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Abstract We give a generalized curvature-dimension inequality connecting the geometry of
sub-Riemannian manifolds with the properties of its sub-Laplacian. This inequality is valid
on a large class of sub-Riemannian manifolds obtained from Riemannian foliations. We give
a geometric interpretation of the invariants involved in the inequality. Using this inequality,
we obtain a lower bound for the eigenvalues of the sub-Laplacian. This inequality also lays
the foundation for proving several powerful results in Part II.
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1 Introduction

On a given connectedmanifold M , there is a well established relation between elliptic second
order differential operators on M and Riemannian geometries on the same space. More
precisely, for any smooth elliptic operator L on M without constant term, there exist a unique
Riemannian metric g on M such that for any pair of smooth functions f, g ∈ C∞(M),

Γ( f, g) := 1

2
(L( f g) − f Lg − gL f ) = 〈grad f, grad g〉g. (1.1)

Conversely, from any Riemannian metric g, we can construct a second order operator satisfy-
ing (1.1) in the form of the Laplacian �. In addition, the properties of L and g are intimately
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connected. Consider the case when M is complete with respect to g and write Pt = et/2�

for the heat semigroup corresponding to 1
2�. Then the following statements are equivalent

for any ρ ∈ R.

(a) For any f ∈ C∞
c (M), ρ‖ grad f ‖2g ≤ Ricg(grad f, grad f ).

(b) For any f ∈ C∞
c (M), ‖ grad Pt f ‖2g ≤ e−ρt Pt‖ grad f ‖2g.

(c) For any f ∈ C∞
c (M), 1−e−ρt

ρ
‖ grad Pt f ‖2g ≤ Pt f 2 − (Pt f )2.

Here, C∞
c (M) is the space of smooth functions on M with compact support and Ricg is

the Ricci curvature tensor of g. This equivalence gives us a way of understanding Ricci
curvature in terms of growth of the gradient of a solution to the heat equation.With appropriate
modifications of the Ricci curvature, the same statement holds for a general elliptic operator
L satisfying (1.1), giving us a geometric tool to study the heat flow of elliptic operators. See
e.g. [26] and references therein for the full statement.

Let us now consider the case when L is not elliptic, but is rather given locally in a form

L =
n∑

i=1

A2
i + first order terms. (1.2)

Here, A1, . . . , An are linearly independent vector fields and n is strictly less than the dimen-
sion of M . In this case, there is still a geometry we can associate with L by considering the
subbundle spanned by A1, . . . , An furnished with a metric tensor that makes these vector
fields orthogonal. Such a geometry is called sub-Riemannian geometry. A sub-Riemannian
manifold is a connected manifold M with a positive definite metric tensor h defined only on
a subbundleH of the tangent bundle T M . If we assume that sections ofH and their iterated
Lie brackets span the entire tangent bundle, we obtain a metric space (M,dcc), where the
distance between two points is defined by taking the infimum of the lengths of all curves
tangent to H that connect these points.

In recent years, understanding how to define curvature in sub-Riemannian geometry has
become an important question. One approach has been to introduce curvature by study-
ing invariants of the flow of normal geodesics associated to the sub-Riemannian structure,
see e.g. [1,5,18,27]. The other approach explores the interaction of the sub-Riemannian
gradient and second order operators of the form (1.2). We will follow the latter approach.

The equivalence of statements (a), (b) and (c) mentioned previously is rooted in the
curvature-dimension inequality for Riemannian manifolds. In the notation of Bakry and
Émery [3] this inequality is written as

Γ2( f ) ≥ 1

n
(L f )2 + ρΓ( f ), f ∈ C∞(M).

Here, n = dim M, L = �,ρ is a lower bound for the Ricci curvature and, for any pair of
functions f, g ∈ C∞(M),

Γ( f, g)= 1

2
(L( f g)− f Lg − gL f )=〈grad f, grad g〉g, Γ( f )=Γ( f, f ), (1.3)

Γ2( f, g) = 1

2

(
LΓ( f, g) − Γ( f, Lg) − Γ(L f, g)

)
, Γ2( f ) = Γ2( f, f ). (1.4)

Even in simple cases, this inequality fails in the sub-Riemannian setting. The following
generalization has been suggested by Baudoin and Garofalo [8].

Let h be a sub-Riemannian metric defined on a subbundleH of T M . Let L be any second
order operator as in (1.2), i.e. locally given as a sum of squares of an orthonormal basis
of H plus a first order term. We remark that, unlike the Laplace operator on a Riemannian
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Curvature-dimension inequalities on sub-Riemannian manifolds: part I 101

manifold, the operator L is not uniquely determined by h unless we add some additional
structure such as a chosen preferred volume form on M . Define Γ and Γ2 as in (1.3) and
(1.4). For any positive semi-definite section v∗ of Sym2 T M , define Γv∗

( f, g) = v∗(d f, dg)

and Γv∗
( f ) = Γv∗

( f, f ). Let Γv∗
2 ( f ) be defined analogous to Γ2( f ) in (1.4). Then L is said

to satisfy a generalized curvature-dimension inequality if we can choose v∗ such that for
every � > 0,

Γ2( f ) + �Γv∗
2 ( f ) ≥ 1

n
(L f )2 + (

ρ1 − �−1)Γ( f ) + ρ2Γ
v∗

( f ), (1.5)

for some 1 ≤ n ≤ ∞, ρ1 ∈ R and ρ2 > 0. Using this inequality, the authors were able to
prove several results, such as gradient bounds, Li–Yau type inequality and a sub-Riemannian
version of the Bonnet–Myers theorem. See also further results based of the same formalism
in [6,7,10,14].

So far, the examples of sub-Riemannian manifolds satisfying (1.5) all have a complement
to H spanned by the sub-Riemannian analogue of Killing vector fields. We want to show
that a further generalization of (1.5) holds for a larger class of sub-Riemannian manifolds.
We also want to give an interpretation for the constants involved in the curvature-dimension
inequality. Results following from this inequality are important for sub-Riemannian geom-
etry, understanding solutions of the heat equation of operators L described locally as in
(1.2), along with the stochastic processes which have these operators as their infinitesimal
generators.

In order to motivate our approach, let us first consider the following example. Let π :
M → B be a submersion between two connected manifolds and let

̂

g be a Riemannian
metric on B. Let V = ker π∗ be the vertical bundle and let H be an Ehresmann connection
on π , that is, a subbundle such that T M = H⊕ V . We then define a sub-Riemannian metric
h on M by pulling back the Riemannian metric, i.e. h = π∗

̂

g |H. In this case, we have two
notions of curvature that could be expected to play a role for the inequality of type (1.5),
namely the Ricci curvature of B and the curvature of the Ehresmann connection H (see
Sect. 3.1 for definition). After all, our sub-Riemannian structure is uniquely determined by
a metric on B and a choice of Ehresmann connection. For this reason, examples of this type
should be helpful in providing a geometric understanding of curvature in sub-Riemannian
geometry. However, we have to deal with the following two challenges.

(i) Even though the sub-Riemannian geometry on M can be considered as “lifted” from B
the same cannot be said for our operator L . That is, if L is of the type (1.2),

̂

� is the
Laplacian on B and f ∈ C∞(B) is a smooth function on B, then L( f ◦ π) does not
coincide with (

̂

� f ) ◦ π in general.
(ii) The same sub-Riemannian structure on M can sometimes be considered as lifted from

two different Riemannian manifolds (see Sect. 4.5 for an example).

Our approach to overcome these challenges will be the following.
In Sect. 2, we introduce the basics of sub-Riemannian manifolds and sub-Laplacians. We

overcome the challenges of (i) and (ii) by introducing a unique way of choosing L relative
to a complemental subbundle of H rather than a volume form. This will have exactly the
desired “lifting property”. We discuss the diffusions of such operators in terms of stochastic
development. In Sect. 3 we introduce a preferable choice of complement, which we call
metric-preserving complements. Roughly speaking, such complements correspond to Rie-
mannian foliations. While such a complement may not always exist, all sub-Riemannian
manifolds discussed so far have such a complement. We give geometric conditions for when
a sub-Riemannian manifold with a metric-preserving complement satisfies a generalization
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of the curvature-dimension inequality (1.5). From this inequality, we immediately get a result
on the spectral gap of L found in Sect. 4. In the same section, we also apply our results to
some examples.

In Part II we will look at further consequences of the curvature-dimension inequality in
Theorem 3.5. A short summary of these results are given Sect. 5

In parallel with the development of our paper, a generalized curvature-dimension appeared
in [9] for the case of sub-Riemannian manifolds obtained from Riemannian foliations with
totally geodesic leaves that are of Yang-Mills type. See Remark 3.7 for details.

1.1 Notations and conventions

Unless otherwise stated, all manifolds are connected. If E → M is a vector bundle over
a manifold M , its space of smooth sections is written Γ (E). If s ∈ Γ (E) is a section, we
generally prefer to write s|x rather than s(x) for its value in x ∈ M . By a metric tensor s
on E , we mean a smooth section of Sym2 E∗ which is positive definite or at least positive
semi-definite. For every such metric tensor, we write ‖e‖s = √

s(e, e) for any e ∈ E even
if s is only positive semi-definite. All metric tensors are denoted by bold, lower case Latin
letters (e.g. h, g, . . . ). We will only use the term Riemannian metric for a positive definite
metric tensor on the tangent bundle. If g is a Riemannian metric, we will use g∗,∧k g∗, . . .
for the metric tensors induced on T ∗M,

∧k T ∗M, . . . .
If α is a form on a manifold M , its contraction or interior product by a vector field A will

be denoted by either ιAα or α(A, �). We use LA for the Lie derivative with respect to A. If
M is furnished with a Riemannian metric g, any bilinear tensor s : T M ⊗ T M → R can
be identified with an endomorphism of T M using g. We use the notation tr s(×,×) for the
trace of this corresponding endomorphism, with themetric being implicit. IfH is a subbundle
of T M , we will also use the notation trH s(×,×) := tr s(prH ×, prH ×), where prH is the
orthogonal projection to H.

2 Sub-Riemannian manifolds and sub-Laplacians

2.1 Definition of a sub-Riemannian manifolds

A sub-Riemannian manifold can be considered as a triple (M,H,h) where M is a connected
manifold, H is a subbundle of T M and h is a positive definite metric tensor defined only
on the subbundle H. The pair (H,h) is called a sub-Riemannian structure on M . Any sub-
Riemannian structure induces a vector bundle morphism

	h
∗ : T ∗M → T M,

determined by the properties 	h
∗
(T ∗M) = H and p(v) = h(v, 	h

∗
p) for any p ∈ T ∗M and

v ∈ H. The kernel of 	h
∗
is the subbundle Ann(H) ⊆ T ∗M of all elements of T ∗M that

vanish on H. We can define a co-metric h∗ on T ∗M by

h∗(p1, p2) = p1(	
h∗

p2), p1, p2 ∈ T ∗
x M, x ∈ M,

which obviously degenerates along Ann(H). A sub-Riemannian manifold can therefore
equivalently be considered as a pair (M,h∗) where M is a connected manifold and h∗ a
co-metric degenerating along a subbundle of T ∗M . We will use both of these point of views
throughout our paper, referring to the sub-Riemannian structure (H,h) and h∗ interchange-
ably.
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Curvature-dimension inequalities on sub-Riemannian manifolds: part I 103

We will call any absolutely continuous curve γ in M horizontal if γ̇ (t) ∈ Hγ (t) for almost
all t . We define the Carnot–Carathéodory distance dcc on M as

dcc(x, y) = inf
γ

{∫ 1

0
h(γ̇ , γ̇ )1/2 dt : γ (0) = x, γ (1) = y, γ horizontal

}
.

This distance is finite for any pair of points if they can be connected by at least one horizontal
curve. A sufficient condition for the latter to hold is that H is bracket-generating [12,21]. A
subbundle H is called bracket-generating if its sections and their iterated brackets span the
entire tangent bundle. The same property also guarantees that the metric topology induced
by dcc coincides with the manifold topology on M , however, the Hausdorff dimension of dcc

will in general be greater than the topological dimension (see e.g. [20, Th. 2.3, Th. 2.17]).
From now on, the rank ofH is n ≥ 2 while the manifold M is assumed to have dimension

n + ν. We will refer to H as the horizontal bundle and its vectors and sections as horizontal
and we refer to both (H,h) and h∗ as a sub-Riemannian structure on M .

2.2 Second order operators associated to h∗

For anymanifold M , let T 2M denote the second order tangent bundle. Sections L ∈ Γ (T 2M)

of this bundle can locally be expressed as

L =
n+ν∑

i, j=1

Li j
∂

∂xi∂x j
+

n+ν∑

j=1

L j
∂

∂x j
, (2.1)

relative to some local coordinate system (x1, . . . , xn+ν) and functions Li j = L ji and L j .
We can consider T M as a subbundle of T 2M . Denote its inclusion by inc. This gives us a
short exact sequence

0 → T M
inc−→ T 2M

q−→ Sym2 T M → 0,

where q(L) =: qL is the symmetric bilinear tensor on T ∗M defined by the property

qL(d f, dg) = 1

2
(L( f g) − f Lg − gL f ) , for any f, g ∈ C∞(M). (2.2)

In local coordinates, we can write qL(d f, dg) = ∑n+ν
i, j=1 Li j

∂ f
∂xi

∂g
∂x j

relative to the represen-
tation of L in (2.1).

Let h∗ be the co-metric corresponding to a sub-Riemannian structure (H,h). Then any
operator L satisfying qL = h∗ can locally be written as

L =
n∑

i=1

A2
i + A0

where A0 is a vector field and A1, . . . , An is a local orthonormal basis of H. From Hör-
mander’s celebrated result [15], we know that any such operator is hypoelliptic when H is
bracket-generating.We consider two exampleswhere a choice of extra structure on (M,H,h)

gives a differential operator of this type.
Let vol be a volume form on M .We define the sub-Laplacian relative to vol as the operator

�h given by

�h f := div 	h
∗
d f,
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where div A is defined by LA vol = (div A) vol. Any such operator satisfies
∫

M
g�h f dvol =

∫

M
f �hg dvol

for any pair of functions f, g ∈ C∞
c (M) of compact support. Since L is also hypoelliptic, it

has a smooth, symmetric heat kernel with respect to vol . This is the most common way of
defining the sub-Laplacian.

We like to introduce an alternative notion of sub-Laplacian.Rather than choosing a volume,
we will choose a complement V toH, i.e. a subbundle V such that T M = H⊕V . This choice
of complement gives us projections prH and prV to respectively H and V . A Riemannian
metric g on M is said to tame h if g |H = h. Consider any Riemannian metric g that tames
h and makes V the orthogonal complement of H. Let ∇ be the Levi-Civita connection of g.
It is simple to verify that for any pair of horizontal vector fields A, Z ∈ Γ (H), prH ∇A Z
is independent of g |V . This fact allows us to define a second order operator �′

h which we
call the sub-Laplacian with respect to V . There are several ways to introduce this operator.
We have chosen to define it by using a connection ∇̊ which will be helpful for us later.
Corresponding to the Riemannian metric g and the orthogonal splitting T M = H⊕⊥ V , we
introduce the connection

∇̊A Z := prH ∇prH A prH Z + prV ∇prV A prV Z

+ prH[prV A, prH Z ] + prV [prH A, prV Z ]. (2.3)

Definition 2.1 Let V be a complement of H corresponding to the projection prH, i.e. V =
ker prH. Then the sub-Laplacian with respect to V is the operator

�′
h f := trH ∇̊2×,× f, f ∈ C∞(M),

where ∇̊2
A,Z = ∇̊A∇̊Z − ∇̊∇̊A Z is the Hessian of ∇̊.

We remark that the definition only depends on the value of ∇̊A Z when both A and Z take
values in H. This is illustrated by the fact that locally

�′
h f =

n∑

i=1

A2
i f +

n∑

i, j=1

h(prH ∇Ai A j , Ai )A j f (2.4)

where A1, . . . , An is a local orthonormal basis of H. The operator �′
h is hypoelliptic and

will have a smooth heat kernel with respect to any volume form. Two different choices of
complement may have the same sub-Laplacian, see Sect. 4.5.

In what follows, whenever we have a chosen complement V , we will refer to it as the
vertical bundle and its vectors and vector fields as vertical.

Remark 2.2 The horizontal bundleH is called equiregular if there exist a flag of subbundles

H = H1 ⊆ H2 ⊆ H3 ⊆ · · ·
such that

Hk+1 = span
{

Z |x , [A, Z ]|x : Z ∈ Γ (Hk), A ∈ Γ (H), x ∈ M
}

.

Even if H is bracket-generating, it is not necessarily equiregular. We emphasize that each
Hk is required to be a subbundle, and so must have constant rank. The smallest integer r
such that Hr = T M is called the step of H. If (H,h) is a sub-Riemannian structure on
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Curvature-dimension inequalities on sub-Riemannian manifolds: part I 105

M with H equiregular, then there exist a canonical choice of volume form on M called
Popp’s measure. For construction, see Sect. 4.2 or see [2] for a more detailed presenta-
tion.

2.3 Lifting property of the sub-Laplacian defined relative to a complement

Let π : M → B be a surjective submersion between connected manifolds M and B. The
vertical bundle of π is the subbundle V := ker π∗ of T M . An Ehresmann connection on π

is a splitting h of the short exact sequence

0 −→ V = ker π∗ −→ T M π∗
�� π∗T B

h
�� −→ 0.

This map h is uniquely determined byH = image h, which is a subbundle of T M satisfying
T M = H⊕ V . Hence, we refer to such a subbundleH as an Ehresmann connection as well.
The image of an element (x, v̌) ∈ π∗T B under h is called the horizontal lift of v̌ to x , and
denoted hx v̌. Similarly, for any vector field Ǎ on B, we have a vector field h Ǎ on M defined
by x �→ hx Ǎ|π(x).

We can extend the notion of horizontal lifts to second order vectors and differential opera-
tors. If B and M are two manifolds, then a linear map ϕ : T 2

b B → T 2
x M is called a Schwartz

morphism if ϕ(Tb M) ⊆ Tx M and the following diagram commutes

0 �� Tx M
inc �� T 2

x M
q

�� Sym2 Tx M �� 0

0 �� Tb B
inc ��

ϕ|Tb B

��

T 2
b B

q
��

ϕ

��

Sym2 Tb B ��

ϕ|Tb B⊗ϕ|Tb B

��

0

with q defined as in (2.2). We remark that any linear map ϕ : T 2
b B → T 2

x M is a Schwartz
morphism if and only if ϕ = f∗|T 2

b B for some map f : B → M with f (b) = x (see e.g. [13,
p. 80]). Let π : M → B be a surjective submersion. A 2-connection on π is then a splitting
hS of the short exact sequence

0 −→ ker π∗ −→ T 2M π∗
�� π∗T 2B

hS
�� −→ 0

such that hS is a Schwartz morphism at any point.
For any choice of Ehresmann connection h on π , we can construct a corresponding

2-connection hS uniquely determined by the following two requirements (see e.g. [19, pp. 82–
83]).

• hS |T M = h,
• hS{ Ǎ, Ž} = {h Ǎ, h Ž} where { Ǎ, Ž} = 1

2 ( Ǎ Ž + Ž Ǎ) is the skew-commutator and

Ǎ, Ž ∈ Γ (T B). Equivalently, hS( Ǎ Ž) = h Ǎh Ž − 1
2 prV [h Ǎ, h Ž ].

Using this 2-connection, we can define horizontal lifts of second order operators on B. We
then have the following way to interpret the sub-Laplacian with respect to a complement.

Proposition 2.3 Let

̂

g be a Riemannian metric on B with Laplacian

̂

�. Relative to an
Ehresmann connection H on π , define a sub-Riemannian structure (H,h) by h = π∗ g |H.
Then hS

̂

� = �′
h where �′

h is the sub-Laplacian of V = ker π∗.

123



106 E. Grong, A. Thalmaier

In particular, for any f ∈ C∞(B), we have �′
h( f ◦ π) = (

̂

� f ) ◦ π . A submersion
π : (M, g) → (B,

̂

g ) between two Riemannian manifolds such that

g |H = π∗

̂

g |H, H = (ker π∗)⊥

is called a Riemannian submersion. The sub-Riemannian manifolds of Proposition 2.3 can
hence be considered as the result of restricting the metric on the top space in a Riemannian
submersion to its horizontal subbundle.

Proof (of Proposition 2.3) Let g be a Riemannian metric on M satisfying g |H = h and
H⊥ = V . Let Ǎ1, . . . , Ǎn be any local orthonormal basis of T B. Then the Laplacian can be
written as

̂

� =
n∑

i=1

Ǎ2
i +

n∑

i, j=1

̂

g(

̂

∇ Ǎi
Ǎ j , Ǎi ) Ǎ j

where

̂

∇ is the Levi-Civita connection of

̂

g. However, since g(h Ǎi , h Ǎ j ) =

̂

g( Ǎi , Ǎ j ) and
since prH[h Ǎi , h Ǎ j ] = h[ Ǎi , Ǎ j ], we obtain

̂

g(

̂

∇ Ǎi
Ǎ j , Ǎi ) = g(∇̊h Ǎi

h Ǎ j , h Ǎi ), i, j = 1, 2, . . . , n.

The result follows from (2.4) and the fact that h Ǎ1, . . . , h Ǎn forms a local orthonormal basis
of H. ��

Since the proof of Proposition 2.3 is purely local, it also holds onRiemannian foliations. To
bemore specific, a subbundleV of T M is integrable if [V1, V2] takes its values in V whenever
V1, V2 ∈ Γ (V) are vertical vector fields. From the Frobenius theorem, we know that there
exists a foliation F of M consisting of immersed submanifolds of dimension ν = rank V
such that each leaf is tangent to V .

A Riemannian metric g on M with a foliation induced by V , is called bundle-like if
V⊥ = H and for any A ∈ Γ (H) and V ∈ Γ (V), we have (LV g)(A, A) = 0. Intuitively,
one can think of a bundle-like metric g as a metric where g |H does “not change” in vertical
directions. A foliation F of a Riemannian manifold is called Riemannian if the metric is
bundle-like with respect to F . Such a manifold locally has the structure of a Riemannian
submersion, that is, any point has a neighborhood U such that π : U → B := U/(F |U ) can
be considered as a smooth submersion of manifolds. The subbundleH|U is an Ehresmann on
π and B can be given a Riemannian metric

̂

g such that pr∗H g = π∗

̂

g, see [22]. If we define
a sub-Riemannian structure (H,h) on M with h = g |H, then restricted to each sufficiently
small neighborhood U , the sub-Laplacian �′

h of V is equal to hS

̂

� were

̂

� is the Laplacian
on U/(F |U ).

Remark 2.4 Bymodifying the proof of Proposition 2.3 slightly, we can also get the following
stronger statement: Let (B,H1,h1) be a sub-Riemannian manifold and let π : M → B be a
submersion with an Ehresmann connection E . Define a subbundleH2 on M as the horizontal
lifts of all vectors in H1 with respect to E and let h2 = π∗h1|H2 be the lifted metric. Let
V1 be a choice of complement of H1 and define V2 as the direct sum of the horizontal lift
of V1 and ker π∗. Then, if �′

H j
is the sub-Laplacian with respect to V j , j = 1, 2, we have

�′
H2

= hS�′
H1

, where hS is also defined with respect to E .
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2.4 Comparison between the sub-Laplacian of a complement and a volume form

Let (M,H,h) be a sub-Riemannian manifold and let g be a Riemannian metric taming h.
Let �h be the sub-Laplacian defined with respect to the volume form of g and let �′

h be
defined relative to the complement H⊥ = V . We introduce a vector field N by formula

�h = �′
h − N .

It can then be verified that N is horizontal and can be defined by the relation

g(A, N ) = −1

2
trV (LprH A g)(×,×). (2.5)

In order for �′
h to be the sub-Laplacian with respect to some volume form, we must have

N = −	h
∗
dφ for some function φ ∈ C∞(M). Indeed, if div A denotes the divergence of a

vector field A with respect to vol, then div A+dφ(A) is its divergence with respect to eφ vol.
It follows that the sub-Laplacian of eφ vol is given as �h f + (	h

∗
dφ) f.

Remark 2.5 Let (M, g) be a Riemannian manifold with a foliation given by an integrable
subbundle V . Assume that g is bundle-like relative to V . LetH be the orthogonal complement
of V and define h = g |H. Write vol for the volume form of g. Let �h and �′

h be the sub-
Laplacian of (M,H,h) relative to respectively vol and V . Then N = �′

h − �h is the mean
curvature vector field of the leaves of the foliations by (2.5). Hence, the operators �h and
�′

h coincide in this case if and only if the leafs of the foliation are minimal submanifolds.

2.5 Diffusion of �′
h

Let L be any section of T 2M with qL being positive semi-definite and let x ∈ M be any
point. Then, by Hsu [16, Theorems 1.3.4 and 1.3.6] there exists an L-diffusion Xt = Xt (x)

satisfying X0 = x , unique in law, defined up to some explosion time τ = τ(x). An L-
diffusion Xt is an M-valued semimartingale up to some stopping time τ defined on some
filtered probability space (Ω,F� ,P), such that for any f ∈ C∞(M),

M f
t := f (Xt ) − f (X0) −

∫ t

0
L f (Xs)ds, 0 ≤ t < τ,

is a local martingale up to τ . We will always assume that τ is maximal, so that τ is the
explosion time, i.e. {τ < ∞} ⊆ {limt↑τ Xt = ∞} almost surely.

Let �′
h be the sub-Laplacian defined with respect to a choice of complement V . Let g be

a Riemannian metric such that H⊥ = V and g |H = h. Define ∇̊ on as in (2.3). To simplify
our presentation, we will assume that ∇̊ g = 0. See Remark 2.6 for the general case. For a
given point x ∈ M , let γ (t) be any smooth curve in M with γ (0) = x . Let φ1, . . . , φn and
ψ1, . . . , ψν be orthonormal bases for respectively H|x and V|x . Parallel transport of such
bases remain orthonormal bases from our assumption ∇̊ g = 0.

Define O(n) → O(H) → M as the bundle of orthonormal frames of H, and define
O(ν) → O(V) → M similarly. Let

O(n) × O(ν) → O(H) � O(V)
π→ M

denote the product bundle. We can then define an Ehresmann connection E ∇̊ on π such
that a curve (φ(t), ψ(t)) = (φ1(t), . . . , φn(t), ψ1(t), . . . , ψν(t)) in O(H)�O(V) is tangent

to E ∇̊ if and only if each φ j (t), 1 ≤ j ≤ n, and ψs(t), 1 ≤ s ≤ ν, is parallel along
γ (t) = π(φ(t), ψ(t)).
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Define vector fields Ã1, . . . , Ãn on O(H) � O(V) by Ã j |φ,ψ = hφ,ψφ j where the hori-

zontal lift is with respect to E ∇̊ . For any x ∈ M and (φ, ψ) ∈ O(H) � O(V)|x , consider the
solution Φt of the Stratonovich SDE up to explosion time τ ,

dΦt =
n∑

j=1

Ã j |Φt ◦ dW j
t , Φ0 = (φ, ψ),

where W = (W 1, . . . , W n) is a Brownian motion in R
n with W0 = 0. It is then simple to

verify that Φ is a 1
2hS�′

h-diffusion since hS�′
h = ∑n

i=1 Ã2
j if we consider the 2-connection

hS induced by the Ehresmann connection E ∇̊ . This shows that Xt = π(Φt ) is an 1
2�

′
h-

diffusion on M with X0 = x . Note that τ will be the explosion time of Xt as well by
Shigekawa [23].

Remark 2.6 If ∇̊ g �= 0, we can instead use the connection

˚̊∇ A Z := prH ∇A prH Z + prV ∇A prV Z , A, Z ∈ Γ (T M). (2.6)

It clearly satisfies ˚̊∇ g = 0, preserves the horizontal and vertical bundle under parallel trans-
port and has ∇̊A Z = ˚̊∇ A Z for any pair horizontal vector fields A, Z ∈ Γ (H). The definition
of �h in Definition 2.1 hence remains the same if we replace ∇̊ with ˚̊∇. The reason we will
prefer to use ∇̊ is the property given in Lemma 3.2 (a) which fails for ˚̊∇.

Remark 2.7 Instead of using the lift to O(H) � O(V), we could have considered the full
frame bundle O(T M) and development with respect to ∇̊ or ˚̊∇, see e.g. [16, Section 2.3].
The diffusion of 1

2�
′
h then has the Brownian motion in an n-dimensional subspace of Rn+ν

as its anti-development, where the subspace depends on the choice of initial frame.

Remark 2.8 If �′
h is symmetric with respect to some volume form vol, the the following

observationmade in [10, Theorem4.4] guarantees us that the diffusion Xt has infinite lifetime,
i.e. τ = ∞ a.s. Let g be any Riemannian metric on M taming h with corresponding volume
form vol. Assume that g is complete with (Riemannian) Ricci curvature bounded from below.
Note that if dg is the metric of g and dcc is the Carnot–Carathéodory of h, then dcc(x, y) ≥
dg(x, y) for any (x, y) ∈ M × M . Hence, Br (x) ⊆ Bg

r (x) where Br (x) and Bg
r (x) are the

balls of respectively dcc and dg, centered at x with radius r . By the Riemannian volume
comparison theorem, we have

vol(Br (x)) ≤ vol(Bg
r (x)) ≤ C1eC2r

for some constants C1, C2. In conclusion,
∫ ∞
0

r
log vol(Br (x))

dr = ∞ and so [25, Theorem 3]

tells us that 1
2�

′
h-diffusions Xt starting at a point x ∈ M has infinite lifetime.

3 Riemannian foliations and the curvature-dimension inequality

3.1 Riemannian foliations and the geometry of ∇̊

Let (M,H,h) be a sub-Riemannian manifold with a complement V . Let �′
h be the sub-

Laplacian relative to V . In order to introduce a curvature-dimension inequality for �′
h, we

will need to choose a Riemannian metric on M which tame h and makesH and V orthogonal.
Choose a metric tensor v on V to obtain a Riemannian metric g = pr∗H h + pr∗V v.
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We make the following assumptions on V . We want to consider the specific case when V
is integrable and satisfies

LV (pr∗H h) = 0 for any V ∈ Γ (V). (3.1)

Then g = pr∗H h+ pr∗V v is bundle-like for any choice of v, giving us a Riemannian foliation
as defined in Sect. 2.3. Since this property is independent of g |V , we introduce the following
definition.

Definition 3.1 An integrable subbundle V is called a metric-preserving complement to the
sub-Riemannian manifold (M,H,h) if T M = H ⊕ V and (3.1) hold.

In the special case when the foliation F of V gives us a submersion π : M → B = M/F
with H as an Ehresmann connection on π , the curvature of H is a vector-valued two-form
R ∈ Γ (

∧2 T ∗M ⊗ T M) defined by

R(A, Z) := prV [prH A, prH Z ], A, Z ∈ Γ (T M). (3.2)

This curvature measures how far H is from being a flat connection, i.e. an integrable sub-
bundle. We will callR given by formula (3.2) the curvature ofH even when V does not give
us a submersion globally.

Define ∇̊ relative to g as in (2.3). The following properties are simple to verify.

Lemma 3.2 Let g be a Riemannian metric and let V be an integrable subbundle of T M with
orthogonal complement H. Define ∇̊ relative to g and the splitting T M = H ⊕ V . Write h
and v for the restriction of g to respectively H and V .

(a) Let Z ∈ Γ (T M) be an arbitrary vector field. If A ∈ Γ (H) is horizontal, both ∇̊A Z and
∇̊Z A only depends on h and the splitting T M = H ⊕ V . They are independent of v.
Similarly, if V is vertical, then ∇̊V Z and ∇̊Z V are independent of h.

(b) The torsion of ∇̊ is given as T ∇̊(A, Z) = −R(A, Z).

(c) V is a metric-preserving complement of (M,H,h) if and only if

(∇̊A g)(Z , Z) = (LprH A g)(prV Z , prV Z).

Equivalently, V is metric-preserving if and only if ∇̊h∗ = 0.
(d) If V is metric-preserving, then

(∇̊Z1 g)(Z2, Z3) = −2 g(Z1, II(prV Z2, prV Z3)),

where II is the second fundamental form of the foliation of V .

Recall that when V is metric-preserving, g is bundle-like. We write down the basic properties

of the curvature R∇̊ of ∇̊ when V is metric-preserving.

Lemma 3.3 Let Z1, Z2 ∈ Γ (T M) be arbitrary vector fields and let A ∈ Γ (H) be a hori-
zontal vector field. Then

(a) g(R∇̊(Z1, Z2)A, A) = 0,

(b) g(R∇̊(A, Z1)Z2, A) − g(R∇̊(A, Z2)Z1, A) = 0.

In particular, g(R∇̊(A, prV Z2)Z1, A) = 0.
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Proof The statement in (a) holds since (∇̊ g)(prH �, prH �) = 0. For the identity in (b), we
recall the first Bianchi identity for connections with torsion,

� R∇̊(A, Z1)Z2 = − � T ∇̊(A, T ∇̊(Z1, Z2))+ � (∇̊AT ∇̊)(Z1, Z2),

where � denotes the cyclic sum. This means that

g(� R∇̊(A, Z1)Z2, A) = g(R∇̊(A, Z1)Z2, A) − g(R∇̊(A, Z2)Z1, A)

= g
(
− � T ∇̊(A, T ∇̊(Z1, Z2))+ � (∇̊AT ∇̊)(Z1, Z2), A

)
= 0.

��
We will use the fact that we have a clear idea of what Ricci curvature is on a Riemannian

manifold, to introduce a corresponding tensor on a sub-Riemannian manifold with a metric-
preserving complement V .
Proposition 3.4 Introduce a tensor RicH ∈ Γ (T ∗M⊗2) by

RicH(Z1, Z2) = tr R∇̊(prH �, Z2)Z1.

Then

(a) RicH is symmetric and V ⊆ ker RicH.
(b) RicH is independent of choice of metric v on V .
(c) Let F be the foliation induced by V . Let U be any neighborhood of M such that the

quotient map π : U → B := U/(F |U ) is a smooth submersions of manifolds. Let

̂

Ric
be the Ricci curvature on B with respect to the induced Riemannian structure. Then
RicH|U = π∗

̂
Ric.

Proof Since ∇̊ preserves both the vertical and horizontal bundle, and by means of
Lemma 3.3 (b), we know that RicH = pr∗H RicH. It is symmetric by Lemma 3.3 (b), which
completes the proof of the statement in (a). The statement (b) can be verified using the
definition of the Levi-Civita connection.

To prove (c), let Ǎ1, . . . , Ǎn be any local orthonormal basis on B. Note that

[h Ǎi , h Ǎ j ] = h[ Ǎi , Ǎ j ] + R(h Ǎi , h Ǎ j ).

Also, for any V ∈ Γ (V), ∇̊V h Ǎi = prH[V, h Ǎi ] = 0 since h Ǎi and V are π-related to

respectively Ǎi and the zero-section of T B. Finally, recall that ∇̊h Ai h A j = h

̂

∇Ai A j from
the proof of Proposition 2.3. For any j, k,

n∑

i=1

g(R∇̊(h Ǎi , h Ǎ j )h Ǎk, h Ǎi )

=
n∑

i=1

g
([

∇̊h Ǎi
, ∇̊h Ǎ j

]
h Ǎk − ∇̊h[ Ǎi , Ǎ j ]h Ǎk − ∇̊R(h Ǎi ,h Ǎ j )

h Ǎk, h Ǎi

)

=
n∑

i=1

̂

g

([ ̂

∇ Ǎi
,

̂

∇ Ǎ j

]
Ǎk −

̂

∇[ Ǎi , Ǎ j ] Ǎk, Ǎi

)
=

̂

Ric( Ǎk, Ǎ j ).

It follows that RicH(h Ǎk, h Ǎ j ) =

̂

Ric(π∗h Ǎk, π∗h Ǎ j ), and hence the same holds for any
pair of vector fields Z1, Z2. ��
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3.2 A generalized curvature-dimension inequality

For any symmetric bilinear tensor s∗ ∈ Γ (Sym2 T M), we associate a symmetric map Γs∗ of
smooth functions by

Γs∗ : C∞(M) × C∞(M) → C∞(M)

( f, g) �→ s∗(d f, dg).

By Leibniz identity, we have relation Γs∗( f, gφ) = gΓs∗( f, φ) + φΓs∗( f, g) for arbitrary
smooth functions f, g, φ. Relative to some second order operator L ∈ Γ (T 2M), we define

Γs∗
2 ( f, g) := 1

2

(
LΓs∗( f, g) − Γs∗(L f, g) − Γs∗( f, Lg)

)
.

To simplify notation, we will write Γs∗( f, f ) = Γs∗( f ) and Γs∗
2 ( f, f ) = Γs∗

2 ( f ).
Let h∗ = qL where q is defined as in (2.2). Assume that h∗ is positive semi-definite and

let v∗ ∈ Γ (Sym2 T M) be another chosen positive semi-definite section. Then L is said to
satisfy a generalized curvature-dimension inequality with parameters n, ρ1, ρ2,0 and ρ2,1 if

Γh∗
2 ( f ) + �Γv∗

2 ( f ) ≥1

n
(L f )2 +

(
ρ1 − 1

�

)
Γh∗

( f ) + (ρ2,0 + ρ2,1�)Γ
v∗

( f ), (CD*)

for any � > 0. We include the possibility of n = ∞. Any such inequality implies Γv∗
2 ( f ) ≥

ρ2,1Γ
v∗

( f ) by dividing both sides with � and letting it go to infinity.
Let (M,H,h)be a sub-Riemannianmanifoldswith an integrable complementV that is also

metric-preserving. Choose a metric v on V , and define ∇̊ with respect to the corresponding
Riemannian metric g. Let v∗ be the co-metric corresponding to v. Using the properties of ∇̊,
we are ready to present our generalized curvature-dimension inequality. We will make the
following assumptions on (M,H,h).

(i) Let R be the curvature of H relative to the complement V . Assume that the length of R
is bounded on M and define MR < ∞ as the minimal number such that

‖R(v, �)‖g∗ ⊗ g ≤ MR‖ prH v‖g, for any v ∈ T M.

By replacing v with M−2
R v, we may assume that MR = 1. From now on, we will work

with the vertical metric v normalized in this way.
(ii) Let RicH be defined as in Proposition 3.4. Assume that RicH has a lower bound ρH, i.e.

for every v ∈ T M , we have

RicH(v, v) ≥ ρH‖ prH v‖2h.
(iii) Assume that the length of the tensor ∇̊ g∗ (= ∇̊v∗) is bounded. Write

M∇̊v∗ = sup
M

∥∥∇̊�v
∗( �, �)

∥∥
g∗ ⊗ Sym2 g∗ .

Define also

(�′
hv

∗)(p, p) = trH(∇̊2×,×v∗)(p, p)

and assume that for any p ∈ T ∗M , we have (�′
hv

∗)(p, p) ≥ ρ�′
hv

∗‖p‖2v∗ globally on
M for some constant ρ�′

hv
∗ .
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(iv) Finally, introduce RicHV as

RicHV (Z1, Z2) = 1

2
tr

(
g(Z1, (∇̊×R)(×, Z2)) + g(Z2, (∇̊×R)(×, Z1))

)
,

Assume that for any Z ∈ Γ (T M),

RicHV (Z , Z) ≥ −2MHV‖ prV Z‖v‖ prH Z‖h
holds pointwise on M for some number MHV .

Note that MR,M∇̊v∗ and MHV are always non-negative, while this is not necessarily true
for ρH and ρ�′

hv
∗ . We will define one more constant, which will always exist. For any

α ∈ Γ (T ∗M), define mR as the maximal number satisfying

‖α(R( �, �))‖∧2h∗ ≥ mR‖α‖v∗ .

If rank V = ν, then

νm2
R ≤ ‖R‖2∧2 g∗ ⊗ g ≤ n

2
M 2

R = n

2
,

so the maximal value of mR is ( n
2ν )1/2 when the vertical metric has been normalized. More-

over, it can only be nonzero if H is step 2 equiregular as defined in Remark 2.2.
With these assumptions in place, we have the following version of a generalized curvature-

dimension inequality.

Theorem 3.5 Define Γs∗
2 with respect to L = �′

h. Then L satisfies (CD*) with
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n = rankH
ρ1 = ρH − c−1,

ρ2,0 = 1

2
m2

R − c(MHV + M∇̊v∗)2,

ρ2,1 = 1

2
ρ�′

hv
∗ − M 2

∇̊v∗ ,

(3.3)

for any positive c > 0.

Note that we include the possibility c = ∞ when MHV = M∇̊v∗ = 0. The proof is found
in Sect. 3.5.

We can give the following interpretation of the different terms in the inequality.

(i) MR and mR measures how well v can be controlled by the curvature R of H. To be
more precise, for any x ∈ M, p ∈ T ∗

x M , define C1(x) and C2(x) such that

C1(x)‖p‖v∗ ≤ ‖p ◦ R‖∧2h∗ ≤ C2(x)‖p‖v∗

with C1(x) maximal and C2(x) minimal at every point. Then

n

2
MR ≥ sup

M
C2(x),

while mR = infM C1(x).

(ii) RicH is a generalization of “the Ricci curvature downstairs” on sub-Riemannian struc-
tures on submersions by Proposition 3.4 (c).

(iii) Both M∇̊v∗ and ρ�′
hv

∗ measure how v changes in horizontal directions. In particular,

∇̊v∗ is the second fundamental form by Lemma 3.2.
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(iv) RicHV measures how “optimal” our subbundleH is with respect to our chosen comple-
ment V in the sense that on invariant sub-Riemannian structures on principal bundles,
RicHV measures how far H is from being a Yang-Mills connection, see Example 4.3.
We will see how RicHV can be interpreted in a similar way in the general case in
Appendix 6.4, Part II.

For further geometric interpretation, see Part II, Section 5.2.

Remark 3.6 In the proof of Theorem 3.5, we prove a curvature-dimension inequality without
normalizing MR in (3.9). The reason why we are free to normalize v such that MR = 1
is the following. Since ∇̊A Z is independent of v when either A or Z are horizontal, the
bounds introduced in (i)–(v) behave well under scaling in the sense that for any ε > 0, if we
define the bounds relative to v2 = 1

ε
v rather than v, we will get the same inequality back for

Γh∗
2 ( f ) + �

ε
Γ
v∗
2

2 ( f ) = Γh∗
2 ( f ) + �Γv∗

2 ( f ).

Remark 3.7 In parallel with the development of our paper, Theorem 3.5 for the case ∇̊v∗ =
0,MHV = 0 appeared in [9].

3.3 Totally geodesic foliations

Let (M,H,h) be a sub-Riemannian manifold with an integrable, metric-preserving comple-
ment V . Let v be a chosen metric on V and assume that ∇̊v∗ = 0. By Sect. 2.4, if vol is
the volume form of the Riemannian metric g corresponding to v, then �′

h coincides with
the sub-Laplacian �h defined relative to vol. By Theorem 3.5 we also obtain a somewhat
simpler curvature-dimension inequality

Γh∗+�v∗
2 ( f ) ≥ 1

n
(L f )2 +

(
ρ1 − 1

�

)
Γh∗

( f ) + ρ2Γ
v∗

( f ), (CD)

n = rankH, ρ1 = ρH − c−1, ρ2 = 1
2m2

R − cM 2
HV , (3.4)

where c > 0 is arbitrary. The inequality (CD) with the additional assumption ρ2 > 0 was
originally suggested as a generalization of the curvature-dimension inequality by Baudoin
and Garofalo [8].

We will also need the following relation, which is closely related to the inequality (CD).
The proof is left to Sect. 3.6. This result is essential for proving the result of Theorem 5.1 (b).

Proposition 3.8 For any f ∈ C∞(M), and any c > 0 and � > 0, we have

1

4
Γh∗

(Γh∗
( f )) ≤ Γh∗

( f )
(
Γh∗+�v∗
2 ( f ) − (ρ1 − �−1)Γh∗

( f ) − ρ2Γ
v∗

( f )
)

,

1

4
Γh∗

(Γv∗
( f )) ≤ Γv∗

( f )Γv∗
2 ( f ),

where ρ1 = ρH − c−1 and ρ2 = −cM 2
HV .

Remark 3.9 Togive some context for Proposition 3.8, consider the following special case. Let
h = g be a complete Riemannian metric on M with lower Ricci bound ρ an choose v∗ = 0.

Inserting this in (CD) with � = ∞ gives usΓg∗
2 ( f ) ≥ 1

n (� f )+ρΓg∗
( f )where� is the Lapla-

cian of g. If we let Pt = et�/2 be the heat semigroup of 1
2�, then the previously mentioned
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inequality implies the inequality Γg∗
(Pt f ) ≤ e−ρt PtΓ

g∗
( f ) for any smooth, compactly sup-

ported function f . However, Proposition 3.8 gives us Γg∗
(Γg∗

( f )) ≤ 4Γg∗
( f )

(
Γg∗
2 ( f ) −

ρΓg∗
( f )

)
which imply the stronger result Γg∗

(Pt f )1/2 ≤ e−ρ/2t Pt (Γ
g∗

( f )1/2) for any
smooth, compactly supported function f , see e.g. [4, Section 2].

Remark 3.10 If a metric v on V exist with ∇̊v = 0, then it is uniquely determined by its
value at one point. To see this, let v′ be an arbitrary metric on V and let γ be a horizontal
curve in M . Define ∇̊′ with respect to v′. By Lemma 3.2 (a), we still have ∇̊ ′̇

γ v = 0. Since
H is bracket-generating, the value of v at any point can be determined by parallel transport
along a horizontal curve from one given point.

3.4 A convenient choice of bases for H and V

Let (M,H,h) be a sub-Riemannian manifold with an integrable metric-preserving comple-
ment of V . Let v be a metric tensor on V . To simplify the proof of Theorem 3.5, we first want
to introduce a convenient choice of bases for H and V that will simplify our calculations,
similar to choosing the coordinate vector fields of a normal coordinate system in Riemannian
geometry. Let ˚̊∇ be defined as in (2.6).

Lemma 3.11 Given an arbitrary point x0 of M, there are local orthonormal bases
A1, . . . , An and V1, . . . , Vν of respectively H and V defined in a neighborhood around
x0 such that for any vector field Z,

˚̊∇Z Ai |x0 = ˚̊∇Z Vs |x0 = 0. (3.5)

In particular, these bases have the properties

prH[Ai1 , Ai2 ]|x0 = 0, prV [Vs1 , Vs2 ]|x0 = 0. (3.6)

Proof Define a Riemannian metric g by g = pr∗H h+ pr∗V v. Let (x1, . . . , xn+ν) be a normal
coordinate system relative to g centered at x0 such that

Hx0 = span

{
∂

∂x1

∣∣∣∣
x0

, . . . ,
∂

∂xn

∣∣∣∣
x0

}
, Vx0 = span

{
∂

∂xn+1

∣∣∣∣
x0

, . . . ,
∂

∂xn+ν

∣∣∣∣
x0

}
.

Define Y j = prH
∂

∂x j
and Z j = prV

∂
∂xn+ j

. These vector fields are linearly independent close
to x0. Write

Y j =
n+ν∑

i=1

ai j
∂

∂xi
, Zs =

n+ν∑

i=1

bis
∂

∂xi
,

where

ai j (x0) =
{
1 if i = j
0 if i �= j

, bis(x0) =
{
1 if i = s + n
0 if i �= s + n

,

and consider the matrix-valued functions

a = (ai j )
n
i, j=1, b = (bn+r,n+s)

ν
r,s=1.

These matrices remain invertible in a neighborhood of x0. On this mentioned neighborhood,
let α = (αi j ) = a−1 and β = (βrs) = b−1. Define Ỹ j = ∑n

i=1 αi j Yi and Z̃s = ∑ν
r=1 βrs Zr .
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These bases can then we written in the form

Ỹ j = ∂

∂x j
+

n+ν∑

i=n+1

ãi j
∂

∂xi
, Z̃ j = ∂

∂xn+ j
+

n∑

i=1

b̃i j
∂

∂xi
,

for some functions ãi j and b̃i j which vanish at x0. These bases clearly satisfy (3.5) and (3.6).
Since ˚̊∇ preserves the metric, we can use the Gram-Schmidt process to obtain A1, . . . , An

and V1, . . . Vν from respectively Ỹ1, . . . , Ỹν and Z̃1, . . . , Z̃ν . ��
By computing ∇̊ − ˚̊∇, we obtain the following corollary.

Corollary 3.12 Given an arbitrary point x0 of M, then around x0 there are local orthonormal
bases A1, . . . , An and V1, . . . , Vν of respectively H and V such that for any vector field Z,

∇̊Z Ai |x0 = 1

2
	 g(Z ,R(Ai , �))|x0 ,

∇̊Z Vs |x0 = −1

2
	(∇̊Y g)(Vs, �)|x0 ,

where 	 : T ∗M → T M is the identification defined relative to g. In particular, these bases
have the properties prH[Ai1 , Ai2 ]|x0 = 0, and prV [Vs1 , Vs2 ]|x0 = 0.

3.5 Proof of Theorem 3.5

Let h and v be the respective metrics on H and V that give us a Riemannian metric g =
pr∗H h + pr∗V v. Let � : T M → T ∗M be the map v �→ g(v, �) with inverse 	. Let 	v

∗
be

defined similar to the definition of 	h
∗
in Sect. 2.1. Note that 	h

∗ = prH 	 and 	v
∗ = prV 	.

Let A1, . . . , An be as in Corollary 3.12 relative to some point x0. Clearly, for any f ∈
C∞(M), we have L f (x0) = ∑n

i=1 A2
i f (x0). Note also that

∇̊Ad f (Z) = ∇̊Z d f (A) − d f (T ∇̊(A, Z)) = ∇̊Z d f (A) + d f (R(A, Z)).

In the following calculations, since V is metric-preserving, keep in mind that

∇̊A	h
∗
d f = 	h

∗ ∇̊Ad f,

while ∇̊A	v
∗
d f = 	v

∗ ∇̊Ad f + (∇̊Av∗)(d f, �),.
Below, all terms are evaluated at x0. We first note that for any � > 0,

Γh∗+�v∗
2 ( f ) = 1

2

n∑

i=1

A2
i

(‖d f ‖2h∗ + �‖d f ‖2v∗
) − h∗(d f, d L f ) − �v∗(d f, d L f )

=
n∑

i=1

Ai ∇̊Ai d f (	h
∗
d f ) + �

n∑

i=1

Ai ∇̊Ai d f (	v
∗
d f )

+ 1

2
�

n∑

i=1

Ai (∇̊Ai v
∗)(d f, d f ) − (	h

∗
d f + �	v

∗
d f )

(
n∑

i=1

∇̊Ai d f (Ai )

)

=
n∑

i=1

∇̊Ai ∇̊	h
∗ d f d f (Ai ) +

n∑

i=1

Ai d f (R(Ai , 	
h∗

d f ))

+ �

n∑

i=1

∇̊Ai ∇̊	v
∗ d f d f (Ai ) −

n∑

i=1

∇̊	h
∗ d f ∇̊Ai d f (Ai )
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− �

n∑

i=1

∇̊	v
∗ d f ∇̊Ai d f (Ai ) − 1

2
�

n∑

i=1

d f (R(Ai , 	
h∗ ∇̊Ai d f ))

+ 1

2
�(�′

hv
∗)(d f, d f ) + �

n∑

i=1

(∇̊Ai v
∗)(∇̊Ai d f, d f ).

Observe that

∇̊Ai ∇̊	h
∗ d f d f (Ai ) − ∇̊	h

∗ d f ∇̊Ai d f (Ai )

=
n∑

i=1

g(R∇̊(Ai , 	
h∗

d f )	h
∗
d f, Ai ) +

n∑

i=1

∇̊[Ai ,	
h∗ d f ]d f (Ai )

= RicH(	h
∗
d f, 	h

∗
d f ) +

n∑

i=1

∇̊∇̊Ai 	
h∗ d f d f (Ai ) +

n∑

i=1

∇̊R(Ai ,	
h∗ d f )d f (Ai )

= RicH(	h
∗
d f, 	h

∗
d f ) +

n∑

i=1

‖∇̊Ai d f ‖2h∗

−
n∑

i=1

d f (R(Ai , 	
h∗ ∇̊Ai d f )) +

n∑

i=1

∇̊Ai d f (R(Ai , 	
h∗

d f )),

while

∇̊Ai ∇̊	v
∗ d f d f (Ai ) − ∇̊	v

∗ d f ∇̊Ai d f (Ai )

=
n∑

i=1

g(R∇̊(Ai , 	
v∗

d f )	h
∗
d f, Ai )

+
n∑

i=1

∇̊∇̊Ai 	
v∗ d f d f (Ai ) −

n∑

i=1

∇̊∇̊
	v

∗
d f

Ai
d f (Ai )

=
n∑

i=1

∇̊
	v

∗ ∇̊Ai d f +(∇̊Ai v
∗)(d f, � )d f (Ai ) − 1

2

n∑

i=1

∇̊	h
∗ d f (R(Ai , � ))d f (Ai )

=
n∑

i=1

‖∇̊Ai d f ‖2v∗ +
n∑

i=1

(∇̊Ai v
∗)(d f, ∇̊Ai d f )

− 1

2

n∑

i=1

d f (R(Ai , 	
h∗ ∇̊Ai d f )) + ‖d f (R( �, �))‖2∧2 g∗ . (3.7)

Hence

Γh∗+�v∗
2 ( f ) =

n∑

i=1

‖∇̊Ai d f ‖2h∗ + RicH(	h
∗
d f, 	h

∗
d f ) −

n∑

i=1

d f (R(Ai , 	
h∗ ∇̊Ai d f ))

+
n∑

i=1

∇̊Ai d f (R(Ai , 	
h∗

d f )) +
n∑

i=1

Ai d f (R(Ai , 	
h∗

d f ))

+ �

n∑

i=1

‖∇̊Ai d f ‖2v∗ + �

n∑

i=1

(∇̊Ai v
∗)(d f, ∇̊Ai d f )
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− �

n∑

i=1

d f (R(Ai , 	
h∗ ∇̊Ai d f )) + �‖d f (R( �, �))‖2∧2 g∗

+ 1

2
�(�′

hv
∗)(d f, d f ) + �

n∑

i=1

(∇̊Ai v
∗)(∇̊Ai d f, d f ).

By realizing that

n∑

i=1

Ai d f (R(Ai , 	
h∗

d f )) =RicHV (	d f, 	d f ) +
n∑

i=1

∇̊Ai d f (R(Ai , 	
h∗

d f ))

+
n∑

i=1

d f (R(Ai , 	
h∗ ∇̊Ai d f )),

and that

d f (R(Ai , 	
h∗ ∇̊Ai d f )) = ‖d f (R( �, �))‖2∧2 g∗ ,

we obtain

Γh∗+�v∗
2 ( f ) =

n∑

i=1

‖∇̊Ai d f ‖2h∗ + RicH(	h
∗
d f, 	h

∗
d f )

+ RicHV (	d f, 	d f ) + 2
n∑

i=1

∇̊Ai d f (R(Ai , 	
h∗

d f ))

+ �

n∑

i=1

‖∇̊Ai d f ‖2v∗ + 2�
n∑

i=1

(∇̊Ai v
∗)(d f, ∇̊Ai d f )

+ 1

2
�(�′

hv
∗)(d f, d f ). (3.8)

Clearly

�

n∑

i=1

‖∇̊Ai d f ‖2v∗ + 2∇̊Ai d f (R(Ai , 	
h∗

d f )) + 2�
n∑

i=1

(∇̊Ai v
∗)(d f, ∇̊Ai d f )

≥ −1

�

n∑

i=1

‖�(∇̊Ai v
∗)(d f, �) + R(Ai , 	

h∗
d f )‖2v

≥ −M 2
R

�
Γh∗

( f ) − 2MRM∇̊v∗

√
Γh∗

( f )Γv∗
( f ) − �M 2

∇̊v∗Γ
v∗

( f ),

and also
n∑

i=1

‖∇̊Ai d f ‖2h∗ =
n∑

i, j=1

(
1

2
(∇̊2

Ai ,A j
f + ∇̊2

A j ,Ai
f ) + 1

2
(∇̊Ai ,A j f − ∇̊Ai ,A j f )

)2

=
n∑

i, j=1

(
1

2
(∇̊2

Ai ,A j
f + ∇̊2

A j ,Ai
f )

)2

+
n∑

i, j=1

(
1

2
(∇̊Ai ,A j f − ∇̊Ai ,A j f )

)2

≥
n∑

i=1

(∇̊2
Ai ,Ai

f )2 +
n∑

i, j=1

(
1

2
d f (R(Ai , A j )))

2 ≥ 1

n
(L f )2 + 1

2
m2

RΓv∗
( f ).
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In conclusion

Γh∗+�v∗
2 ( f ) ≥ 1

n
(L f )2 +

(
ρH − M 2

R
�

)
Γh∗

( f )

− (2MHV + 2MRM∇̊v∗)
√

Γh∗
( f )Γv∗

( f )

+ 1

2
(m2

R + �(ρ�′
hv

∗ − 2M 2
∇̊v∗))Γ

v∗
( f )

≥ 1

n
(L f )2 +

(
ρH − 1

c
− M 2

R
�

)
Γh∗

( f )

+ 1

2

(
m2

R − 2c(MHV + MRM∇̊v∗)2
)
Γv∗

( f )

+ �(ρ�′
hv

∗ − 2M 2
∇̊v∗)Γ

v∗
( f ). (3.9)

3.6 Proof of Proposition 3.8

Let A1, . . . , An be a local orthonormal basis ofH. From the assumption ∇̊v∗ = 0 and (3.8),
we obtain Γv∗

2 ( f ) = ∑n
i=1 ‖∇̊Ai d f ‖2v∗ and from this, we know

Γh∗
(Γv∗

( f )) = 4
n∑

i=1

v∗(∇̊Ai d f, d f )2

≤ 4
n∑

i=1

‖∇̊Ai d f ‖2v∗‖d f ‖v∗ = 4Γv∗
2 ( f )Γv∗

( f ).

Similarly, from (3.8),

n∑

i=1

‖∇̊Ai d f ‖2h∗ = Γh∗+�v∗
2 ( f ) − RicH(	h

∗
d f, 	h

∗
d f ) − 2RicHV (	v

∗
d f, 	h

∗
d f )

− 2
n∑

i=1

∇̊Ai d f (R(Ai , 	
h∗

d f )) + �

n∑

i=1

‖∇̊Ai d f ‖2v∗

≤ Γh+�v∗
2 ( f ) − (ρH − c−1 − �−1)Γh∗

( f ) + cM 2
HVΓv∗

( f ),

and the result follows. ��
3.7 For a general choice of L

Let (M,H,h) and V be as in Sect. 3.2 and let �′
h be the sub-Laplacian of V . For a general

choice of L with qL = h∗, write L = �′
h + Z for some vector field Z . We want to use our

generalized curvature-dimension inequality for �′
h to extend it to a more general class of

operators. Unfortunately, our possibilities are somewhat limited.
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Proposition 3.13 Let L = �′
h+ Z where Z ∈ Γ (V) is a non-zero vertical vector field. Then

L satisfies (CD*) with rankH < n ≤ ∞ and ρ1, ρ2,0, ρ2,1 given by

ρ1 = ρH − c−1,

ρ2,0 = 1

2
m2

R − c(M Z
HV + M∇̊v∗)2 − 1

n − rankH‖Z‖2v∗ ,

ρ2,1 = 1

2
ρ�′

hv
∗ − M 2

∇̊v∗ − N 2,

for any positive c > 0. Here, −M Z
HV is a lower bound of

RicZ
HV (A1, A2) := RicHV (A1, A2) + 1

2
h(prH A1, ∇̊prH A2 Z) + 1

2
h(prH A2, ∇̊prH A1 Z)

+ 1

2
v(prV A1,R(Z , A2)) + 1

2
v(prV A2,R(Z , A1))

and N is a lower bound of v(prV �, ∇̊prV� Z). The other constants are as in Sect. 3.2.

Proof Let 	h
∗
be defined as in Sect. 2.1 and let 	v

∗
be defined analogously. Then the result

follows from the identities,

1

2
ZΓh∗

( f ) − Γh∗
(Z f, f ) = d f (∇̊	h

∗ d f Z) + d f (R(Z , 	h
∗
d f )),

1

2
ZΓv∗

( f ) − Γv∗
(Z f, f ) = d f (∇̊	v

∗ d f Z) + 1

2
(∇̊Zv∗)(d f, d f ),

1

rankH (�′
h f )2 ≥ 1

n
(�′

h f + Z f )2 − 1

n − rankH (Z f )2

which hold for any vector field Z (not necessarily vertical). ��
The proof of Proposition 3.13 also shows why it is complicated to extend this formalism

to the more general case. If prH Z �= 0, then the term �d f (∇̊	h
∗ d f prH Z) requires a lower

bound on the form �bΓh∗
( f ) + �bΓv∗

( f ) or bΓh∗
( f ) + �2bΓv∗

( f ), both of which would be
outside of our formalism.

3.8 Generalization to the case when V is not integrable

Not every vector bundle has an integrable complement [11], not to mention a metric-preserv-
ing one. We give a brief comment on how our results can be generalized to the case when V
is not integrable.

Let R be defined as in (3.2) and let R be defined by

R(A, Z) := prH[prV A, prV Z ], A, Z ∈ Γ (T M).

Wewill adopt the terminology of [17, Ch II.8] and callR andR respectively the curvature and
the co-curvature ofH. Then our theory can still be applied with the following modifications.

(a) We consider a complement V as metric-preserving if

pr∗H LV (pr∗H h) = 0, V ∈ Γ (V). (3.10)

Notice the difference between the formula above and (3.1). In fact, (3.1) holds if and only
if (3.10) holds and V is integrable. Note that (3.10) is equivalent to stating that ∇̊h∗ = 0
with respect to any connection ∇̊ defined as in (2.3) using some metric g which tames h
and makes V the orthogonal complement of H.
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(b) In Sect. 3, we now have that T ∇̊ = −R − R in Lemma 3.2 (c). As a consequence, in
Lemma 3.3 (c), we obtain

g(R∇̊(A, Y )Z − R∇̊(A, Z)Y, A) = g(R(Y,R(Z , A)) − R(Z ,R(Y, A)), A).

Hence,

g(R∇̊(A, prH Y ) prH Z , A) = g(R∇̊(A, prH Z) prH Y, A),

however, we now have g(R∇̊(A, prV Y )Z , A) = g(R(Y,R(Z , A)), A).
(c) In Sect. 3.4, Lemma 3.11 still holds, but since ∇̊ − ˚̊∇ is different, in Corollary 3.11 we

have

∇̊Z Vs |x0 = −1

2
	(∇̊Z g)(Vs, �)|x0 + 1

2
	 g(Z ,R(Vs, �))|x0 .

(d) In the proof of Theorem 3.5 in Sect. 3.5, the only difference is that in Eq. (3.7), we
cannot be sure that the term

n∑

i=1

g(R∇̊(Ai , 	
v∗

d f )	h
∗
d f, Ai ) = trR(	v

∗
d f,R(	h

∗
d f, �))

vanishes. Hence, we require the separate assumption that for any vector v ∈ T M on M ,
we have

trR(v,R(v, �)) = 0. (3.11)

The same assumption also guarantees that

tr R∇̊(prH �, Z1)Z2 = tr R∇̊(prH �, prH Z1) prH Z2,

so the definition of RicH in Proposition 3.4 is still valid. If this does indeed hold, then
Theorem 3.5 remains true even ifV is not integrable. As a consequence, all further results
in this paper and in Part II also hold in this case. Since we do not have any geometric
interpretation for the requirement (3.11), we prefer to mainly consider the case when V
is integrable.
The only exception are the results in Sect. 3.7. Even if (3.11) is satisfied, these results
do do not hold when V is not integrable.

Example 3.14 Consider the Lie algebra su(2) with basis A, B, C satisfying commutation
relations

[A, B] = C, [A, C] = −B, [B, C] = C.

Consider its complexification, which is isomorphic to sl(2,C). Define a sub-Riemannian
manifold (SL(2,C),H,h) by considering i A, i B, iC and C as an orthonormal basis for H.
Here, we have used the same symbol for an element of the Lie algebra and its corresponding
left invariant vector field. Then V spanned by A and B is a metric-preserving complement
that is not integrable, but satisfies (3.11).
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4 Spectral gap and examples

4.1 The curvature-dimension inequality and a bound for the spectral gap

Let (M,H,h) be a compact sub-Riemannian manifold where H is bracket-generating. Let
L be a smooth second order operator without constant term satisfying qL = h∗. Assume
also that L is symmetric with respect to some volume form vol on M . Since the metric dcc

induced by h∗ is obviously complete on M , we have that L is essentially self-adjoint on
C∞

c (M) by Strichartz [24, Sec. 12]. Denote its (unique) self-adjoint extension to an operator
on L2(M, vol) also by L .

Proposition 4.1 Assume that L satisfies (CD*) with ρ2,0 > 0. Let λ be any nonzero eigen-
value of L. Then

nρ2,0
n + ρ2,0(n − 1)

(
ρ1 − k2

ρ2,0

)
≤ −λ, k2 = max{0,−ρ2,1}.

Proof Since H is bracket-generating, we know that L − λ is hypoelliptic for any λ by
[15], so all eigenfunctions of L are smooth. If we write 〈 f, g〉 = ∫

M f g dvol, note that∫
M L f dvol = 〈L f, 1〉 = 0 and

∫
M Γh∗

( f, g) dvol = −〈 f, Lg〉 for f, g ∈ C∞(M). Since L
is a nonpositive operator, any nonzero eigenvalue is negative. From (CD*) we get

∫

M
(Γh∗

2 ( f ) + �Γv∗
2 ( f )) dvol = 〈L f, L f 〉 − 〈Γv∗

( f, L f ), �〉

≥ 1

n
〈L f, L f 〉 −

(
ρ1 − 1

�

)
〈 f, L f 〉 + 〈Γv∗

( f ), ρ2,0 + �ρ2,1〉.

Hence, if f satisfies L f = λ f , then

n − 1

n
λ2〈 f, f 〉 ≥ −λ

(
ρ1 − 1

�

)
〈 f, f 〉 + 〈Γv∗

( f ), ρ2,0 + �(ρ2,1 + λ)〉.

We choose � = ρ2,0
−λ+k2

and obtain

n − 1

n
λ2 ≥ −λ

(
ρ1 − −λ + k2

ρ2,0

)
,

from which the result follows. ��
Let g be a Riemannian metric taming h such that the orthogonal complement V of H is

integrable. We consider the special case when ∇̊ g = 0 where ∇̊ is defined as in (2.3). Then
V is a metric-preserving complement and ∇̊v∗ = 0 where g |V =: v. Let vol be the volume
form of g and let �h the sub-Laplacian of vol, which will also be the sub-Laplacian of V .
Corollary 4.2 Assume that the assumptions of Theorem 3.5 hold with

κ = 1

2
ρHm2

R − M 2
HV > 0.

Then, for any rankH ≤ n ≤ ∞,
⎛

⎝ 2κ

2MHV + mR
√
2ρH + 2 n−1

n κ

⎞

⎠
2

≤ −λ.

Proof This follows from formulas (3.4) and by choosing the optimal value of c. ��
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4.2 Privileged metrics

Let (M,H,h) be a sub-Riemannian manifold withH bracket-generating and equiregular of
step r as in Remark 2.2. Let dim M = n + ν with n being the rank of H. Any Riemannian
metric g̃ on M such that g̃|H = h, gives us automatically a splitting

T M = H ⊕ V1 ⊕ · · · ⊕ Vr−1

where Vk is the orthogonal complement ofHk inHk+1. Conversely, associated to each such
splitting, there exist a canonical way of constructing a Riemannian metric g̃ taming h, which
we will call privileged. Define a vector bundle morphism

Ψ : H ⊕ H⊗2 ⊕ · · · ⊕ H⊗r → H ⊕ V1 ⊕ · · · ⊕ Vr−1,

such that Ψ is the identity on the first component, while elements in H⊗ j , j ≥ 2 are sent to
V j−1 by

A1 ⊗ A2 ⊗ · · · ⊗ A j �→ prV j−1
[A1, [A2[· · · [A j−1, A j ]] · · · ]].

Giving H⊗ j the metric h⊗ j , Ψ induces a metric g̃ on T M by requiring that Ψ |(kerΦ)⊥ is a
fiberwise isometry.

Assume that V = ⊕r−1
k=1Vk is an integrable metric-preserving complement. Define b as the

minimal number such that ‖R(v, �)‖̃g∗⊗g̃ ≤ b‖ prH v‖̃g for any v ∈ T M . Note that

2 dim V1

n
= 2

n
‖R‖2∧2g̃⊗g ≤ b2 ≤ 2‖R‖2∧2g̃⊗g = 2 dim V1.

We normalize the vertical part of the metric by defining

v = 1

b2
g̃|V and g = pr∗H h + pr∗V v.

Then MR = 1, while mR = 1
b if r = 2 and 0 otherwise. Furthermore, if H is of step 2 and

∇̊AR = 0 for any A ∈ Γ (H), then ∇̊v∗ = 0 and RicHV = 0. Hence, for this special case, the
sub-Laplacian �h of V or equivalently the volume form of g, satisfies curvature-dimension
inequality

Γh∗+�v∗
2 ( f ) ≥ 1

n
(�h f )2 + (ρH − �−1)Γh∗

( f ) + 1

2b2
Γv∗

( f ),

for any � > 0. As a consequence, if M is compact with ρH > 0 and λ is a non-zero eigenvalue
of �h then

n

n(2b2 + 1) − 1
ρH ≤ −λ,

from Proposition 4.1.
The volume forms of all privilegedmetric taming h coincide and is called Popp’s measure.

For more details, see [2].

4.3 Sub-Riemannian manifolds with transverse symmetries

For two Riemann manifolds (M j ,H j ,h j ), j = 1, 2, a sub-Riemannian isometry φ :
M1 → M2 is a diffeomorphism such that φ∗h∗

2 = h∗
1. The later requirement can equiv-

alently be written as φ∗H1 ⊆ H2 and h2(φ∗v, φ∗v) = h1(v, v) for any v ∈ H1. An
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infinitesimal isometry of a sub-Riemannian manifold (M,H,h) is a vector field V such
that

LV h∗ = 0. (4.1)

If V is complete with flow φt , then this flow is an isometry from M to itself for every fixed
t .

We will introduce sub-Riemannian manifolds with transverse symmetries according to
the definition found in [8]. This is a special case of a sub-Riemannian manifold with a
metric-preserving complement and consists of sub-Riemannian manifolds (M,H,h) with
an integrable complementV spanned by ν linearly independent vector fields V1, . . . , Vν , such
that each of these vector fields is an infinitesimal isometry. The subbundle V will then be a
metric preserving complement. If v is the metric on V defined such that V1, . . . , Vν forms an
orthonormal basis, then ∇̊v∗ = 0. Hence, a complement spanned by transverse symmetries
gives us a totally geodesic foliation.

Since we assume that H was bracket-generating, it follows that the span V1, . . . , Vν

actually is a subalgebra of Γ (T M). Indeed, since H is bracket-generating, any function
f ∈ C∞(M) satisfying A f = 0 for all A ∈ Γ (H) must be a constant. Since [Vi , Vj ] =∑ν

s=1 fs Vs must also be an infinitesimal isometry for any i, j , we have that for all A ∈
Γ (H),

0 = prV [A, [Vi , Vj ]] =
ν∑

s=1

(A fs)Vs .

It follows that each fs is constant, and the span of V1, . . . , Vν is a subalgebra. If all of the
vector fields are complete, we get a corresponding group action. We will then be in the
following case.

Example 4.3 Let G be a Lie group with Lie algebra g. Consider a principal bundle G →
M

π→ B over a Riemannian manifold (B,

̂

g ) with G acting on the right. An Ehresmann
connection H on π is called principal if Hx · a = Hx ·a . For any such principal connection
H, define h = π∗

̂

g |H. Then G acts on (M,H,h) by isometries and so, for each A ∈ g, the
vector field σ(A) defined by

σ(A)|x = d

dt

∣∣∣∣
t=0

x · expG(At)

is an infinitesimal isometry. This is hence a sub-Riemannian manifold with transverse sym-
metries. Let ω : T M → g be principal curvature form of H, i.e. the g-valued one-form
defined by

ker ω = H, ω(σ (A)) = A.

Then for any inner product 〈 �, �〉 on g, define a Riemannian metric g by g(v, v) =̂

g (π∗v, π∗v) + 〈ω(v), ω(v)〉, v ∈ T M. This Riemannian metric satisfies ∇̊ g = 0. We
assume that the vertical part of g is normalized so that MR = 1.

In general, the metric g is not invariant under the group action. The latter only hold if 〈 �, �〉
is bi-invariant inner product on g. If such an inner product exist, it induces a metric tensor̂

v on the vector bundle Ad(M) → B, where Ad(M) is the quotient of M × g by the action
(x, A) · a = (x · a,Ad(a−1)A). Any g-valued from α on M that vanish on V and satisfies
α(Z1 · a, . . . , Z j · a) = Ad(a−1)α(Z1, . . . , Z j ) can be considered as an Ad(M)-valued
form on B. This includes the curvature form Ω(Z1, Z2) = dω(Z1, Z2)+[ω(Z1), ω(Z2)] =
−ω(R(Z1, Z2)).
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Conversely, any section F of Ad(M) can be considered a function F : M → g satisfying
F(x · a) = Ad(a−1)F(x). Define a connection ∇ω on Ad(M) by formula ∇ω

Ž
F = d F(h Ž)

for Ž ∈ Γ (T B) and let d∇ω be the corresponding covariant exterior derivative of Ad(M)-
valued forms on B. If we consider Ω as a Ad(M)-valued 2-form and δ∇ω as the formal dual
of d∇ω , then

MHV = sup
B

‖δ∇ωΩ‖ ̂

g⊗

̂

v.

In particular, RicHV = 0 if and only if δ∇ωΩ = 0, which is the definition of a Yang-Mills
connection on π .

4.4 Invariant sub-Riemannian structures on Lie groups

Let G be a Lie group with Lie algebra g. Let G have dimension n + ν. Choose a subspace
h ⊆ g of dimension n which generate the entire Lie algebra, and give this subspace an inner
product. Define a vector bundle H by left translation of h. Use the inner product on h to
induce a left invariant metric h on H. This gives us a sub-Riemannian manifold (G,H,h)

with a left-invariant structure, i.e. G acts on the left by isometries. This means that right
invariant vector fields are infinitesimal isometries, however, we cannot be sure that we have
a complement spanned by such vector fields. This is the case if and only if there exist a
subspace k of g such that Ad(a)k is a complement of h for any a ∈ G. Consider the special
case when k is a subalgebra of g with corresponding subgroup K and g = h ⊕ k as a vector
space.

(a) Define Vl by left translation of k. Then V is a complement toH, but this is not in general
spanned by infinitesimal isometries. If K is closed,H can be considered as an Ehresmann
connection onπ : G → G/K , but it is not principal in general andwe cannot necessarily
consider the metric h as lifted from G/K .

(b) Define Vr by right translation of k. Then Vr is spanned by infinitesimal isometries. It is a
complement if and only if Ad(a)k is a complement to h for every a ∈ G. If the latter holds
and K is closed, H can be considered as an Ehresmann connection on π : G → K\G.

(c) If k is an ideal (and K a normal subgroup as a result) then Vl = Vr is a complement
spanned by infinitesimal isometries.

Example 4.4 (Free step-2 nilpotent Lie groups) Let h be an inner product space of dimension
n and define k = ∧2

h with the inner product induced by the product on h. Define a Lie
algebra g as the vector space g = h ⊕ k with brackets [ �, �] such that k is the center and for
any A, B ∈ h,

[A, B] = A ∧ B ∈ k.

Then g is a step 2 nilpotent Lie algebra of dimension n(n + 1)/2. Using the inner products
on h and k and defining these two spaces as orthogonal, we get an inner product on g.

Let G be a simply connected Lie group with Lie algebra g and normal subgroup K
corresponding to k. Define H and V by left translation of respectively h and k. Give G a
Riemannian metric by left translation of the inner product on g. If we consider the inner
product space h as a flat Riemannian manifold, then

π : G → G/K ∼= h,

is a Riemannian submersion with ker π∗ = V and withH as an Ehresmann connection. Also
g̃ coincides with the privileged metric of Sect. 4.2.
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Since

‖R(v, �)‖2g̃∗⊗g̃ = (n − 1)‖ prH v‖2g̃, v ∈ T M,

we normalize the vertical part by defining

g = pr∗H g̃|H + 1

n − 1
pr∗V g̃|V .

With respect to this normalized metric,

MR = 1, mR = 1√
n − 1

, ∇̊ g = 0, MHV = 0.

and ρH = 0 since h is flat. Defining�h as the sub-Laplacian of V or equivalently the volume
form of g, we obtain inequality

Γh∗+�v∗
2 ( f ) ≥ 1

n
(�h f )2 − 1

�
Γh∗

( f ) + 1

2(n − 1)
Γv∗

( f ).

Remark 4.5 Let g be a left invariant metric on the Lie group G, with h and v as the respective
restrictions of g to a left invariant subbundle H and its orthogonal complement V . If V is a
metric-preserving complement of (G,H,h), the conditions of Theorem 3.5 hold, but we do
not necessarily have ∇̊ g = 0.

4.5 Sub-Riemannian manifolds with several metric-preserving complements

The choice of metric preserving complement may not be unique and give different results in
general. We give two examples of this.

Example 4.6 Let g be a compact semi-simple Lie algebra of dimension n. The term “compact
Lie algebra” is here used to mean that the Killing form

(A, B) �→ tr ad(A) ad(B)

is negative definite. We remark that when g is semi-simple, then [g, g] = g. Define and inner
product

〈A, B〉 = − 1

4ρ
tr ad(A) ad(B),

for some ρ > 0. Note that if we use this inner product to induce a product on End(g) ∼= g∗⊗g,
then ‖ ad(A)‖2 = 4ρ‖A‖2.

Let G be a (compact) Lie groupwith with Lie algebra g and let

̂

g be the Riemannianmetric
on G obtained by left (or right) translation of 〈 �, �〉. From standard theory of bi-invariant
metrics on Lie groups, it follows that Ric

̂

g(Z , Z) = ρ‖Z‖ ̂

g
2 pointwise for any vector field

Z , so G has Ricci lower bound ρ > 0.
In what follows, we will always use the same symbol for an element in a Lie algebra and

the corresponding left invariant vector field.

(a) Define

h = {(A, 2A) ∈ g ⊕ g : A ∈ g}.
From our assumptions, we know that h + [h, h] = g ⊕ g. Define H by left translation
on G × G. Then H is an Ehresmann connections of the following submersions

π j : G × G → G, π j (a1, a2) = a j j = 1, 2, (a1, a2) ∈ G.
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Then the pullback of

̂

g by π1 or of 1
4

̂

g by π2 gives us the same metric h when restricted
to H. We can write this as

h ((A, 2A), (A, 2A)) = 〈A, A〉, A ∈ g.

The sub-Laplacian defined relative to either ker π1∗ or ker π2∗ is

�h =
n∑

i=1

(Ai , 2Ai )
2

where A1, . . . , An is some orthonormal basis of g. First consider, V1 = ker π1∗ spanned
by elements (0, A), A ∈ g, with the metric v1 given as

‖(0, A)‖2v1 = 1

16ρ
〈A, A〉.

The constants we obtain are

R((A, 2A), (B, 2B)) = 2(0, [A, B]), M∇̊v∗
1

= 0,

MR = 1, ρH = ρ, MHV = 3

8
, mR = 1

2
,

giving us the inequality

Γ
h∗+�v∗

1
2 ( f ) ≥ 1

n
(�h f )2 + (ρ − c−1 − �−1)Γh∗

( f ) +
(
1

8
− 9c

64

)
Γv∗

1 ( f ), (4.2)

for any c > 0. However, by choosing V2 = ker π2∗ , with metric

‖(A, 0)‖2v2 = 1

4ρ
〈A, A〉.

we obtain a better result

R((A, 2A), (B, 2B)) = −([A, B], 0), M∇̊v∗
2

= 0,

MR = 1, ρH = 4ρ, MHV = 0, mR = 1√
2
,

so that

Γ
h∗+�v∗

2
2 ( f ) ≥ 1

n
(�h f )2 + (4ρ − �−1)Γh∗

( f ) + 1

4
Γv∗

2 ( f ). (4.3)

From Proposition 4.1 and Eq. (4.3), we know that if λ is any non-zero eigenvalue of �h,
then

4n

5n − 1
ρ ≤ −λ.

By contrast, we can not even obtain a spectral gap bound using inequality (4.2) unless
ρ > 9/8, and even then, the result from using v∗

2 will give the better bound.
(b) Consider Rn as the trivial Lie algebra. Let I : g → R

n be a bilinear map of vector
spaces. Define h as a subspace of g × R

n by (A, I (A)), A ∈ g. Consider g × R
n as the

Lie algebra of G × R
n , where R

n is considered as a Lie group under + . Define H by
left translation of h. This is an Ehresmann connection relative to both projections

π1 : G × R
n → G, π2 : G × R

n → R
n .

123



Curvature-dimension inequalities on sub-Riemannian manifolds: part I 127

Give G the metric

̂

g and give Rn a flat metric by the inner product 〈I ( �), I ( �)〉. Pulling
back these metrics through respectively π1 and π2, we obtain the same sub-Riemannian
metric h on H given by

‖(A, I (A))‖2h = 〈A, A〉,
even though the geometry of G and R

n are very different. The sub-Laplacians with
respect to V1 = ker π1 and V2 = ker π2 also coincide; it is given by

�h =
n∑

i=1

(A, I (A))2, A1, A2, . . . , An an orthonormal basis of g.

We will leave out most of the calculations, and only state that if we define v j on V j =
ker π j∗ by

‖(0, I (A))‖2v1 = 1

4ρ
〈A, A〉, ‖(A, 0)‖2v2 = 1

4ρ
〈A, A〉,

then these metrics are appropriately normalized and we get inequalities

Γ
h∗+�v∗

1
2 ( f ) ≥ 1

n
(�h f )2 +

(
ρ − 1

c
− 1

�

)
Γh∗

( f ) +
(
1

4
− cρ

)
Γv∗

1 ( f ),

Γ
h∗+�v∗

2
2 ( f ) ≥ 1

n
(�h f )2 −

(
1

c
+ 1

�

)
Γh∗

( f ) +
(
1

4
− cρ

)
Γv∗

2 ( f ),

that hold for any c > 0 and � > 0.

4.6 A non-integrable example

As usual, we use the same symbol for an element of the Lie algebra and the corresponding
left invariant vector field. Consider the complexification of su(2) spanned over C by

[A, B] = C, [B, C] = A, [C, A] = B.

Consider su(2)C as the Lie algebra of SL(2,C) and on that Lie group, define (real) subbundles
of the tangent bundle

H = span{i A, i B, iC, C}, V = span{A, B}.
Define a Riemannian metric g such that i A, i B, iC, C,

√
2A and

√
2B forms an orthonormal

basis. Define g |H = h and g |V = v and let �′
h be the sub-Laplacian of the sub-Riemannian

manifold (H,h) with respect to the complement V . It is simple to verify that

�′
h = (i A)2 + (i B)2 + (iC)2 + C2.

We caution the reader that (i A)2 stands for the left invariant vector field corresponding the
element i A applied twice; it is in no way equal to −A2.

Let R and R be respectively the curvature and the co-curvature of H. Note that

∇̊h∗ = 0, ∇̊v∗ = 0,

trR(v,R(v, �)) = 0 for any v ∈ T M,

RicH(Y, Y ) = −5

2
g(i A, Y )2 − 5

2
g(i B, Y )2 − 2 g(iC, Y )2 + 1

2
g(C, Y )2,

RicHV = 0, MR = 1, mR = 1.
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It follows that�′
h is also the sub-Laplacian of the volume form of gwith curvature-dimension

inequality

Γh∗+λv∗
2 ( f ) ≥ 1

4
(�′

h f )2 −
(
5

2
+ 1

λ

)
Γh∗

( f ) + 1

2
Γv∗

( f ).

5 Summary of Part II

We include a section here to illustrate what further results can be obtained from our curvature-
dimension inequality (CD*) of Theorem 3.5.

Let L be a second order operator. Let X (x) be an L-diffusion with X (x) = x andmaximal
lifetime τ(x). For bounded functions f , define Pt f by

Pt f (x) = E[ f (Xt (x))1t≤τ ].
Assume that L satisfies an inequality (CD*) with respect to some v∗ ∈ Γ (Sym2 T M). Let
C∞

b (M) denote the space of all smooth, bounded functions. We will introduce two important
conditions.

(A) Pt1 = 1 and for any f ∈ C∞
b (M) with Γh∗+v∗

( f ) ∈ C∞
b (M) and for every T > 0, we

have

sup
t∈[0,T ]

‖Γh∗+v∗
(Pt f )‖L∞ < ∞.

(B) For any f ∈ C∞(M), we have Γh∗
( f,Γv∗

( f )) = Γv∗
( f,Γh∗

( f )).

We have the following concrete classes of sub-Riemannian manifolds satisfying these con-
ditions.

Theorem 5.1 (Part II, Proposition 3.3, Theorem 3.4)

(a) Assume that π : M → B is a fiber-bundle with compact fibers over a Riemannian
manifold (B,

̂

g). Let H be an Ehresmann connection on π and define h = π∗

̂

g |H.
Assume that the metric dcc of (M,H,h) is complete and that the sub-Laplacian �′

h of
V = ker π∗ satisfies (CD*). Then condition (A) holds.

(b) Let M be a sub-Riemannian manifolds with an integrable, metric preserving comple-
ment V . Assume that there exist a choice of v on V such that g = pr∗H h + pr∗V v is a

complete Riemannian metric and such that ∇̊v∗ = 0. Then the sub-Laplacian �h of V
and the volume form of vol of g coincide. Assume that �h satisfies the assumptions of
Theorem 3.5. Finally, assume that mR > 0. Then conditions (A) and (B) hold.

The result of Theorem 5.1 (b) is also valid for non-integrable complements of the type
described in Sect. 3.8. For the special case when h∗ is a complete Riemannian metric, v∗ = 0
and L is the Laplacian, (A) always holds when the curvature-dimension inequality holds. For
this reason, we expect that the condition (A) will hold in more cases than the ones listed here.

Combined with our generalized curvature-dimension inequality, we have the following
identities.

Theorem 5.2 (Part II, Proposition 3.8) Assume that L satisfies (CD*) with respect to v∗ and
that (A) holds. Assume also that L is symmetric with respect to the volume form vol, i.e.∫

M f Lg dvol = ∫
M gL f dvol for any f, g ∈ C∞

c (M). Finally, assume that g∗ = h∗ + v∗ is
the co-metric of a complete Riemannian metric.
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(a) If ρ1 ≥ ρ2,1 and ρ2,0 > −1, then for any compactly supported f ∈ C∞
c (M),

‖Γh∗
(Pt f )‖L1 ≤ e−αt‖Γh∗

( f )‖L1 , α := ρ2,0ρ1 + ρ2,1

ρ2,0 + 1
.

Furthermore, if α > 0 then vol(M) < ∞.
(b) Assume that the conditions in (a) hold with α > 0. Then for any f ∈ C∞

c (M),

‖ f − fM‖2L2 ≤ 1

α

∫

M
Γh∗

( f ) dvol

where fM = vol(M)−1 ∫
M f dvol. As a consequence if λ is a non-zero eigenvalue of L,

then α ≤ −λ.

There are also other inequalities which do not require that L is symmetric with respect to
a volume form, see e.g. Part II, Proposition 3.6.

For the case when both (A) and (B) hold and L satisfies (CD) of Sect. 3.3 with ρ2 > 0, we
can use the results from [6–8]. In particular, with some extra computation, we can conclude
the following.

Corollary 5.3 (Part II, Proposition 5.1, Proposition 5.3) Let �h is as in Theorem 5.1 (b).
Let

κ = 1
2mRρH − M 2

HV .

(a) Assume that κ > 0. Then M is compact, and for any f ∈ C∞(M),

‖ f − fM‖2L2 ≤ 1

α

∫

M
Γh∗

( f ) dvol

where fM = vol(M)−1 ∫
M f dvol and

α :=
(

2κ

2MHV + mR
√
2ρH + 2κ

)2

.

(b) Assume that κ ≥ 0 and define

N = n

4

(√
2ρH + κ + √

ρH + κ
)2

κ
, D =

√
(κ + ρH)(κ + 2ρH)

κ
.

Let pt (x, y) be the heat kernel of 1
2�h with respect to vol. Then

pt (x, x) ≤ 1

t N/2 p1(x, x)

where x ∈ M and 0 ≤ t ≤ 1. Furthermore, for any 0 < t0 < t1, any non-negative
smooth bounded function f ∈ C∞

b (M) and points x, y ∈ M,

Pt0 f (x) ≤ (Pt1 f )(y)

(
t1
t0

)N/2

exp

(
D

d(x, y)2

2(t1 − t0)

)
.

If κ = 0, we interpret the quotient κ/ρH as m2
R/2.
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