1
)
|∇ f −∇Pt f |2b2

+

〈
∇ f −∇Pt f ,2

(
e

k2−k1
2 t−1

)
∇ f +∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)

〉
b

+

(
e

k2−k1
2 t−1

)
|∇ f |2 +

〈
∇ f ,∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉]

. (2.16)

It is easy to see that for

b = 1−a0 =−

〈
∇ f −∇Pt f ,2

(
e

k2−k1
2 t−1

)
∇ f +∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉

2
(

e
k2−k1

2 t−1
)
|∇ f −∇Pt f |2

,

expression (2.16) reaches its minimal value:

4
[(

e
k2−k1

2 t−1
)
|∇ f |2 + 〈∇ f ,∇Pt f 〉− e−k1t

〈
∇ f ,E//−1

0,t ∇ f (Xt)
〉]

−

〈
∇Pt f −∇ f ,2

(
e

k2−k1
2 t−1

)
∇ f +∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉2

(
e

k2−k1
2 t−1

)
|∇Pt f −∇ f |2

.

As the minimum is unique, we conclude that the upper bounds (2.14) and (2.16) are indeed
equivalent. ut

To prove that the inequalities in (ii)-(iv), (ii’)-(iv’) imply condition (i), we use the fol-
lowing lemma.

Lemma 2.5 For x ∈M, let X ∈ TxM with |X |= 1. Let f ∈C∞
0 (M) such that ∇ f (x) = X and

Hess f (x) = 0, and let fn = n+ f for n≥ 1. Then,

(i) for any p > 0,

RicZ(X ,X) = lim
t→0

Pt |∇ f |p(x)−|∇Pt f |p(x)
pt

;
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(ii) for any p > 1,

RicZ(X ,X) = lim
n→∞

lim
t→0

1
t

Pt |∇ fn|2−
p
{

Pt f 2
n − (Pt f 2/p

n )p
}

4(p−1)t

(x);

(iii) RicZ(X ,X) can be calculated as

RicZ(X ,X) = lim
n→∞

lim
t→0

1
4t2

{
4tPt |∇ fn|2 +(Pt f 2

n ) logPt f 2
n −Pt f 2

n log f 2
n
}
(x);

(iv) RicZ(X ,X) is also given by the following two limits:

RicZ(X ,X) = lim
t→0

{〈
∇ f ,E[//−1

0,t ∇ f (Xt)]
〉
−〈∇ f ,∇Pt f 〉

}
(x)

t

= lim
t→0

{〈
∇Pt f ,E[//−1

0,t ∇ f (Xt)]
〉
−|∇Pt f |2

}
(x)

t
.

Proof The formulae in (i)–(iii) can be found in [19, Theorem 2.2.4] (see also [2,17]). Then,
by Itô’s formula and [19, Lemma 2.1.4.], for f ∈C∞

0 (M) such that Hess f (x) = 0, we get

E
[
//−1

0,t ∇ f (Xt)
]
= ∇ f (x)+E

[∫ t∧σr

0
//−1

0,s (�+∇Z)(∇ f )(Xs)ds
]
+o(t)

= ∇ f (x)+//−1
0,s (�+∇Z)(∇ f )(x) t +o(t),

where σr = inf{t ≥ 0 : Xt /∈ B(x,r)} and � = −∇∗∇ is the connection Laplacian (or rough
Laplacian) acting on Γ (T M). From this, the two expressions in (iv) are easily derived using
Taylor expansions:〈

∇ f ,E[//−1
0,t ∇ f (Xt)]

〉
(x)−〈∇ f ,∇Pt f 〉(x)

= [〈∇ f ,(�+∇Z)∇ f 〉(x)−〈∇ f ,∇L f 〉(x)]t +o(t)

= RicZ(∇ f ,∇ f )(x) t +o(t)

and 〈
∇Pt f ,E[//−1

0,t ∇ f (Xt)]
〉
(x)−〈∇Pt f ,∇Pt f 〉(x)

= (〈∇ f ,(�+∇Z)∇ f 〉(x)−〈∇ f ,∇L f 〉(x))t +o(t)

= RicZ(∇ f ,∇ f )(x) t +o(t).

Here, we use the fact that for f ∈ C∞
0 (M) such that Hess f (x) = 0, the following equation

holds:

RicZ(∇ f ,∇ f )(x) = 〈(�+∇Z)∇ f ,∇ f 〉(x)−〈∇L f ,∇ f 〉(x).

ut

Using Lemma 2.5, we are now able to complete the proof of the main result.
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Proof (Proof of Theorem 2.1.)
Part II “(ii) and (ii’)⇒ (i)”:

Fix x∈M and let f ∈C∞
0 (M) such that Hess f (x)= 0. Without explicit mention, the following

computations are all taken implicitly at the point x. First, we rewrite the inequalities (ii) and
(ii’) as follows,

|∇Pt f |2−Pt |∇ f |2

2t
+

1− e−2k1t

2t
Pt |∇ f |2

≤ 2
t

(
e

k2−k1
2 t−1

)
|a∇ f +b∇Pt f |2

+2
〈a∇ f +b∇Pt f ,∇Pt f 〉−

〈
a∇ f +b∇Pt f ,E//−1

0,t ∇ f (Xt)
〉

t

+
2
t

(
1− e−k1t

)
E
〈
a∇ f +b∇Pt f ,//−1

0,t ∇ f (Xt)
〉

where a = 1, b = 0 or a = 0, b = 1. Letting t→ 0, by Lemma 2.5, we obtain

−RicZ(∇ f ,∇ f )+ k1|∇ f |2 ≤ (k2− k1)|∇ f |2−2RicZ(∇ f ,∇ f )+2k1|∇ f |2

which implies that
RicZ(∇ f ,∇ f )≤ k2|∇ f |2.

“(iii), (iv), (iii’), (iv’) ⇒ (i)”: We only prove that “(iii) and (iii’) imply (i)”, as the in-
equalities (iv) and (iv’) can be considered as limits of the inequalities (iii) and (iii’) as p ↓ 1.

For x ∈M and f ∈C∞
0 (M) such that Hess f (x) = 0, let fn := f +n and rewrite (iii) as

1
t2

(
p(Pt f 2

n − (Pt f 2/p
n )p)

4(p−1)
− tPt |∇ fn|2

)
− 1

t2

∫ t

0
[1− e−2k1(t−s)]ds×Pt |∇ fn|2

≤ 4
t2

∫ t

0

(
e

k2−k1
2 (t−r)−1

)
Pr|∇ fn|2 dr

+
4
t2

∫ t

0

(
1− e−k1(t−r)

)
E
〈
∇ fn(Xr),//

−1
r,t ∇ fn(Xt)

〉
dr

+
4
t2

∫ t

0
E
〈
∇ fn(Xr),∇Pt−r fn(Xr)−//−1

r,t ∇ fn(Xt)
〉

dr. (2.17)

Now letting t→ 0, by Lemma 2.5 (ii), the terms on the right-hand side become

−RicZ(∇ f ,∇ f )+ k1|∇ f |2.

For the terms on the left-hand side of (2.17), we have the following expansions:

4
t2

∫ t

0

(
e

k2−k1
2 (t−r)−1

)
Pr|∇ fn|2 dr

=
4
t2

∫ t

0

(
e

k2−k1
2 (t−r)−1

)
(|∇ fn|2 +o(1))dr

= (k2− k1)|∇ f |2 +o(1);
4
t2

∫ t

0

(
1− e−k1(t−r)

)
E
〈
∇ fn(Xr),//

−1
r,t ∇ fn(Xt)

〉
dr

=
4
t2

∫ t

0

(
1− e−k1(t−r)

)
(|∇ fn|2 +o(1))dr

= 2k1|∇ f |2 +o(1);
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4
t2

∫ t

0
E
〈
∇ fn(Xr),∇Pt−r fn(Xr)−//−1

r,t ∇ fn(Xt)
〉

dr

=
4
t2

∫ t

0
(RicZ(∇ fn,∇ fn)(t− r)+o(t)+o(r))dr

= 2RicZ(∇ f ,∇ f )+o(1).

Therefore, letting t→ 0 in (2.17), we arrive at

−RicZ(∇ f ,∇ f )+ k1|∇ f |2 ≤ (−2RicZ(∇ f ,∇ f )+(k2 + k1)|∇ f |2)∧0,

i.e.,
k1|∇ f |2 ≤ RicZ(∇ f ,∇ f )≤ k2|∇ f |2.

The proof of “(iii’) implies (i)” is similar. We skip the details here. ut

Remark 2.6 In the proof of Theorem 2.1 “(ii) (ii’)⇒ (i)”, we take into account that for a and
b satisfying a+b = 1, trivially limt→0(a∇ f +b∇Pt f ) = ∇ f holds. However, when choosing
a = a0 as in (2.15) for the proof of inequality (2.6), obviously a0 depends on t, and thus we
get

lim
t→0

(a0∇ f +(1−a0)∇Pt f )

= lim
t→0

(∇ f +(1−a0)(∇Pt f −∇ f ))

= ∇ f − lim
t→0

〈
∇ f −∇Pt f ,2

(
e

k2−k1
2 t−1

)
∇ f +∇Pt f − e−k1t E//−1

0,t ∇ f (Xt)
〉

2
(

e
k2−k1

2 t−1
)
|∇ f −∇Pt f |2

(∇Pt f −∇ f )

= ∇ f + lim
t→0

〈(∇L f )t +o(t),k2∇ f t +(∇L f )t− ((�+∇Z)∇ f )t +o(t)〉
(k2− k1)|∇L f |2t3 +o(t3)

(∇L f )t

= ∇ f +
〈∇L f ,k2∇ f +∇L f − (�+∇Z)∇ f 〉

(k2− k1)|∇L f |2
∇L f 6= ∇ f .

Actually, dividing both hands of inequality (2.13) by 2t and letting t→ 0, we obtain

k1|∇ f |2 ≤ Ric(∇ f ,∇ f )≤ k2|∇ f |2− 〈∇L f ,k2∇ f +∇L f − (�+∇Z)∇ f 〉2

(k2− k1)|∇L f |2
(≤ k2|∇ f |2).

3 Pointwise characterizations of curvature bounds

Consider a Riemannian manifold M possibly with non-empty boundary ∂M, and let Xt be a
reflecting diffusion processes generated by L = ∆ +Z. We assume that Xt is non-explosive.
It is well known that the reflecting process Xt solves the equation

dXt =
√

2ut ◦dBt +Z(Xt)dt +N(Xt)dlt ,

where ut is a horizontal lift of Xt to the orthonormal frame bundle, N the inward normal unit
vector field on ∂M and lt the local time of Xt supported on ∂M, see [19] for details. Again,

//r,s = us ◦u−1
r : TXr M→ TXs M, r ≤ s,
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denotes parallel transport along t 7→ Xt . Finally, let II be the second fundamental form of the
boundary:

II(X ,Y ) =−〈∇X N,Y 〉 , X ,Y ∈ Tx∂M, x ∈ ∂M.

In this section, we extend the results of Section 2 in order to characterize pointwise
bounds on RicZ and II. To this end, for continuous functions K1,K2,σ1 and σ2 on M, let

K1(X[s,t]) =
∫ t

s
K1(Xr)dr+σ1(Xr)dlr, K2(X[s,t]) =

∫ t

s
K2(Xr)dr+σ2(Xr)dlr

where X[s,t] = {Xr : r ∈ [s, t]}. Furthermore, let

C∞
N (M) := { f ∈C∞

0 (M) : N f |∂M = 0}.

Finally let
(Pt f )(x) = E[ f (Xx

t )], f ∈Cb(M),

be the semigroup with Neumann boundary condition generated by L.
The result of this section can be presented as follows.

Theorem 3.1 We keep the assumptions and notations from above. Let x 7→ K1(x) and x 7→
K2(x) be two continuous functions on M such that K1 ≤ K2. In addition, let x 7→ σ1(x) and
x 7→ σ2(x) be two continuous functions on ∂M such that σ1 ≤ σ2. Assume that

E
[

e−(2+ε)K1(X[s,t])+e(
1
2+ε)(K2−K1)(X[s,t])

]
< ∞, for some ε > 0 and all t > s≥ 0. (3.1)

The following statements are equivalent:

(i) Curvature RicZ and second fundamental form II satisfy the bounds

K1(x)≤ RicZ(x)≤ K2(x), x ∈M, and σ1(x)≤ II(x)≤ σ2(x), x ∈ ∂M.

(ii) For f ∈C∞
N (M) and t > 0,

|∇Pt f |2−E
[
e−2K1(X[0,t]) |∇ f |2(Xt)

]
≤ 4
[(

Ee
1
2 (K2(X[0,t])−K1(X[0,t]))−1

)
|∇ f |2 + 〈∇ f ,∇Pt f 〉

−
〈

∇ f ,E
[

e−K1(X[0,t]) //−1
0,t ∇ f (Xt)

]〉]
∧0.

(ii’) For f ∈C∞
N (M) and t > 0,

|∇Pt f |2−Ee−2K1(X[0,t]) |∇ f |2(Xt)

≤ 4
[
Ee

1
2 (K2(X[0,t])−K1(X[0,t])) |∇Pt f |2−

〈
∇Pt f ,E

[
e−K1(X[0,t]) //−1

0,t ∇ f (Xt)
]〉]
∧0.

(iii) For f ∈C∞
N (M), p ∈ (1,2] and t > 0,

p(Pt f 2− (Pt f 2/p)p)

4(p−1)
−E

[∫ t

0
e−2K1(X[r,t]) dr×|∇ f |2(Xt)

]
≤ 4

∫ t

0

[(
Ee

1
2 (K2(X[r,t])−K1(X[r,t]))−1

)
Pr|∇ f |2

+E
〈

∇ f (Xr),∇Pt−r f (Xr)− e−K1(X[r,t]) //−1
r,t ∇ f (Xt)

〉]
dr∧0.
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(iii’) For f ∈C∞
N (M), p ∈ (1,2] and t > 0,

p(Pt f 2− (Pt f 2/p)p)

4(p−1)
−E

[∫ t

0
e−2K1(X[r,t]) dr×|∇ f |2(Xt)

]
≤ 4

∫ t

0

[
E
[
e

1
2 (K2(X[r,t])−K1(X[r,t]))

]
Pr|∇Pt−r f |2

−E
[
e−K1(X[r,t])

〈
∇ f (Xr),//

−1
r,t ∇ f (Xt)

〉]]
dr∧0.

(iv) For f ∈C∞
N (M) and t > 0,

1
4
(
Pt( f 2 log f 2)−Pt f 2 logPt f 2)−E

[∫ t

0
e−2K1(X[r,t]) dr×|∇ f |2(Xt)

]
≤ 4

∫ t

0

[(
Ee

1
2 (K2(X[r,t])−K1(X[r,t]))−1

)
Pr|∇ f |2

+E
〈

∇ f (Xr),∇Pt−r f (Xr)− e−K1(X[r,t]) //−1
r,t ∇ f (Xt)

〉]
dr∧0.

(iv’) For f ∈C∞
N (M) and t > 0,

1
4
(
Pt( f 2 log f 2)−Pt f 2 logPt f 2)−E

[∫ t

0
e−2K1(X[r,t]) dr×|∇ f |2(Xt)

]
≤ 4

∫ t

0

[
E
[
e

1
2 (K2(X[r,t])−K1(X[r,t]))

]
Pr|∇Pt−r f |2

−E
[
e−K1(X[r,t])

〈
∇ f (Xr),//

−1
r,t ∇ f (Xt)

〉]]
dr∧0.

To prove the theorem, we need the following lemmas.

Lemma 3.2 ([19, Lemma 3.1.2]) Let Xx
t be the reflecting diffusion process generated by L

such that X0 = x and lx
t the corresponding local time on the boundary.

(i) For any x ∈M and r0 > 0, there exists a constant c > 0 such that

P{σr ≤ t} ≤ e−cr2/t , for all r ∈ [0,r0] and t > 0,

where σr = inf{s≥ 0: ρ(x,Xx
s )≥ r}.

(ii) Let x ∈ ∂M and r as above. Then:
(a) Ex[eλ lt∧σr ]< ∞ for any λ > 0 and there exists c > 0 such that Ex[l2

t∧σr ]≤ c(t+ t2);

(b) Ex[lt∧σr ] =
2
√

t√
π
+o(t1/2) holds for small t > 0.

By means of Lemma 3.2, we can derive pointwise formulae for RicZ and II.

Lemma 3.3 Let x ∈ M̊ =: M \ ∂M and X ∈ TxM with |X | = 1. Let f ∈ C∞
0 (M) such that

N f |∂M = 0, Hess f (x) = 0 and ∇ f (x) = X and let fn = f +n for n≥ 1. Then all assertions
of Lemma 2.5 hold.

Proof Let r > 0 be such that B(x,r) ⊂ M̊ and |∇ f | ≥ 1
2 on B(x,r). Due to Lemma 3.2, the

proof of Lemma 2.5 applies to the present situation, using t ∧σr to replace t, so that the
boundary condition is avoided. We refer the reader to the proof of [19, Theorem 3.2.3] for
more explanation. ut
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Lemma 3.4 Let x ∈ ∂M and X ∈ TxM with |X |= 1.

(1) For any f ∈C∞
0 (M) such that ∇ f (x) = X, and for any p > 0, we have

II(X ,X) = lim
t↓0

√
π

2p
√

t
{Pt |∇ f |p−|∇ f |p}(x)

= lim
t↓0

√
π

2p
√

t
{Pt |∇ f |p−|∇Pt f |p}(x)

= lim
t→0

√
π

{〈
∇ f ,E//−1

0,t ∇ f (Xt)
〉
−〈∇ f ,∇Pt f 〉

}
(x)

2
√

t
(3.2)

= lim
t→0

√
π

{〈
∇Pt f ,E//−1

0,t ∇ f (Xt)
〉
−|∇Pt f |2

}
(x)

2
√

t
. (3.3)

(2) If moreover f > 0, then for any p ∈ [1,2],

II(X ,X) =− lim
t↓0

3
8

√
π

t

{
|∇ f |2 + p[(Pt f 2/p)p−Pt f 2]

4(p−1)t

}
(x)

=− lim
t↓0

3
8

√
π

t

{
|∇Pt f |2 + p[(Pt f 2/p)p−Pt f 2]

4(p−1)t

}
(x),

where when p = 1, we interpret the quotient
(Pt f 2/p)p−Pt f 2

p−1
as the limit

lim
p↓1

(Pt f 2/p)p−Pt f 2

p−1
= (Pt f 2) logPt f 2−Pt( f 2 log f 2).

Proof We only need to prove formulas (3.2) and (3.3). For the remaining statements we
refer to [19, Theorem 3.2.4]. Let r > 0 such that |∇ f | ≥ 1/2 on B(x,r), and let

σr := inf{s≥ 0 : Xs /∈ B(x,r)}.

Then, by Itô’s formula and Lemma 3.2 (ii) (b), we get

E
[
//−1

0,t ∇ f (Xt)
]

= ∇ f (x)+E
[∫ t∧σr

0
//−1

0,s (�+∇Z)(∇ f )(Xs)ds+//−1
0,s ∇N(∇ f )(Xs)dls

]
+o(t)

= ∇ f (x)+∇N(∇ f )(x)
2
√

t√
π
+o(
√

t).

It follows that the formulae in (3.2) and (3.3) are obtained by taking into account the expan-
sions: 〈

E
[
//−1

0,t ∇ f (Xt)
]
,∇ f

〉
= |∇ f |2 + II(∇ f ,∇ f )

2
√

t√
π
+o(
√

t),

resp. 〈
E
[
//−1

0,t ∇ f (Xt)
]
,∇Pt f

〉
= |∇ f |2 + II(∇ f ,∇ f )

2
√

t√
π
+o(
√

t).

ut
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Proof (Proof of Theorem 3.1.) Let RicZ(x)≥K1(x) and II(x)≥ σ1(x). Furthermore, assume
that

E
[
e−2K1(X[0,t])

]
< ∞, for t > 0.

By [19, Theorem 3.2.1], there exists a unique two-parameter family of random endomor-
phisms Qs,t ∈ End(TXs M) solving, for s≥ 0 fixed, the following equation in t ≥ s,

dQs,t =−Qs,t

(
RicZ

//s,t
dt + II//s,t

dlt
)
(id− 1{Xt∈∂M}P//s,t

), Qs,s = id,

where by definition, for u ∈ ∂ O(M) := {u ∈ O(M) : pu ∈ ∂M},

P(uy,uz) = 〈uy,N〉〈uz,N〉 , y,z ∈ Rd .

Recall that

RicZ
//s,t

= //−1
s,t ◦RicZ

Xt ◦//s,t , II//s,t
= //−1

s,t ◦ IIXt ◦//s,t , P//s,t
= //−1

s,t ◦PXt ◦//s,t ,

where as usual bilinear forms on T M, resp. on T ∂M, are understood fiberwise as linear
endomorphisms via the metric. Moreover, by [19, Theorem 3.2.1], we have

∇Pt−s f (Xs) = //0,sE[//−1
0,s Qs,t//

−1
s,t ∇ f (Xt)|Fs]. (3.4)

By using derivative formula (3.4), the proofs are similar to that of Theorem 2.1. We only
prove the equivalence “(i)⇔ (ii) or (iii)” to explain the idea.

“(i)⇒ (ii)”: First, from the derivative formula and the lower bound on the curvature,
we get

|∇Pt f |2 ≤ E
[
e−2K1(X[0,t]) |∇ f |2(Xt)

]
. (3.5)

Next, it is easy to see that

2∇ f −Qt//
−1
0,t ∇ f (Xt)

= 2∇ f − e−
1
2 (K2(X[0,t])+K1(X[0,t])) //−1

0,t ∇ f (Xt)

+
(

e−
1
2 (K2(X[0,t])+K1(X[0,t])) id−Qt

)
//−1

0,t ∇ f (Xt) (3.6)

where Qt := Q0,t , which implies that∣∣∣2∇ f −Qt//
−1
0,t ∇ f (Xt)

∣∣∣
≤
∣∣∣2∇ f − e−

1
2 (K2(X[0,t])+K1(X[0,t])) //−1

0,t ∇ f (Xt)
∣∣∣

+
∣∣∣(e− 1

2 (K2(X[0,t])+K1(X[0,t])) id−Qt)//
−1
0,t ∇ f (Xt)

∣∣∣ .
We start by estimating the last term on the right-hand side,∣∣∣(e−

1
2 (K2(X[0,t])+K1(X[0,t])) id−Qt

)
//−1

0,t ∇ f (Xt)
∣∣∣

≤ e−
1
2 (K2(X[0,t])+K1(X[0,t]))

∥∥∥id− e
1
2 (K2(X[0,t])+K1(X[0,t]))Qt

∥∥∥ |∇ f (Xt)|.
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Observe that we may rewrite

id− e
1
2 (K2(X[0,t])+K1(X[0,t]))Qt

=−
∫ t

0

d
[

e
1
2 (K2(X[0,s])+K1(X[0,s]))Qs

]
ds

ds

=
∫ t

0
e

1
2 (K2(X[0,s])+K1(X[0,s]))Qs

[(
RicZ

//0,s
−K1(Xs)+K2(Xs)

2
id
)(

id− 1{Xs∈∂M}P//0,s

)
ds

+

(
II//0,s

−σ1(Xs)+σ2(Xs)

2
id
)(

id− 1{Xs∈∂M}P//0,s

)
dls

]
.

Thus we get∥∥∥id− e
1
2 (K2(X[0,t])+K1(X[0,t]))Qt

∥∥∥
≤
∫ t

0
e

1
2 (K2(X[0,s])+K1(X[0,s])) ‖Qs‖

(∣∣∣∣RicZ
//0,s
−K1(Xs)+K2(Xs)

2
id
∣∣∣∣ ds

+

∣∣∣∣II//0,s
−σ1(Xs)+σ2(Xs)

2
id
∣∣∣∣ dls

)
≤
∫ t

0
e

1
2 (K2(X[0,s])−K1(X[0,s]))

(
K2(Xs)−K1(Xs)

2
ds+

σ2(Xs)−σ1(Xs)

2
dls

)
= e

1
2 (K2(X[0,t])−K1(X[0,t]))−1

which implies∣∣∣2∇ f −Qt//
−1
0,t ∇ f (Xt)

∣∣∣2
≤
[∣∣∣2∇ f − e−

1
2 (K2(X[0,t])+K1(X[0,t])) //−1

0,t ∇ f (Xt)
∣∣∣

+ e−
1
2 (K2(X[0,t])+K1(X[0,t]))

(
e

1
2 (K2(X[0,t])−K1(X[0,t]))−1

)
|∇ f |(Xt)

]2

≤ e
1
2 (K2(X[0,t])−K1(X[0,t]))

∣∣∣2∇ f − e−
1
2 (K2(X[0,t])+K1(X[0,t])) //−1

0,t ∇ f (Xt)
∣∣∣2

+ e−(K2(X[0,t])+K1(X[0,t]))
(

e
1
2 (K2(X[0,t])−K1(X[0,t]))−1

)
e

1
2 (K2(X[0,t])−K1(X[0,t])) |∇ f |2(Xt)

= 4e
1
2 (K2(X[0,t])−K1(X[0,t])) |∇ f |2−4e−K1(X[0,t])

〈
∇ f ,//−1

0,t ∇ f (Xt)
〉

+ e−2K1(X[0,t]) |∇ f |2(Xt).

By expanding the terms above, we get

|Qt//
−1
0,t ∇ f (Xt)|2− e−2K1(X[0,t]) |∇ f |2(Xt)

≤ 4
(

e
1
2 (K2(X[0,t])−K1(X[0,t]))−1

)
|∇ f |2 +4

〈
∇ f ,Qt//

−1
0,t ∇ f (Xt)

〉
−4e−K1(X[0,t])

〈
∇ f ,//−1

0,t ∇ f (Xt)
〉
.
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We observe that |∇Pt f |2 ≤ E[|Qt//
−1
0,t ∇ f (Xt)|2] and take expectation on both sides of the

inequality above, to obtain

|∇Pt f |2−E
[
e−2K1(X[0,t]) |∇ f |2(Xt)

]
≤ 4

(
Ee

1
2 (K2(X[0,t])−K1(X[0,t]))−1

)
|∇ f |2 +4E

〈
∇ f ,∇Pt f − e−K1(X[0,t]) //−1

0,t ∇ f (Xt)
〉
.

Combining this with (3.5) completes the proof of “(i)⇒ (ii)”.
“(i)⇒ (iii)”: It is well known that if f ∈ C∞

N (M), then NPt f = 0 for t > 0. Combined
with Itô’s formula, we obtain

d(Pt−s f 2/p)p(Xs) = dMs +(L+∂s)(Pt−s f 2/p(Xs))
p ds

= dMs + p(p−1)(Pt−s f 2/p(Xs))
p−2|∇Pt−s f 2/p|2(Xs)ds

+ p(Pt−s f 2/p)p−1NPt−s f 2/p(Xs)dls

= dMs + p(p−1)(Pt−s f 2/p(Xs))
p−2|∇Pt−s f 2/p|2(Xs)ds

where Ms is a local martingale. The rest of the argument is then similar to the proof of
Theorem 2.1; we skip it here.

“(ii)⇒ (i)”: Conversely, for x ∈ M̊ and f ∈C∞
N (M) such that Hess f (x) = 0, we have

|∇Pt f |2−Pt |∇ f |2

t
+E

[
1− e−2K1(X[0,t])

t
|∇ f |2(Xt)

]

≤ 4
(
E[e

1
2 (K2(X[0,t])−K1(X[0,t]))−1]

t
|∇ f |2 +

〈
∇ f ,∇Pt f −//−1

0,t ∇ f (Xt)
〉

t

+

〈
∇ f ,E

[
1
t

(
1− e−K1(X[0,t])

)
//−1

0,t ∇ f (Xt)

]〉)
∧0. (3.7)

By Lemma 2.5(i) and condition (3.1), there exists r > 0 such that B(x,r)⊆ M̊ and

lim
t→0

E

[
1{σr≤t}

|1− e−2K1(X[0,t]) |
t

|∇ f |2(Xt)

]

≤ lim
t→0

(
1
t
P
{

σr ≤ t
}
‖∇ f‖2

∞ +
1
t
P
{

σr ≤ t
} ε

2+ε E
[
e−(2+ε)K1(X[0,t])

] 2
2+ε ‖∇ f‖2

∞

)
= 0.

It follows that

lim
t→0

E

[
1− e−2K1(X[0,t])

t
|∇ f |2(Xt)

]
= lim

t→0
E
[

1{t<σr}
1− e−2K1(X[0,t])

t
|∇ f |2(Xt)

]
= 2K1(x)|∇ f |2(x).

Similarly, we have

lim
t→0

1
t
E
[
e

1
2 (K2(X[0,t])−K1(X[0,t]))−1

]
=

K2(x)−K1(x)
2

,

and

lim
t→0

〈
∇ f ,E

[
(1− e−K1(X[0,t]))

t
//−1

0,t ∇ f (Xt)

]〉
= K1(x)|∇ f |2(x).
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Thus, letting t→ 0 on both sides of (3.7) and using Lemma 3.3, we obtain

−2RicZ(∇ f ,∇ f )+2K1(x)|∇ f |2

≤
[
2(K2(x)−K1(x))|∇ f |2−4RicZ(∇ f ,∇ f )+4K1(x)|∇ f |2

]
∧0,

i.e.,
K1(x)|∇ f |2 ≤ RicZ(∇ f ,∇ f )≤ K2(x)|∇ f |2.

We choose x ∈ ∂M and f ∈C∞
N (M). We can rewrite the inequality in item (ii) as

√
π (|∇Pt f |2−Pt |∇ f |2)

2
√

t
+E
[√

π
(
1− e−2K1(X[0,t])

)
2
√

t
|∇ f |2(Xt)

]

≤ 4
[√

π E
[

e
1
2 (K2(X[0,t])−K1(X[0,t]))−1

]
2
√

t
|∇ f |2 +

√
π
〈
∇ f ,∇Pt f −//−1

0,t ∇ f (Xt)
〉

2
√

t

+

〈
∇ f ,E

[√
π (1− e−K1(X[0,t]))

2
√

t
//−1

0,t ∇ f (Xt)

]〉]
∧0.

Now letting t→ 0, by Lemma 3.4 and Lemma 3.2, we obtain

−2II(∇ f ,∇ f )+2σ1(x)|∇ f |2

≤ [−4II(∇ f ,∇ f )+2(σ2(x)−σ1(x))|∇ f |2 +4σ1(x)|∇ f |2]∧0,

i.e.,
σ1(x)|∇ f |2(x)≤ II(∇ f ,∇ f )(x)≤ σ2(x)|∇ f |2(x).

Similarly, using Lemmas 3.3 and 3.4, one can prove “(iii)⇒ (i)”; we skip the details here.
ut

4 Extension to evolving manifolds

In this section, we deal with the case that the underlying manifold carries a geometric flow
of complete Riemannian metrics. More precisely, for some Tc ∈ (0,∞], we consider the sit-
uation of a d-dimensional differentiable manifold M equipped with a C1 family of complete
Riemannian metrics (gt)t∈[0,Tc). Let ∇t be the Levi-Civita connection and ∆t the Laplace-
Beltrami operator associated with the metric gt . In addition, let (Zt)t∈[0,Tc) be a C1-family of
vector fields on M. For the sake of brevity, we write

RZ
t (X ,Y ) := Rict(X ,Y )−

〈
∇

t
X Zt ,Y

〉
t −

1
2

∂tgt(X ,Y ), X ,Y ∈ TxM, x ∈M,

where Rict is the Ricci curvature tensor with respect to the metric gt and 〈·, ·〉t := gt(·, ·).
In what follows, for real-valued functions φ ,ψ on [0,Tc)×M, we write ψ ≤RZ ≤ φ , if

ψt |X |2t ≤RZ
t (X ,X)≤ φt |X |2t

holds for all X ∈ T M and t ∈ [0,Tc), where by definition |X |t :=
√

gt(X ,X). Let Xt be the
diffusion process generated by Lt := ∆t + Zt (called Lt -diffusion) which is assumed to be
non-explosive up to time Tc.

We first introduce some notations and recall the construction of Xt . Let F(M) be the
frame bundle over M and Ot(M) the orthonormal frame bundle over M with respect to the
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metric gt . We denote by π : F(M)→M the projection from F(M) onto M. For u ∈ F(M),
let

TπuM→ TuF(M), X 7→ Ht
X (u),

be the ∇t -horizontal lift. In particular, we consider the standard-horizontal vector fields Ht
i

on F(M) given by
Ht

i (u) = Ht
uei
(u), i = 1,2, . . . ,d

where {ei}d
i=1 denotes the canonical orthonormal basis of Rd . Let {Vα,β}d

α,β=1 be the stan-
dard-vertical vector fields on F(M),

Vα,β (u) := T `u(exp(Eα,β )), u ∈ F(M),

where Eα,β is a basis of the real d×d matrices, and

`u : GL(d;R)→ F(M), g 7→ u ·g,

is defined via left multiplication of the general linear group GL(d;R) on F(M).
Let Bt =(B1

t , . . . ,B
d
t ) be a Rd-valued Brownian motion on a complete filtered probability

space (Ω ,{Ft}t≥0,P). To construct the Lt -diffusion Xt , we first construct the corresponding
horizontal diffusion process ut by solving the following Stratonovich SDE on F(M):

dut =
√

2
d

∑
i=1

Ht
i (ut)◦dBi

t +Ht
Zt (ut)dt− 1

2

d

∑
α,β=1

Gα,β (t,ut)Vαβ (ut)dt,

us ∈ Os(M), π(us) = x, s ∈ [0,Tc),

(4.1)

where Gα,β (t,ut) := ∂tgt(uteα ,uteβ ). As explained in [1], the last term is crucial to ensure
ut ∈ Ot(M). Since {Ht

Zt
}t∈[0,Tc) is C1,∞-smooth, Eq. (4.1) has a unique solution up to its

lifetime ζ := lim
n→∞

ζn where

ζn := inf{t ∈ [s,Tc) : ρt(π(us),π(ut))≥ n} , n≥ 1, inf∅ := Tc, (4.2)

and where ρt stands for the Riemannian distance induced by the metric gt . Then X (s,x)
t =

π(ut) solves the equation

dX (s,x)
t =

√
2ut ◦dBt +Zt(X

(s,x)
t )dt, X (s,x)

s = x := π(us),

up to the lifetime ζ . By Itô’s formula, for any f ∈C2
0(M),

f (X (s,x)
t )− f (x)−

∫ t

s
Lr f (X (s,x)

r )dr =
√

2
∫ t

s

〈
//−1

s,r ∇
r f (X (s,x)

r ),ux
sdBr

〉
s, t ∈ [s,Tc),

is a martingale up to ζ . In other words, X (s,x)
t is a diffusion process with generator Lt . In

case s = 0, if there is no risk of confusion, we write again Xx
t instead of X (0,x)

t .
Throughout this section, we assume that the diffusion process Xt generated by Lt is non-

explosive up to time Tc (see [15] for sufficient conditions ensuring non-explosion). Then this
process gives rise to an inhomogeneous Markov semigroup {Ps,t}0≤s≤t<Tc on Bb(M) by

Ps,t f (x) := E
[

f (X (s,x)
t )

]
= E(s,x) [ f (Xt)] , x ∈M, f ∈Bb(M),

which is called the diffusion semigroup generated by Lt .
We are now in position to present the main result of this section.
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Theorem 4.1 Let (t,x) 7→ K1(t,x) and (t,x) 7→ K2(t,x) be two continuous functions on
[0,Tc)×M such that K1 ≤ K2. Suppose thatE

[
e−(2+ε)

∫ t
s K1(r,Xr)dr +e(

1
2+ε)

∫ t
s (K2(r,Xr)−K1(r,Xr))dr

]
< ∞,

for some ε > 0 and all t > s≥ 0.
(4.3)

The following statements are equivalent to each other:

(i) the curvature RZ
t satisfies

K1(t,x)≤RZ
t (x)≤ K2(t,x), (t,x) ∈ [0,Tc)×M;

(ii) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

|∇sPs,t f |2s −E(s,x)
[
e−2

∫ t
s K1(r,Xr)dr |∇t f |2t (Xt)

]
≤ 4
[(

E(s,x) e
1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr−1
)
|∇s f |2s + 〈∇s f ,∇sPs,t f 〉s

−
〈

∇
s f ,E(s,x)

[
e−

∫ t
s K1(r,Xr)dr //−1

s,t ∇
t f (Xt)

]〉
s

]
∧0;

(ii’) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

|∇sPs,t f |2s −E(s,x)
[
e−2

∫ t
s K1(r,Xr)dr |∇t f |2t (Xt)

]
≤ 4
[
E(s,x) e

1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr |∇sPs,t f |2s

−
〈

∇
sPs,t f ,E(s,x)

[
e−

∫ t
s K1(r,Xr)dr //−1

s,t ∇
t f (Xt)

]〉
s

]
∧0;

(iii) for f ∈C∞
0 (M), p ∈ (1,2] and 0≤ s≤ t < Tc,

p(Ps,t f 2− (Ps,t f 2/p)p)

4(p−1)
−E(s,x)

[∫ t

s
e−2

∫ t
r K1(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[(
E(s,x) e

1
2
∫ t

r (K2(τ,Xτ )−K1(τ,Xτ ))dτ−1
)

Ps,r|∇r f |2r

+E(s,x)
〈

∇
r f (Xr),∇

rPr,t f (Xr)− e−
∫ t

r K1(τ,Xτ )dτ //−1
r,t ∇

t f (Xt)
〉

r

]
dr∧0;

(iii’) for f ∈C∞
0 (M), p ∈ (1,2] and 0≤ s≤ t < Tc,

p(Ps,t f 2− (Ps,t f 2/p)p)

4(p−1)
−E(s,x)

[∫ t

s
e−2

∫ t
r K1(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[
E(s,x) e

1
2
∫ t

r (K2(τ,Xτ )−K1(τ,Xτ ))dτ Ps,r|∇rPr,t f |2r

−E(s,x)
[
e−

∫ t
r K1(τ,Xτ )dτ

〈
∇

rPr,t f (Xr),//
−1
r,t ∇

t f (Xt)
〉

r

]]
dr∧0;
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(iv) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

1
4
(
Ps,t( f 2 log f 2)−Ps,t f 2 logPs,t f 2)−E(s,x)

[∫ t

s
e−2

∫ t
r K1(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[(
E(s,x) e

1
2
∫ t

r (K2(τ,Xτ )−K1(τ,Xτ ))dτ−1
)

Ps,r|∇r f |2r

+E(s,x)
〈

∇
r f (Xr),∇

rPr,t f (Xr)− e−
∫ t

r K1(τ,Xτ )dτ //−1
r,t ∇

t f (Xt)
〉

r

]
dr∧0;

(iv’) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

1
4
(Ps,t( f 2 log f 2)−Ps,t f 2 logPs,t f 2)−E(s,x)

[∫ t

s
e−2

∫ t
r K1(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[
E(s,x) e

1
2
∫ t

r (K2(τ,Xτ )−K1(τ,Xτ ))dτ Ps,r|∇rPr,t f |2r

−E(s,x)
[
e−

∫ t
r K1(τ,Xτ )dτ

〈
∇

rPr,t f (Xr),//
−1
r,t ∇

t f (Xt)
〉

r

]]
dr∧0.

Remark 4.2 By [6], the integral condition (4.3) can be satisfied if K2(t, ·)/ρ2
t → 0 as ρ2

t →∞

and one of the following conditions is satisfied:

(A1) there exists a non-negative continuous function C on [0,Tc) such that for all t ∈ [0,Tc),

RZ
t ≥−C(t);

(A2) there exist two non-negative continuous functions C1,C2 on [0,Tc) such that for all t ∈
[0,Tc),

Rict ≥−C1(t)(1+ρ
2
t ) and ∂tρt +

〈
Zt ,∇

t
ρt
〉

t ≤C2(t)(1+ρt).

To prove the theorem, we need the following lemmas: the derivative formula and char-
acterization formulae for RZ

t . For s≤ t, let

RZ
//s,t

:= //−1
s,t ◦RZ

t (Xt)◦//s,t .

Lemma 4.3 ([6, Theorem 3.1]) Let RZ
t (x)≥ K(t,x) for all t ∈ [0,Tc) and suppose that

E
[
e−

∫ t
s K(r,Xr)dr

]
< ∞

for 0≤ s≤ t < Tc . Then, for 0≤ s≤ t < Tc ,

∇
sPs,t f (x) = E(s,x) [Qs,t//

−1
s,t ∇

t f (Xt)
]
,

where for fixed s≥ 0, the random family Qs,t ∈Aut(TXs M) is constructed for t ≥ s as solution
to the equation:

dQs,t

dt
=−Qs,t R

Z
//s,t

, Qs,s = id. (4.4)

Lemma 4.4 For s ∈ [0,Tc) and x ∈ M, let X ∈ TxM with |X |s = 1. Furthermore, let f ∈
C∞

0 (M) be such that ∇s f (x) = X and Hesss
f (x) = 0, and set fn = n+ f for n≥ 1. Then,



24 Characterization of pinched Ricci curvature

(i) for any p > 0,

RZ
s (X ,X) = lim

t↓s

Ps,t |∇t f |pt (x)−|∇sPs,t f |ps (x)
p(t− s)

;

(ii) for any p > 1,

RZ
s (X ,X) = lim

n→∞
lim
t↓s

1
t− s

(
p
(
Ps,t f 2

n − (Ps,t f 2/p
n )p

)
4(p−1)(t− s)

−|∇sPs,t fn|2s

)
(x)

= lim
n→∞

lim
t↓s

1
t− s

(
Ps,t |∇t f |2t −

p
(
Ps,t f 2

n − (Ps,t f 2/p
n )p

)
4(p−1)(t− s)

)
(x); (4.5)

(iii) RZ
s (X ,X) is equal to each of the following limits:

RZ
s (X ,X)

= lim
n→∞

lim
t↓s

1
(t− s)2

{
(Ps,t fn)

[
Ps,t( fn log fn)− (Ps,t fn) logPs,t fn

]
− (t− s)|∇sPs,t f |2s

}
(x)

= lim
n→∞

lim
t↓s

1
4(t− s)2

{
4(t− s)Ps,t |∇t f |2t +(Ps,t f 2

n ) logPs,t f 2
n −Ps,t f 2

n log f 2
n
}
(x);

(iv) RZ
s (X ,X) can also be calculated via the following limits:

RZ
s (X ,X) = lim

t↓s

{〈
∇s f ,E(s,x)//−1

s,t ∇t f (Xt)
〉

s
−〈∇s f ,∇sPs,t f 〉s

}
(x)

t− s

= lim
t↓s

{〈
∇sPs,t f ,E(s,x)//−1

s,t ∇t f (Xt)
〉

s
−|∇sPs,t f |2s

}
(x)

t− s
.

Proof Without loss of generality, we prove (iv) only for s = 0. For the remaining formulae,
the reader is referred to [6]. We have

lim
t↓0

〈
∇0 f ,E//−1

0,t ∇t f (Xt)
〉

0−
〈

∇0 f ,EQt//
−1
0,t ∇t f (Xt)

〉
0

t

= lim
t↓0

〈
∇

0 f ,E
[
(id−Qt)

t
//−1

0,t ∇
t f (Xt)

]〉
0

= lim
t↓0

〈
∇

0 f ,E
[

1
t

∫ t

0
QsR

Z
//0,s

ds//−1
0,t ∇

t f (Xt)

]〉
0

= RZ
0 (∇

0 f ,∇0 f ).

Similarly, we have

lim
t↓0

〈
∇0Pt f ,E//−1

0,t ∇t f (Xt)
〉

0
−
〈

∇0Pt f ,EQt//
−1
0,t ∇t f (Xt)

〉
0

t

= lim
t↓0

〈
∇

0Pt f ,E
[
(id−Qt)

t
//−1

0,t ∇
t f (Xt)

]〉
0

= lim
t↓0

〈
∇

0Pt f ,E
[

1
t

∫ t

0
Qs R

Z
//0,s

ds//−1
0,t ∇

t f (Xt)

]〉
0

= RZ
0 (∇

0 f ,∇0 f ).

ut
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Proof (Proof of Theorem 4.1.) We give the proof of the equivalence (i) and (ii), resp. (ii’).

“(i) implies (ii) and (ii’)”: By (4.4), we know that∥∥∥id− e
1
2
∫ t

s (K1(r,Xr)+K2(r,Xr))dr Qs,t

∥∥∥
=

∥∥∥∥∫ t

s
e

1
2
∫ r

s (K1(u,Xu)+K2(u,Xu))du Qs,r

(
RZ

//s,r
− K1(r,Xr)+K2(r,Xr)

2
id
)

dr
∥∥∥∥

≤
∫ t

s
e

1
2
∫ r

s (K1(u,Xu)+K2(u,Xu))du ‖Qs,r‖
K2(r,Xr)−K1(r,Xr)

2
dr

≤
∫ t

s
e

1
2
∫ r

s (K2(u,Xu)−K1(u,Xu))du K2(r,Xr)−K1(r,Xr)

2
dr

= e
1
2
∫ t

s (K2(u,Xu)−K1(u,Xu))du−1.

By a similar discussion as in the proof of Theorem 2.1, we have∣∣2a∇
s f +2b∇

sPs,t f −Qs,t //
−1
s,t ∇

t f (Xt)
∣∣2
s

≤ e
1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr
∣∣∣2a∇

s f +2b∇
sPs,t f − e−

1
2
∫ t

s (K1(r,Xr)+K2(r,Xr))dr //−1
s,t ∇

t f (Xt)
∣∣∣2
s

+ e−
∫ t

s (K1(r,Xr)+K2(r,Xr))dr
(

e
∫ t

s (K2(r,Xr)−K1(r,Xr))dr−e
1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr
)
|∇t f (Xt)|2t

= e
1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr |2a∇
s f +2b∇

sPs,t f |2s
−2e−

∫ t
s K1(r,Xr)dr 〈2a∇

s f +2b∇
sPs,t f ,//−1

s,t ∇
t f (Xt)

〉
s + e−2

∫ t
s K1(r,Xr)dr |∇t f (Xt)|2t

where a,b are constants such that a+b = 1. From this, we obtain

E(s,x) ∣∣Qs,t//
−1
s,t ∇

t f (Xt)
∣∣2
s −E(s,x)

[
e−2

∫ t
s K1(r,Xr)dr |∇t f (Xt)|2t

]
≤
(
E(s,x) e

1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr−1
)
|2a∇

s f +2b∇
sPs,t f |2s

−2
〈

2a∇
s f +2b∇

sPs,t f ,E(s,x)
[
e−

∫ t
s K1(r,Xr)dr //−1

s,t ∇
t f (Xt)

]〉
s

+2〈2a∇
s f +2b∇

sPs,t f ,∇sPs,t f 〉s . (4.6)

Moreover, by the derivative formula (Lemma 4.3), we have

|∇sPs,t f |2s (x)≤ E(s,x)|Qs,t//
−1
s,t ∇

t f (Xt)|2s

which combines with (4.6) implies

|∇sPs,t f |2s −E(s,x)
[
e−2

∫ t
s K1(r,Xr)dr |∇t f (Xt)|2t

]
≤
(
E(s,x) e

1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr−1
)
|2a∇

s f +2b∇
sPs,t f |2s

−2
〈

2a∇
s f +2b∇

sPs,t f ,E(s,x)
[
e−

∫ t
s K1(r,Xr)dr //−1

s,t ∇
t f (Xt)

]〉
s

+2〈2a∇
s f +2b∇

sPs,t f ,∇sPs,t f 〉s .

Hence taking a = 1, b = 0 and a = 0, b = 1 in the above inequalities, we complete the proof
of “(i)⇒ (ii)(ii’)”.
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“(i)⇒ (iii)”: By Itô’s formula, for f ∈C∞
0 (M),

d(Ps,t f 2/p)p(Xs) = dMs +(Ls +∂s)(Ps,t f 2/p(Xs))
p ds

= dMs + p(p−1)(Ps,t f 2/p(Xs))
p−2|∇sPs,t f 2/p|2s (Xs)ds

= dMs + p(p−1)(Ps,t f 2/p(Xs))
p−2|∇sPs,t f 2/p|2s (Xs)ds

where Ms is a local martingale. The rest of the proof then is similar to the one of Theorem
2.1; we skip the details here.

“(ii) and (ii’)⇒ (i)”:

|∇sPs,t f |2s −Ps,t |∇t f |2t
t− s

+E(s,x)
[

1− e−2
∫ t

s K1(r,Xr)dr

t− s
|∇t f |2t (Xt)

]
≤ 4
[
E(s,x) e

1
2
∫ t

s (K2(r,Xr)−K1(r,Xr))dr−1
t− s

|∇s f |2s +
〈
∇s f ,∇sPs,t f −E//−1

s,t ∇t f (Xt)
〉

s
t− s

−
〈

∇
s f ,E(s,x)

[
e−

∫ t
s K1(r,Xr)dr−1

t− s
//−1

s,t ∇
t f (Xt)

]〉
s

]
∧0;

Letting t ↓ s and using Lemma 4.4 (i) (iv), we have

−2RZ
s (∇

s f ,∇s f )+2K1(s,x)|∇s f |2s

≤ 4
[

1
2
(K2(s,x)−K1(s,x))|∇s f |2s −RZ

s (∇
s f ,∇s f )+K1(s,x)|∇s f |2s

]
∧0,

that is
K1(s,x)|∇s f |2s (x)≤RZ

s (∇
s f ,∇s f )(x)≤ K2(s,x)|∇s f |2s (x).

Similarly, (ii’) implies (i) as well. We skip the details here. ut

Based on our characterizations for pinched curvature on evolving manifolds, we can
characterize solutions to some geometric flows.

Corollary 4.5 Let (t,x) 7→K(t,x) be some function on [0,Tc)×M. The following statements
are equivalent to each other:

(i) the family (M,gt)t∈[0,Tc) evolves by

1
2

∂tgt = Rict−∇
tZt −K(t, ·)gt , t ∈ [0,Tc);

(ii) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

|∇sPs,t f |2s −E(s,x)
[
e−2

∫ t
s K(r,Xr)dr |∇t f |2t (Xt)

]
≤ 4
[
〈∇s f ,∇sPs,t f 〉s−

〈
∇

s f ,E(s,x)
[
e−

∫ t
s K(r,Xr)dr //−1

s,t ∇
t f (Xt)

]〉
s

]
∧0;

(ii’) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

|∇sPs,t f |2s −E(s,x)
[
e−2

∫ t
s K(r,Xr)dr |∇t f |2t (Xt)

]
≤ 4
[
|∇sPs,t f |2s −

〈
∇

sPs,t f ,E(s,x)
[
e−

∫ t
s K(r,Xr)dr //−1

s,t ∇
t f (Xt)

]〉
s

]
∧0;
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(iii) for f ∈C∞
0 (M), p ∈ (1,2] and 0≤ s≤ t < Tc,

p(Ps,t f 2− (Ps,t f 2/p)p)

4(p−1)
−E(s,x)

[∫ t

s
e−2

∫ t
r K(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[
E(s,x)

〈
∇

r f (Xr),∇
rPr,t f (Xr)− e−

∫ t
r K(τ,Xτ )dτ //−1

r,t ∇
t f (Xt)

〉
r

]
dr∧0;

(iii’) for f ∈C∞
0 (M), p ∈ (1,2] and 0≤ s≤ t < Tc,

p(Ps,t f 2− (Ps,t f 2/p)p)

4(p−1)
−E(s,x)

[∫ t

s
e−2

∫ t
r K(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[
Ps,r|∇rPr,t f |2r −E(s,x)

〈
∇

rPr,t f (Xr),e−
∫ t

r K(τ,Xτ )dτ //−1
r,t ∇

t f (Xt)
〉

r

]
dr∧0;

(iv) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

1
4
(
Ps,t( f 2 log f 2)−Ps,t f 2 logPs,t f 2)−E(s,x)

[∫ t

s
e−2

∫ t
r K(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[
E(s,x)

〈
∇

r f (Xr),∇
rPr,t f (Xr)− e−

∫ t
r K(τ,Xτ )dτ //−1

r,t ∇
t f (Xt)

〉
r

]
dr∧0;

(iv’) for f ∈C∞
0 (M) and 0≤ s≤ t < Tc,

1
4
(Ps,t( f 2 log f 2)−Ps,t f 2 logPs,t f 2)−E(s,x)

[∫ t

s
e−2

∫ t
r K(τ,Xτ )dτ dr×|∇t f |2t (Xt)

]
≤ 4

∫ t

s

[
Ps,r|∇rPr,t f |2r −E(s,x)

〈
∇

rPr,t f (Xr),e−
∫ t

r K(τ,Xτ )dτ //−1
r,t ∇

t f (Xt)
〉

r

]
dr∧0.

Remark 4.6 In Corollary 4.5, if Zt ≡ 0 and K ≡ 0, the results characterize solutions to the
Ricci flow, see [11] for functional inequalities on path space characterizing Ricci flow.
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