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1 Introduction

In the same way as a vector field on a differentiable manifold induces a flow, second-
order differential operators induce stochastic flows with similar properties. In this
sense, Brownian motion on a Riemannian manifold appears as the stochastic flow
associated to the Laplace–Beltrami operator. The new feature of stochastic flows
is that the flow curves depend on a random parameter and behave irregularly as
functions of time [36]. This irregularity reveals an irreversibility of time which is
inherent in stochastic phenomena.

Subelliptic diffusions are stochastic flows to canonical second-order differential
operators associated with sub-Riemannian structures and corresponding horizon-
tal distributions. A common feature of these operators is their lack of ellipticity.
Typically they degenerate along a subbundle of the tangent bundle.
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2 Stochastic flows

Let M be a differentiable manifold of dimension n and denote by

T M
π
−→ M

its tangent bundle. In particular, we have

T M = Û∪x∈MTxM, π |TxM = x.

The space of smooth sections of T M is denoted by

Γ(T M) = {A : M → T M smooth | π ◦ A = idM }

= {A : M → T M smooth | A(x) ∈ TxM for all x ∈ M}

and constitutes the vector fields on M . As usual, we identify vector fields on M and
R-derivations on C∞(M) as

Γ(T M) =̂
{

A : C∞(M) → C∞(M) R-linear

| A( f g) = f A(g) + gA( f ), ∀ f , g ∈ C∞(M)
}
,

where a vector field A ∈ Γ(T M) is considered an R-derivation via

A( f )(x) := dfx A(x) ∈ R, x ∈ M, (2.1)

using the differential dfx : TxM → R of f at x.
There is a dynamical point of view to vector fields on manifolds: it associates to

each vector field a dynamical system given by the flow of the vector field.

2.1 Flow of a vector field. Given a vector field A ∈ Γ(T M), for each x ∈ M we
consider the smooth curve t 7→ x(t) in M with the properties

x(0) = x and Ûx(t) = A(x(t)).

Wewrite φt (x) := x(t). In this way, we obtain for each A ∈ Γ(T M) the corresponding
flow to A given by

{
d
dt
φt = A(φt ),

φ0 = idM .
(2.2)

System (2.2) means that for any f ∈ C∞
c (M) (space of compactly supported smooth

functions on M) the following conditions hold:
{

d
dt
( f ◦ φt ) = A( f ) ◦ φt,

f ◦ φ0 = f .
(2.3)
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Indeed, by the chain rule along with definition (2.1), we have for each f ∈ C∞
c (M),

d

dt
( f ◦ φt ) = (df )φt

d

dt
φt = (df )φt

A(φt ) = A( f )(φt ).

In integrated form, for each f ∈ C∞
c (M), conditions (2.3) can be written as

f ◦ φt (x) − f (x) −

∫ t

0

A( f )(φs(x)) ds = 0, t ≥ 0, x ∈ M . (2.4)

As usual, the curve
φ.(x) : t 7→ φt (x)

is called the flow curve (or integral curve) to A starting at x.

Remark 2.1. Defining Pt f := f ◦φt , we observe that
d
dt

Pt f = Pt (A( f )), in particular,

d

dt

����
t=0

Pt f = A( f ). (2.5)

In other words, from knowledge of the flow φt , the underlying vector field A can be
recovered by taking the derivative at zero as in Eq. (2.5).

2.2 Flow to a second-order differential operator. Now let L be a second-
order partial differential operator (PDO) on M , e.g., of the form

L = A0 +

r∑

i=1

A2
i , (2.6)

where A0, A1, . . . , Ar ∈ Γ(T M) for some r ∈ N. Note that A2
i
= Ai ◦ Ai is understood

as a composition of derivations, i.e.,

A2
i ( f ) = Ai(Ai( f )), f ∈ C∞(M).

Example 2.2. Let M = Rn and consider

A0 = 0 and Ai =
∂

∂xi
for i = 1, . . . , n.

Then L = ∆ is the classical Laplace operator on Rn.

Alternatively, we may consider partial differentiable operators L on M which
locally in a chart (h,U) can be written as

L |U =

n∑

i=1

bi∂i +

n∑

i, j=1

ai j∂i∂j, (2.7)
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where b ∈ C∞(U,Rn) and a ∈ C∞(U,Rn ⊗ Rn) such that ai j = aji for all i, j
(a symmetric). Here we use the notation ∂i =

∂
∂hi

.
Motivated by the example of a flow to a vector field (vector fields can be seen as

first-order differential operators) we want to investigate the question of whether an
analogous concept of flow exists for second-order PDOs.

Question 1. Is there a notion of a flow to L if L is a second-order PDO given by
(2.6) or (2.7)?

Definition 2.3. Let (Ω,F , P; (Ft )t≥0) be a filtered probability space, i.e., a proba-
bility space equipped with an increasing sequence of sub-σ-algebras Ft of F . An
adapted continuous process

X.(x) =̂ (Xt (x))t≥0

on (Ω,F , P; (Ft )t≥0) taking values in M , is called a flow process to L (or an L-

diffusion) with starting point x if X0(x) = x and if, for all test functions f ∈ C∞
c (M),

the process

N
f
t (x) := f (Xt (x)) − f (x) −

∫ t

0

(L f )(Xs(x)) ds, t ≥ 0, (2.8)

is a martingale, i.e.,

EFs

[
f (Xt (x)) − f (Xs(x)) −

∫ t

s

(L f )(Xr (x)) dr

]

︸                                                     ︷︷                                                     ︸
= N

f
t (x) − N

f
s (x)

= 0 for all s ≤ t .

Note that, by definition, flow processes to a second-order PDO depend on an
additional random parameter ω ∈ Ω. For each t ≥ 0, Xt (x) ≡ (Xt (x, ω))ω∈Ω is
an Ft -measurable random variable. The defining equation (2.4) for flow curves
translates to the martingale property of (2.8), i.e., the flow curve condition (2.4)
holds only under conditional expectations. The theory of martingales gives a rigorous
meaning to the idea of a process without systematic drift [59].

Remark 2.4. Since N
f

0
(x) = 0, we get from the martingale property of N f (x) that

E
[
N

f
t (x)

]
= E

[
N

f

0
(x)

]
= 0.

Hence, defining Pt f (x) := E [ f (Xt (x))], we observe that

Pt f (x) = f (x) +

∫ t

0

E [(L f )(Xs(x))] ds,
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and thus

d

dt
Pt f (x) = E [(L f )(Xt (x))] = Pt (L f )(x);

in particular,

d

dt

����
t=0

E [ f (Xt (x))] ≡
d

dt

����
t=0

Pt f (x) = L f (x).

The last formula shows that as for deterministic flows we can recover the operator
L from its stochastic flow process. To this end however, we have to average over all
possible trajectories starting from x.

For background on stochastic flows we refer to the monograph of Kunita [36].

Example 2.5 (Brownian motion). Let M = Rn and L = 1
2
∆, where ∆ is the Laplacian

on Rn. Let X ≡ (Xt ) be a Brownian motion on Rn starting at the origin. By Itô’s
formula [52], for f ∈ C∞(Rn), we have

d( f ◦ Xt ) =

n∑

i=1

∂i f (Xt ) dX i
t +

1

2

n∑

i, j=1

∂i∂j f (Xt ) dX i
t dX

j
t

= 〈(∇ f )(Xt ), dXt〉 +
1

2
(∆ f )(Xt ) dt.

Thus, for each f ∈ C∞
c (R

n),

f (Xt ) − f (X0) −

∫ t

0

1

2
(∆ f )(Xs) ds, t ≥ 0

is a martingale. This means that the process

Xt (x) := x + Xt

is an L-diffusion to 1
2
∆ in the sense of Definition 2.3.

Remarks 2.6. As for deterministic flows, we have to deal with the problem that
stochastic flows may explode in finite times.

(1) We allow X.(x) to be defined only up to some stopping time ζ(x), i.e.,

X.(x) | [0, ζ(x)[,

where

{ζ(x) < ∞} ⊂

{
lim
t↑ζ (x)

Xt (ω) = ∞ in M̂ := M Û∪ {∞}

}
P-a.s. (2.9)
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Here M̂ denotes the one-point compactification of M . A stopping time ζ(x)with
property (2.9) is called a (maximal) lifetime for the process X.(x) starting at x.
In equivalent terms, let Un ⊂ M be open, relatively compact subsets exhausting
M in the sense that

Un ⊂ Ūn ⊂ Un+1 ⊂ · · · , Ūn compact, and ∪n Un = M .

Then we have ζ(x) = supn τn(x) for the maximal lifetime of X.(x), where τn(x)
is the family of stopping times (first exit times of Un) defined by

τn(x) := inf{t ≥ 0: Xt (x) < Un}.

(2) For f ∈ C∞(M) (not necessarily compactly supported), the process N f (x)will in
general only be a local martingale [52], i.e., there exist stopping times τn ↑ ζ(x)
such that

∀n ∈ N,
(
N

f
t∧τn

(x)
)
t≥0

is a (true) martingale.

(3) The following two statements are equivalent (the proof will be given later):

(a) The process
f (X.(x)) = ( f (Xt (x)))t≥0

is of locally bounded variation for all f ∈ C∞
c (M).

(b) The operator L is of first order, i.e., L is a vector field (in which case the flow
is deterministic).

In other words, flow processes have “nice paths” (for instance, paths of bounded
variation) if and only if the corresponding operator is first order (i.e., a vector field).

2.3 What are L-diffusions good for?. Before discussing the problem of how to
construct L-diffusions, we want to study some implications to indicate the usefulness
and power of this concept. In the following two examples we assume only existence
of an L-diffusion to a given operator L.

A. (Dirichlet problem) Let � , D ( M be an open, connected, relatively compact
domain, ϕ ∈ C(∂D) and let L be a second-order PDO on M . The Dirichlet problem
(DP) is the problem to find a function u ∈ C(D̄) ∩ C2(D) such that

{
Lu = 0 on D,

u|∂D = ϕ.
(DP)

Suppose that there is an L-diffusion (Xt (x))t≥0. We choose a sequence of open
domains Dn ↑ D such that D̄n ⊂ D, and for each n, we consider the first exit time of
Dn,

τn(x) = inf{t ≥ 0, Xt (x) < Dn}.
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Then τn(x) ↑ τ(x), where

τ(x) = sup
n

τn(x) = inf{t ≥ 0, Xt (x) < D}.

Now assume that u is a solution to (DP). We may choose test functions un ∈ C∞
c (M)

such that un |Dn = u|Dn and supp un ⊂ D. Then, by the property of an L-diffusion,

Nt (x) := un(Xt (x)) − un(x) −

∫ t

0

(Lun)(Xr (x)) dr

is a martingale. We suppose that x ∈ Dn. Then

Nt∧τn(x)(x) = un(Xt∧τn(x)(x)) − un(x) −

∫ t∧τn(x)

0

(Lun)(Xr (x))︸          ︷︷          ︸
=0

dr (2.10)

= u(Xt∧τn(x)(x)) − u(x)

is also a martingale (here we used that the integral in (2.10) is 0 since Lun = Lu = 0

on Dn). Thus we get

E
[
Nt∧τn(x)(x)

]
= E [N0(x)] = 0,

which shows that for each n ∈ N,

u(x) = E
[
u(Xt∧τn(x)(x))

]
. (2.11)

From Eq. (2.11) we may conclude by dominated convergence and since τn(x) ↑ τ
that

u(x) = lim
n→∞
E

[
u(Xt∧τn(x)(x))

]
= E

[
lim
n→∞

u(Xt∧τn(x)(x))
]
= E

[
u(Xt∧τ(x)(x))

]
.

We now make the hypothesis that τ(x) < ∞ a.s. (the process exits the domain D in
finite time). Then

u(x) = lim
t→∞
E

[
u(Xt∧τ(x)(x))

]
= E

[
lim
t→∞

u(Xt∧τ(x)(x))
]

= E
[
u(Xτ(x)(x))

]
= E

[
ϕ(Xτ(x)(x))

]
,

where for the last equality we used the boundary condition u|∂D = ϕ. Note that by
passing to the image measure µx := P ◦ Xτ(x)(x)

−1 on the boundary we get

E
[
ϕ(Xτ(x)(x))

]
=

∫

∂D

ϕ(z) µx(dz).
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Notation 2.7. The measure µx , defined on Borel sets A ⊂ ∂D,

µx(A) = P
{

Xτ(x)(x) ∈ A
}
,

is called an exit measure from the domain D of the diffusion Xt (x). It represents the
probability that the process Xt , when started at x in D, exits the domain D through
the boundary set A.

Conclusions. From the discussion of the Dirichlet problem above we can make
the following two observations.

(a) (Uniqueness) Under the hypothesis

τ(x) < ∞ a.s. for all x ∈ D

we have uniqueness of the solutions to the Dirichlet problem (DP). It will be
shown later that this hypothesis concerns nondegeneracy of the operator L.

(b) (Existence) Under the hypothesis

τ(x) → 0 if D ∋ x → a ∈ ∂D

we have
E

[
ϕ(Xτ(x)(x))

]
→ ϕ(a), if D ∋ x → a ∈ ∂D.

Thus one may define u(x) := E
[
ϕ(Xτ(x)(x))

]
. It can be shown then that u is

L-harmonic on D if it is twice differentiable; thus under the hypothesis in (b), u

will then satisfy the boundary condition and hence solve (DP). The hypothesis
in (b) is obviously a regularity condition on the boundary ∂D.

Note that in the arguments above we nowhere used the explicit form of the operator
L nor of the domain D. We used only the general properties of a stochastic flow
process associated to the given operator L. For a more complete discussion of the
Dirichlet problem, see [54, 13].

Examples 2.8.

(1) Let M = R2\{0} and D =
{

x ∈ R2 : r1 < |x | < r2

}
with 0 < r1 < r2. Consider

the operator

L =
1

2

∂2

∂ϑ2
,

where ϑ denotes the angle when passing to polar coordinates on M . If u is a
solution of (DP), then u+v(r) is a solution of (DP) as well, for any radial function
v(r) satisfying v(r1) = v(r2) = 0. Hence, uniqueness of solutions fails.
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Note: For x ∈ D with |x | = r , let Sr =
{

x ∈ R2 : |x | = r
}
. Then, the flow

process X.(x) to L is easily seen to be a (one-dimensional) Brownian motion
on Sr . In particular,

τ(x) = +∞ a.s.

(2) Let M = R2 and consider the operator

L =
1

2

∂2

∂x2
1

on a domain D in R2 of the following shape:

Then, for x = (x1, x2) ∈ D, the flow process X.(x) starting at x is a (one-
dimensional) Brownian motion on R × {x2}. In other words, flow processes
move on horizontal lines. In particular, when started at x ∈ D, the process
can exit only at two points (e.g., xℓ and xr in the picture). Letting x vertically
approach a, by symmetry of the one-dimensional Brownian motion, we see that
there exists a solution of (DP) if and only if

ϕ(a) =
ϕ(b) + ϕ(c)

2
.
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B. (Heat equation) Let L be a second-order PDO on M and fix f ∈ C(M). The heat
equation on M with initial condition f concerns the problem of finding a real-valued
function u = u(t, x) defined on R+ × M such that




∂u

∂t
= Lu on ]0,∞[ × M,

u|t=0 = f .
(HE)

Suppose now that there is an L-diffusion X.(x). It is straightforward to see that the
“time-space process” (t, Xt (x)) will then be an L̂-diffusion for the parabolic operator

L̂ =
∂

∂t
+ L

with starting point (0, x). By definition, this means that for all ϕ ∈ C2(R+ × M),

dϕ(t, Xt (x)) −
(
L̂ϕ

)
(t, Xt (x)) dt

m
= 0

where m
= denotes equality modulo differentials of local martingales.

From now on we assume nonexplosion of the L-diffusion. In other words, we
adopt the hypothesis that ζ(x) = +∞ a.s. for all x ∈ M , i.e.,

P
{

Xt (x) ∈ M, ∀t ≥ 0
}
= 1, ∀x ∈ M .

Suppose now that u is a bounded solution of (HE). We fix t ≥ 0 and consider the
restriction u | [0, t] × M . Then

u(t − s, Xs(x)) − u(t, x) −

∫ s

0

[(
∂

∂r
+ L

)
u(t − r, ·)

]
(Xr (x)) dr, 0 ≤ s < t

is a local martingale. In other words, fixing t > 0, we have for 0 ≤ s < t,

u(t − s, Xs(x)) = u(t, x) +

∫ s

0

(
∂

∂r
+ L

)
u(t − r, ·)

︸                   ︷︷                   ︸
= 0, since u solves (HE)

(Xr (x))dr

+ (local martingale)s .

(2.12)

Since the integral in (2.12) vanishes, we see that the local martingale term in (2.12)
is actually a bounded local martingale (since u(t − s, Xs(x)) − u(t, x) is bounded) and
hence a true martingale (equal to 0 at time 0). Using the martingale property we first
take expectations and then pass to the limit as s ↑ t to obtain

u(t, x) = E [u(t − s, Xs(x))] → E [u(0, Xt (x))] = E [ f (Xt (x))] , as s ↑ t, (2.13)
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where for the limit in (2.13) we have used dominated convergence (recall that u is
bounded).

Conclusion. Under the hypothesis ζ(x) = +∞ for all x ∈ M , we have uniqueness
of (bounded) solutions to the heat equation (HE). Solutions are necessarily of the
form

u(t, x) = E [ f (Xt (x))].

Interpretation. The solution u(t, x) at time t and at point x can be constructed as
follows: Run an L-diffusion process starting from x up to time t, apply the initial
condition f to the obtained random position Xt (x) at time t, and average over all
possible paths.

2.4 Γ-operators and quadratic variation.

Definition 2.9. Let L : C∞(M) → C∞(M) be a linear mapping (for instance, a
second-order PDO). The Γ-operator associated to L (“l’operateur carré du champ”)
is the bilinear map

Γ : C∞(M) × C∞(M) → C∞(M) given as

Γ( f , g) := 1
2

[
L( f g) − f L(g) − gL( f )

]
.

Example 2.10. Let L be a second-order PDO on M without constant term (i.e.,
L1 = 0). Suppose that in a local chart (h,U) for M the operator L is written as

L |C∞
U (M) =

n∑

i, j=1

ai j ∂i∂j +

n∑

i=1

bi ∂i,

where C∞
U
(M) = { f ∈ C∞(M) : supp f ⊂ U} and ∂i =

∂
∂hi

. Then

Γ( f , g) =

n∑

i, j=1

ai j(∂i f )(∂jg), ∀ f , g ∈ C∞
U (M).

For instance, in the special case that M = Rn and L = ∆, we find

Γ( f , f ) = ‖∇ f ‖2.

Remark 2.11. Let L be a second-order PDO. Then the following equivalence holds:

Γ( f , g) = 0, ∀ f , g ∈ C∞(M) if and only if L is of first order, i.e., L ∈ Γ(T M).
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For instance, if L = A0 +
∑r

i=1 A2
i
, then

Γ( f , g) =

r∑

i=1

Ai( f )Ai(g),

and in particular,

Γ ≡ 0 if and only if A1 = A2 = · · · = Ar = 0.

Remark 2.12. A continuous real-valued stochastic process (Xt )t≥0 is called a semi-
martingale if it can be decomposed as

Xt = X0 + Mt + At, (2.14)

where M is a local martingale and A an adapted process of locally bounded variation
(with M0 = A0 = 0). The representation of a semimartingale X as in (2.14) (Doob–
Meyer decomposition) is unique: IfM0 denotes the class of local martingales starting
from 0 andA0 is the class of adapted processeswith paths of locally bounded variation
starting from the origin, then M0 ∩A0 = 0.

Definition 2.13. Let X be a continuous adapted process taking values in amanifoldM .
Then X is called semimartingale on M if

f (X) ≡ ( f (Xt ))t≥0

is a real-valued semimartingale for all f ∈ C∞(M).

Remark 2.14. If X has maximal lifetime ζ , i.e.,

{ζ < ∞} ⊂

{
lim
t↑ζ

Xt = ∞ in M̂ = M Û∪{∞}

}
a.s.,

then f (X) is well defined as a process globally on R+ for all f ∈ C∞
c (M) (with the

convention f (∞) = 0). For f ∈ C∞(M), in general,

f (X) ≡ ( f (Xt ))t<ζ

is only a semimartingale with lifetime ζ .

Proposition 2.15. Let L : C∞(M) → C∞(M) be an R-linear map and X be a

semimartingale on M such that for all f ∈ C∞(M),

N
f
t := f (Xt ) − f (X0) −

∫ t

0

L f (Xr ) dr
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is a continuous local martingale (of the same lifetime as X) (i.e., d( f (X))− L f (X) dt
m
= 0, where

m
= denotes equality modulo differentials of local martingales).

Then, for all f , g ∈ C∞(M), the quadratic variation [ f (X), g(X)] of f (X) and

g(X) is given by

d [ f (X), g(X)] ≡ d
[
N f , Ng

]
= 2 Γ( f , g)(X) dt.

In particular, Γ( f , f )(X) ≥ 0 a.s.

Proof. Let f ∈ C∞(M,Rr ) and φ ∈ C∞(Rr ). Writing as above m= for equality modulo
differentials of local martingales, we have

d(φ ◦ f )(X)
m
= L(φ ◦ f )(X) dt. (2.15)

Developing the left-hand side in Eq. (2.15) by Itô’s formula (the function φ is applied
to the semimartingale f ◦ X), we get

d(φ( f (X)))

=

r∑

i=1

(Diφ)( f ◦ X) d( f i ◦ X) +
1

2

r∑

i, j=1

(DiDjφ)( f ◦ X) d[ f i(X), f j(X)]

m
=

r∑

i=1

(Diφ)( f ◦ X) (L f i)(X) dt +
1

2

r∑

i, j=1

(DiDjφ)( f ◦ X) d[ f i(X), f j(X)],

where Di = ∂/∂xi . By equating the drift parts we find

[
L(φ ◦ f ) −

r∑

i=1

((Diφ) ◦ f ) (L f i)

]
(X) dt =

1

2

r∑

i, j=1

(DiDjφ)( f ◦ X) d[ f i(X), f j(X)].

Taking now r = 2 and considering the special case φ(x, y) = xy, we get with
f = ( f 1, f 2),

[
L( f 1 f 2) − f 1L( f 2) − f 2L( f 1)

]
(X) dt = d

[
f 1(X), f 2(X)

]
.

Since
[
L( f 1 f 2) − f 1L( f 2) − f 2L( f 1)

]
(X) = 2Γ( f 1, f 2)(X), this completes the

proof. �

Lemma 2.16. For an R-linear map L : C∞(M) → C∞(M) the following statements

are equivalent:

(i) L is a second-order PDO (without constant term).
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(ii) L satisfies the second-order chain rule, i.e., for all f ∈ C∞(M,Rr ) and φ ∈
C∞(Rr ),

L(φ ◦ f ) =

r∑

i=1

(Diφ ◦ f )(L f i) +

r∑

i, j=1

(DiDjφ ◦ f ) Γ( f i, f j).

Proof. (i)⇒ (ii): Write L in local coordinates as

L | C∞
U (M) =

n∑

i, j=1

ai j ∂i∂j +

n∑

i=1

bi ∂i

and use that Γ( f , g) =
∑n

i, j=1 ai j ∂i f ∂jg.
(ii)⇒ (i): Determine the action of L on functions ϕ written in local coordinates

(h,U) via
L(ϕ)|U = L(ϕ ◦ h−1 ◦ h) ≡ L(φ ◦ f ),

where φ = ϕ ◦ h−1 and f = h. Details are left as an exercise to the reader. �

Corollary 2.17. Let L : C∞(M) → C∞(M) be an R-linear mapping. Suppose that

for each x ∈ M there exists a semimartingale X on M such that X0 = x and such that

for each f ∈ C∞(M),

f (Xt ) − f (x) −

∫ t

0

L f (X) dr

is a local martingale. Then L is necessarily a PDO of order at most 2.

In addition, X has “nice” trajectories (e.g., in the sense that [ f (X), f (X)] = 0 for

all f ∈ C∞(M)) if and only if L is first order.

Proof. As in the proof of Proposition 2.15, for all f ∈ C∞(M,Rr ) and φ ∈ C∞(Rr ),
we have[

L(φ ◦ f ) −

r∑

i=1

(Diφ ◦ f )(L f i) +

r∑

i, j=1

(DiDjφ ◦ f ) Γ( f i, f j)

]
(X) = 0,

so that L is a second-order PDO by Lemma 2.16. The second claim uses

d[ f (X), g(X)] = 2 Γ( f , g)(X) dt, f , g ∈ C∞(M). �

3 Construction of stochastic flows

Flows to vector fields are classically constructed as solutions of ordinary differential
equations on manifolds. In the same way, stochastic flows can be constructed as
solutions to stochastic differential equations (SDEs) on manifolds. We start by
recalling same basic facts about stochastic differential equations on Rn.
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3.1 Stochastic differential equations on Euclidean space.

Example 3.1 (SDEs on Rn). Given β : R+ × Rn → Rn and in addition a function

σ : R+ × R
n → Hom(Rr,Rn) ≡ Matr(n × r,R),

let B be a Brownian motion on Rr . Now one wants to find a continuous semimartin-
gale Y on Rn such that

dYt = β(t,Yt ) dt + σ(t,Yt )dBt

in the sense of Itô, i.e.,

Yt = Y0 +

∫ t

0

β(s,Ys) ds +

∫ t

0

σ(s,Ys) dBs . (3.1)

In Eq. (3.1) the first term describes the “systematic part” (drift term) in the evolution
of Y , whereas the second integral represents the “fluctuating part” (diffusion term).

Definition 3.2. An Rn-valued stochastic process (Yt )t≥0 is called an Itô process if it
has a representation as

Yt = Y0 +

∫ t

0

Ks ds +

∫ t

0

Hs dBs,

where

• Y0 is F0-measurable;

• Ks and Hs are adapted processes taking values in Rn andHom(Rr,Rn) respec-
tively;

• E
[ ∫ t

0
|Ks | ds

]
< ∞ and E

[ ∫ t

0
H2
s ds

]
< ∞ for each t ≥ 0.

Proposition 3.3. Let β : R+ × R
n → Rn and σ : R+ × R

n → Hom(Rr,Rn) be
continuous functions. For a continuous semimartingale Y on Rn, defined up to some

predictable stopping time τ (i.e., there exists a sequence of stopping times τn < τ
with τn ↑ τ), the following conditions are equivalent:

(a) Y is a solution of the SDE

dYt = β(t,Yt ) dt + σ(t,Yt ) dBt on [0, τ[ , (3.2)

i.e.,

Yt = Y0 +

∫ t

0

β(s,Ys) ds +

∫ t

0

σ(s,Ys) dBs, ∀0 ≤ t < τ a.s.
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(b) For all f ∈ C∞(Rn),

d( f ◦ Y ) = (L f )(t,Y ) dt +

n∑

k=1

r∑

i=1

σki(t,Y )Dk f (Y ) dBi on [0, τ[,

where

L =

n∑

k=1

βk Dk +
1

2

n∑

k,ℓ=1

(σσ∗)kℓDkDℓ,

where σ∗ is a transpose of σ, and (σσ∗)kℓ =
∑r

i=1 σkiσℓi . In particular, every
solution of (3.2) is an L-diffusion on [0, τ[ in the sense that

d( f ◦ Y ) − L f (t,Y ) dt = d(local martingale) on [0, τ[.

Proof. (a)⇒ (b) Let Y be a solution of SDE (3.2). Then

dY kdY ℓ ≡ d[Y k,Y ℓ] = (σσ∗)kℓ(t,Y ) dt,

where [Y k,Y ℓ] represents quadratic covariation of Y k and Y ℓ . By Itô’s formula we
get

d( f ◦ Y ) =

n∑

k=1

Dk f (Y )
(
βk(t,Y ) dt +

r∑

i=1

σki(t,Y ) dBi
)

+

1

2

n∑

k,ℓ=1

DkDℓ f (Y ) (σσ∗)kℓ(t,Y ) dt
︸              ︷︷              ︸

=d[Yk,Yℓ ]

= L f (t,Y ) dt +

n∑

k=1

r∑

i=1

σki(t,Y )Dk f (t,Y ) dBi

= L f (t,Y ) dt + d(local martingale).

(b)⇒ (a) Take f (x) = xℓ . Then Dk f = δkℓ and L f = βℓ , thus

dY ℓ
= βℓ(t,Y ) dt +

r∑

i=1

σℓi(t,Y )dBi for each ℓ = 1, . . . , n.

This shows that Y solves SDE (3.2) on [0, τ[. �

Proposition 3.4 (Itô SDE on Rn; case of global Lipschitz conditions). Let Z be a

continuous semimartingale on Rr and

α : Rn → Hom(Rr,Rn) (= Matr(n × r;R))
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such that

∃L > 0, |α(y) − α(z)| ≤ L |y − z |, ∀y, z ∈ Rn (global Lipschitz conditions).

Then, for each F0-measurable R
n-valued random variable x0, there exists a unique

continuous semimartingale (Xt )t≥0 on R
n such that

dX = α(X) dZ and X0 = x0. (3.3)

Uniqueness holds in the following sense: Suppose that Y is another continuous

semimartingale such that dY = α(Y ) dZ and Y0 = x0; then Xt = Yt for all t a.s.

Proof. The proof is standard in stochastic analysis; see for instance [51] or [30]. �

Proposition 3.5 (Itô SDEs on Rn: the case of local Lipschitz coefficients). Let Z be

a continuous semimartingale on Rr and let

α : Rn → Hom(Rr,Rn)

be locally Lipschitz, i.e., for each compact K ⊂ Rn there exists a constant LK > 0

such that

∀y, z ∈ K, |α(y) − α(z)| ≤ LK |y − z |.

Then, for any x0 F0-measurable, there exists a unique maximal solution X |[0, ζ[ of
the SDE

dX = α(X) dZ, X0 = x0.

Uniqueness holds in the sense that if Y |[0, ξ[ is another solution and y0 = x0, then

ξ ≤ ζ a.s. and X |[0, ξ[ = Y .

Proof. The proof is reduced to Proposition 3.4 by a standard truncation method.
We briefly sketch the argument, since it will be used several times in the sequel.
Let B(0, R) = {x ∈ Rn : |x | ≤ R} where R = 1, 2, . . . and choose test functions
φR ∈ C∞

c (R
n) such that φR |B(0, R) ≡ 1. For R > 0 consider the “truncated SDE”

dXR
= αR(XR) dZ, XR

0 = x0, (3.4)

where αR := φR α is now global Lipschitz. By Proposition 3.4 there is a unique
solution XR to (3.4). Then

X |[0, τR[ := XR |[0, τR[

is well defined by uniqueness, where

τR = inf
{
t ≥ 0 : XR

t < B(0, R)
}
.

This finally defines X on the stochastic interval [0, ζ[where ζ = supR τR. Uniqueness
of X is deduced from the uniqueness of X |[0, τR[. �
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Example 3.6. Consider the following Itô SDE on Rn:

dX = β(X)
︸︷︷︸
n×1

dt + σ(X)
︸︷︷︸
n×r

dB
︸︷︷︸
r×1

, (3.5)

where B is Brownian motion on Rr . Then the space-time process Zt = (t, Bt ) is a
semimartingale on Rr+1 and SDE (3.5) can be written as

dX =

(
β(X)

σ(X)

) (
dt

dB

)
= α(X) dZ,

where α(X) :=
(β(X)
σ(X)

)
. Thus, under a local Lipschitz condition on the coefficients β

and σ, the SDE
dX = β(X) dt + σ(X) dB (3.6)

has a unique strong solution for every given initial condition x0. By Proposition 3.3,
maximal solutions of Eq. (3.6) are L-diffusions to the operator

L =

n∑

i=1

βi∂i +
1

2

n∑

i, j=1

(σσ∗)i j∂i∂j,

where ∂i =
∂
∂xi

is the derivative in direction i.

3.2 Stratonovich differentials.

Definition 3.7. For continuous real-valued semimartingales X and Y let

X ◦ dY := X dY +
1

2
d[X,Y ]

be the Stratonovich differential. Here X dY is the usual Itô differential and d[X,Y ] =
dX dY the differential of the quadratic covariation of X and Y . The integral

∫ t

0

X ◦ dY =

∫ t

0

X dY +
1

2
[X,Y ]t (3.7)

is called the Stratonovich integral of X with respect to Y .

Formula (3.7) gives the relation between the Stratonovich integral and the usual Itô
integral. Since Stratonovich integrals can always be converted back to Itô integrals,
their use in our context will be only formal and for the sake of convenient notation.

Remark 3.8. We have the following properties of the Stratonovich differential and
Stratonovich integrals.
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(1) Associativity: X ◦ (Y ◦ dZ) = (XY ) ◦ dZ, i.e.,

X ◦ d

(∫ .

0

Y ◦ dZ

)
= (XY ) ◦ dZ .

Indeed, we have

X ◦ (Y ◦ dZ) = X ◦ d

(∫ .

0

Y ◦ dZ

)

= X d

(∫ .

0

Y ◦ dZ

)
+

1

2
dX d

(∫ .

0

Y ◦ dZ

)

= X(Y dZ) + 1
2

X dY dZ + 1
2

dX
(
Y dZ + 1

2
dY dZ

)

= (XY )dZ + 1
2
(X dY + Y dX + dX dY )dZ

= (XY )dZ + 1
2

d(XY )dZ

= (XY ) ◦ dZ .

(2) Product rule: d(XY ) = X ◦ dY + Y ◦ dX .

Proof. By Itô’s formula we have

d(XY ) = X dY + Y dX + dX dY = X ◦ dY + Y ◦ dX . �

Proposition 3.9 (Itô–Stratonovich formula). Let X be a continuous Rn-valued semi-

martingale and f ∈ C3(Rn). Then

d( f ◦ X) =

n∑

i=1

(Di f )(X) ◦ dX i ≡ 〈∇ f (X), ◦ dX〉. (3.8)

Proof. By Itô’s formula, we have

d(Di f (X)) =

n∑

k=1

(DiDk f )(X) dXk
+

1

2

n∑

k,ℓ=1

(DiDkDℓ f )(X) dXkdXℓ .

Hence we get

n∑

i=1

(Di f )(X) ◦ dX i
=

n∑

i=1

(Di f )(X) dX i
+

1

2

n∑

i=1

d(Di f (X))dX i

=

n∑

i=1

(Di f )(X) dX i
+

1

2

n∑

i,k=1

(DiDk f (X)) dXkdX i

= d( f ◦ X). �
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Formula (3.8) shows the main advantage of the Stratonovich differential: it con-
verts Itô’s formula into the usual chain rule of classical analysis. Hence, at least
formally, classical differential calculus can be applied in calculations involving Strat-
onovich differentials.

Proposition 3.10. Let β : R+×R
n →Rn be continuous, σ : R+×R

n →Hom(Rr,Rn)
be C1. Furthermore, let B be a Brownian motion on Rr . For a semimartingale Y

on Rn (defined up to some predictable stopping time τ) the following conditions are
equivalent:

(i) The semimartingale Y is a solution of the Stratonovich SDE

dY = β(t,Y ) dt + σ(t,Y ) ◦ dB, (3.9)

i.e.,

Yt = Y0 +

∫ t

0

β(s,Ys) ds +

∫ t

0

σ(s,Ys) ◦ dBs, for 0 ≤ t < τ a.s.

(ii) For all f ∈ C∞(Rn),

d( f ◦ Y ) = (L f )(t,Y ) dt +

r∑

k=1

(Ak f )(t,Y )dBk on [0, τ[,

where

L = A0 +
1

2

r∑

i=1

A2
k,

with the vector fields Ai ∈ Γ(TR
n) defined as

A0 =

n∑

i=1

βiDi, Ak =

n∑

i=1

σikDi, k = 1, . . . , r . (3.10)

Proof. (i)⇒ (ii) By the Itô–Stratonovich formula (Proposition 3.9) we have

d( f ◦ Y ) =

n∑

i=1

(Di f )(Y ) ◦ dY i

=

n∑

i=1

(Di f )(Y ) βi(t,Y ) dt +

n∑

i=1

(Di f )(Y )

(
r∑

k=1

σik(t,Y ) ◦ dBk

)

= (A0 f )(t,Y ) dt +

r∑

k=1

(Ak f )(t,Y ) ◦ dBk

= (A0 f )(t,Y ) dt +

r∑

k=1

(Ak f )(t,Y ) dBk +
1

2

r∑

k=1

d
(
(Ak f )(t,Y )

)
dBk .
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Since

d(Ak f (t,Y )) = ∂t (Ak f )(t,Y ) dt + (A0Ak f )(t,Y ) dt +

r∑

ℓ=1

(Aℓ Ak f )(t,Y ) ◦ dBℓ,

we observe that
d(Ak f (t,Y )) dBk

= (A2
k f )(t,Y ) dt,

and hence

d( f ◦ Y ) =

(

(A0 f )(t,Y ) +
1

2

r∑

k=1

(A2
k f )(t,Y )

)

︸                                     ︷︷                                     ︸
= (L f )(t,Y )

dt +

r∑

k=1

(Ak f )(t,Y ) dBk .

(ii)⇒ (i) It is sufficient to take f (x) = xℓ . �

Corollary 3.11. Solutions to the Stratonovich SDE

dY = β(t,Y ) dt + σ(t,Y ) ◦ dB

define L-diffusions for the operator

L = A0 +
1

2

r∑

i=1

A2
i with A0, A1, . . . , Ar as in Eq. (3.10),

in the sense that

d( f ◦ Y ) − (L f )(t,Y ) dt
m
= 0,

for all f ∈ C∞(Rn).

3.3 Stochastic differential equations on manifolds. In this section we de-
scribe the construction of L-diffusions as solutions of stochastic differential equations
on manifolds [18, 27].

Definition 3.12. Let M be a differentiable manifold, π : T M → M its tangent bundle,
and E a finite-dimensional vector space (without restrictions E = Rr ). A stochastic

differential equation on M is a pair (A, Z) where

(1) Z is a semimartingale taking values in E;

(2) A : M × E → T M is a smooth homomorphism of vector bundles over M , i.e.,

(x, e) 7−→ A(x)e := A(x, e),
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M × E T M

M M .

pr1

A

id

π

Remark 3.13. Formally the homomorphism A may be considered as section A ∈

Γ(E∗ ⊗ T M). In particular, we have

{
∀x ∈ M fixed, A(x) ∈ Hom(E,TxM),

∀e ∈ E fixed, A(·)e ∈ Γ(T M).

Notation 3.14. For the SDE (A, Z) we also write

dX = A(X) ◦ dZ

or

dX =
r∑
i=1

Ai(X) ◦ dZ i,

where Ai = A(·)ei ∈ Γ(T M) and e1, . . . , er is a basis of E .

Definition 3.15. Let (A, Z) be an SDE on M and let x0 : Ω→ M beF0-measurable.
An adapted continuous process X |[0, ζ[ ≡ (Xt )t<ζ taking values in M , defined up to
the stopping time ζ , is called a solution to the SDE

dX = A(X) ◦ dZ (3.11)

with initial condition X0 = x0 if, for all f ∈ C∞
c (M), the following conditions are

satisfied:

(i) f ◦ X is a semimartingale.

(ii) For any stopping time τ such that 0 ≤ τ < ζ , we have

f (Xτ) = f (X0) +

∫ τ

0

(df )Xs
A(Xs) ◦ dZs . (3.12)

We call X a maximal solution of the SDE (3.11) if

{ζ < ∞} ⊂

{
lim
t↑ζ

Xt = ∞ in M̂ = M Û∪ {∞}

}
a.s.
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Note: The integral in (3.12) is defined using

E
A(x)
−−−→ TxM

(d f )x
−−−−→ R, x ∈ M .

Remark 3.16. We adopt the convention Xt (ω) := ∞ for ζ(ω) ≤ t < ∞ and f (∞) = 0

for f ∈ C∞
c (M). Then we may write, for all t ≥ 0,

f (Xt ) = f (X0) +

∫ t

0

(df )Xs
A(Xs) ◦ dZs

= f (X0) +

r∑

i=1

∫ t

0

(df )Xs
Ai(Xs) ◦ dZ i

s

= f (X0) +

r∑

i=1

∫ t

0

(Ai f )(Xs) ◦ dZ i
s with Ai = A(·)ei .

Example 3.17. Let E = Rr+1 and Z = (t, Z1, . . . , Zr ), where (Z1, . . . , Zr ) is a
Brownian motion on Rr . Denote the standard basis of Rr+1 by (e0, e1, . . . , er ).
Letting

A : M × E → T M

be a homomorphism of vector bundles over M , we consider the vector fields

Ai := A(·)ei ∈ Γ(T M), i = 0, 1, . . . , r .

Then the SDE
dX = A(X) ◦ dZ (3.13)

may be written as

dX = A0(X) dt +
r∑
i=1

Ai(X) ◦ dZ i

and for each f ∈ C∞
c (M) we have

d( f ◦ X) = (df )X A(X) ◦ dZ

=

r∑

i=0

(df )X A(X)ei ◦ dZ i

=

r∑

i=0

(df )X Ai(X) ◦ dZ i

=

r∑

i=0

(Ai f )(X) ◦ dZ i
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= (A0 f )(X) dt +

r∑

i=1

(Ai f )(X) ◦ dZ i

= (A0 f )(X) dt +

r∑

i=1

[
(Ai f )(X) dZ i

+

1

2
d
(
(Ai f )(X)

)
dZ i

]
.

Taking into account that

d
(
(Ai f )(X)

)
=

r∑

j=1

(Aj Ai f )(X) dZ j
+ d(terms of bounded variation),

we see that

d
(
(Ai f )(X)

)
dZ i
= (A2

i f )(X) dt,

where we used that dZ idZ j
= δi j dt for 1 ≤ i, j ≤ r . Hence we get

d( f ◦ X) = (A0 f )(X) dt +
1

2

r∑

j=1

(A2
i f )(X) dt +

r∑

i=1

(Ai f )(X) dZ i

= (L f )(X) dt +

r∑

i=1

(Ai f )(X) dZ i .

Corollary 3.18. Let L = A0 +
1
2

∑r
i=1 A2

i
and let X be a solution to Eq. (3.13). Then,

for all f ∈ C∞
c (M),

d( f ◦ X) − (L f )(X) dt
m
= 0,

where
m
= denotes equality modulo differentials of martingales. In other words, maxi-

mal solutions to the SDE

dX = A(X) ◦ dZ

are L-diffusions to the operator L = A0 +
1
2

∑r
i=1 A2

i
.

Theorem 3.19 (SDE: Existence and uniqueness of solutions; M = Rn). Let (A, Z)
be an SDE on M = Rn and x0 an F0-measurable random variable taking values in

Rn. Then there exists a unique maximal solution X (with maximal lifetime ζ > 0 a.s.)

of the SDE

dX = A(X) ◦ dZ (3.14)

with initial condition X0 = x0. Uniqueness holds in the following sense: If Y |[0, ξ[
is another solution of (3.14) to the same initial condition, then ξ ≤ ζ a.s. and

X |[0, ξ[ = Y a.s.
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Proof. As in the proof of Proposition 3.5 let B(0, R) = {x ∈ Rn : |x | ≤ R}, where
R = 1, 2, . . . , and choose test functions φR ∈ C∞

c (R
n) such that φR |B(0, R) ≡ 1.

Since
A ∈ Γ(Hom(Rr,T M)),

we have for each x ∈ Rn the linear map

A(x) : Rr → TxM .

In this way A gives rise to a smooth map Rn → Matr(n × r;R).
Consider now the “truncated SDE”

dXR
= AR(XR) ◦ dZ, (3.15)

where AR
= φR A. By Proposition 3.4, the truncated SDE (3.15) has a unique global

solution XR with initial condition XR
0
= x0, i.e., for each R there exists a continuous

Rn-valued semimartingale (XR
t )t≥0 satisfying XR

0
= x0 such that (3.15) holds in the

Itô–Stratonovich sense. In terms of the stopping times

τR := inf
{
t ≥ 0 : XR

t < B(0, R)
}
,

we have for R < R
′
,

XR′ |[0, τR[ = XR |[0, τR[ a.s.

Hence a stochastic process X (with lifetime ζ = limR↑∞ τR) is well defined via

X |[0, τR[ = XR |[0, τR[.

For each f ∈ C∞
c (R

n) such that supp ( f ) ⊂ B(0, R) (with R sufficiently large), we
have

d( f ◦ X) = d( f ◦ XR)

=

n∑

k=1

(Dk f (XR)) ◦ d(XR)k (using the Itô–Stratonovich formula)

= 〈∇ f (XR), ◦ dXR〉

= 〈∇ f (XR), φR(X
R) A(XR) ◦ dZ〉

= 〈∇ f (X), A(X) ◦ dZ〉

=

r∑

i=1

〈∇ f (X), Ai(X) ◦ dZ i〉

=

r∑

i=1

(df )X Ai(X) ◦ dZ i

= (df )X A(X) ◦ dZ .
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Hence, X is the unique solution to Eq. (3.14) with initial condition X0 = x0. Note
that X is a solution of dX = A(X) ◦ dZ in the Itô–Stratonovich sense (in Rn) if and
only if, for all f ∈ C∞

c (R
n),

d( f ◦ X) = (df )X A(X) ◦ dZ . �

Theorem3.20 (SDE: Existence and uniqueness of solutions; general case). Let (A, Z)
be an SDE on a differentiable manifold M and let x0 : Ω → M be F0-measurable.

There exists a unique maximal solution X |[0, ζ[ (where ζ > 0 a.s.) of the SDE

dX = A(X) ◦ dZ

with initial condition X0 = x0. Uniqueness holds in the sense that ifY |[0, ξ[ is another
solution with Y0 = x0, then ξ ≤ ζ a.s. and X |[0, ξ[ = Y a.s.

We shall reduce Theorem 3.20 to Theorem 3.19 via embedding the manifold M

into a high-dimensional Euclidean space.

Whitney’s embedding theorem. Each manifold M of dimension n can be

embedded into Rn+k as a closed submanifold (for k sufficiently large, e.g., k = n+1),

i.e.,

M ֒→ ι(M) ⊂ Rn+k,

where ι : M → ι(M) is a diffeomorphism and ι(M) ⊂ Rn+k is a closed submanifold.

Proof (of Theorem 3.20). We choose a Whitney embedding (in general not intrinsic)

M
ι
֒→

diffeom.
ι(M) ⊂ Rn+k

and identify M and ι(M); in particular, for each x ∈ M the tangent space TxM is then
a linear subspace of Rn+k according to

TxM
dιx
֒→ TxR

n+k ≡ Rn+k .

Vector fields A1, . . . , Ar ∈ Γ(T M) can be extended to vector fields

A1, . . . , Ar ∈ Γ(TR
n+k) ≡ C∞(Rn+k ;Rn+k) with Ai |M = Ai,

i.e., Ai ◦ ι = dι ◦ Ai . Hence a given bundle map

A : M × Rr → T M, (x, z) 7→ A(x)z =

r∑

i=1

Ai(x)z
i
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has a continuation

Ā : Rn+k × Rr → Rn+k × Rn+k, (x, z) 7→ Ā(x)z =

r∑

i=1

Āi(x)z
i .

In place of the original SDE

dX = A(X) ◦ dZ on M, (∗)

the idea is to consider the SDE

dX = A(X) ◦ dZ on Rn+k . (∗)

First of all, it is clear that any solution of (∗) in M provides a solution of (∗) in Rn+k .
More precisely, if X is a solution to (∗) with starting value X0 = x0, then X := ι ◦ X

solves equation (∗) with starting value X0 = ι ◦ x0. Indeed, if f ∈ C∞
c (R

n+k), then
f := f |M = f ◦ ι ∈ C∞

c (M), and we have

d( f ◦ X) = d( f ◦ X) =

r∑

i=1

(df )X Ai(X) ◦ dZ i

=

r∑

i=1

(d f )X̄ (dι)X Ai(X) ◦ dZ i

=

r∑

i=1

(d f )X̄ Ai(ι ◦ X) ◦ dZ i

=

r∑

i=1

(d f )X̄ Ai(X) ◦ dZ i .

This implies, in particular, uniqueness of solutions to (∗), since Eq. (∗) has a unique
solution to a given initial condition.

To establish the existence of solutions to (∗) we first remark that any test function
f ∈ C∞

c (M) has a continuation f̄ ∈ C∞
c (R

n+k) such that f |M ≡ f ◦ ι = f . We make
the following important observation:

Each solution X |[0, ζ[ of (∗) in Rn+k with X0 = x0 which stays on M for t < ζ (where
x0 is an M-valued F0-measurable random variable) gives a solution of (∗).

Hence, to complete the proof it is sufficient to show the following lemma. �

Lemma 3.21. If X |[0, ζ[ is the maximal solution of (∗) in Rn+k with X0 = x0, then

{t < ζ } ⊂ {Xt ∈ M}, for all t a.s.
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Observe that it is enough to verify Lemma 3.21 for one specific continuation Ā

of A.

Proof (of Lemma 3.21). Let

⊥ M =
{
(x, v) ∈ M × Rn+k

��v ∈ (TxM)⊥
}

be the normal bundle of M and consider M embedded into ⊥ M as a zero section:

M ֒→ ⊥ M, x 7→ (x, 0).

Fact: There is a smooth function ε : M → ]0,∞[ such that the map

τε(M) :=
{
(x, v) ∈ ⊥M : |v | < ε(x)

} �

−→
⋃

x∈M

{
y ∈ Rn+k : |y − x | < ε(x)

}
,

(x, v) 7−→ x + v

is a diffeomorphism from the tubular neighborhood τε(M) of M of radius ε onto the
indicated part in Rn+k . This follows from the local inversion theorem since the given
map has full rank along the zero section of ⊥M .

Note that both

π : τε(M) → M, (x, v) 7→ x and dist2(·,M) : τε(M) → R, (x, v) 7→ |v |2

are smooth maps.
Now letting R > 0 be sufficiently large such that

M ∩ B(0, R + 1) , �,

then
εR = inf{ε(x) | x ∈ M ∩ B(0, R + 1)} > 0.
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We choose a decreasing smooth function λ : [0,∞[→ [0, 1] of the form

and a test function 0 ≤ ϕ ∈ C∞
c (R

n+k) such that ϕ|B(0, R) ≡ 1 and supp (ϕ) ⊂
B(0, R + 1). Consider the map

ĀR : Rn+k × Rr → Rn+k × Rn+k,

ĀR(y, z) :=

{
ϕ(y) λ(dist2(y,M)) A(π(y)) z if y ∈ τε(M),

0 if y < τε(M).

Let X be the solution of

dX = ĀR(X) ◦ dZ, X0 = x0.

Consider the test function f ∈ C∞
c (R

n+k) given as

f (y) = ϕ(y) λ(dist2(y,M)).

Then

d( f ◦ X) = (df )X ĀR(X) ◦ dZ

= 〈∇ f (X), ĀR(X) ◦ dZ〉

= 0 on [0, τR[ ,
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where τR := inf{t ≥ 0: Xt < B(0, R)}. Indeed, f is constant on each submanifold of
the form

{dist(·,M) = s} ∩ B(0, R), s < εR,

whereas ĀR(y, z) is tangent to such submanifolds. Thus, for all y ∈ B(0, R) and
z ∈ Rr ,

∇ f (y) ⊥ ĀR(y)z.

Hence, for any solution X of (∗), we obtain that

f (X) ≡ constant on [0, τR[ a.s.

Since R is arbitrary, this completes the proof of the lemma. �

Solutions to an SDE on M of the type (3.11) are by definition semimartingales
on M as defined above: A continuous adapted process X with values in M is a
semimartingale on M if, for each f ∈ C∞

c (M), the composition f ◦ X provides
a continuous real-valued semimartingale. It is easy to see that each M-valued
semimartingale can be obtained as the solution of an SDE on M .

Theorem 3.22 (Manifold-valued semimartingales as solutions of an SDE). Every
semimartingale on a manifold M is given as the solution of an SDE of type (3.11).

Proof. Let X be an arbitrary semimartingale on M . Without loss of generality (after
an eventual change of time), we may assume that X has infinite lifetime. Choosing a
Whitney embedding ι : M ֒→ Rn+k we may consider the semimartingale Z := ι ◦ X

taking values in E := Rn+k . Let A : M × E → T M be the bundle homomorphism
which is fiberwise the orthogonal projection A(x) : Rn+k → TxM of Rn+k onto
TxM ⊂ TxR

n+k
= Rn+k . We show that X solves the equation

dX = A(X) ◦ dZ .

Let f ∈ C∞
c (M) be given. We choose a continuation f ∈ C∞

c (R
n+k), where f ◦ ι = f

such that f is constant locally about M on the normal subspaces ⊥xM (this is
f (y) = f (x) for y ∈ ⊥xM sufficiently small). Now let x ∈ M and z ∈ Rn+k . By
decomposing z = z0 + z⊥, where z0 ∈ TxM and z⊥ ∈ ⊥xM , we obtain

(df )x A(x)z = (d f )ι(x) (dι)x A(x)z = (d f )ι(x) z0 = (d f )ι(x) z.

But then

d( f ◦ X) = d( f ◦ ι ◦ X) =

n+k∑

i=1

(
Di f

)
(ι ◦ X) ◦ dZ i

=

n+k∑

i=1

(df )X A(X)ei ◦ dZ i
= (df )X A(X) ◦ dZ,

which gives the claim. �
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4 Some probabilistic formulas for solutions of PDEs

Let L be a second-order partial differentiable operator on M , e.g., M is a general
differentiable manifold and L is given in so-called Hörmander form as

L = A0 +
1

2

r∑

i=1

A2
i . (4.1)

For x ∈ M , let Xt (x) be an L-diffusion, starting from x at time t = 0, i.e., X0(x) = x.
Recall that Xt (x) can be constructed as the solution to the SDE on M ,

{
dX = A0(X) dt +

∑r
i=1 Ai(X) ◦ dBi,

X0 = x,

where B denotes Brownian motion on Rr . Sometimes one starts with a partial
differentiable operator L on M which locally in a chart (h,U) is written as

L |U =

n∑

i=1

bi∂i +

n∑

i, j=1

(σσ∗)i j ∂i∂j, (4.2)

where b ∈ C∞(U,Rn) and a ∈ C∞(U,Rr ⊗ Rn) (using the notation ∂i =
∂
∂hi

). It
is straightforward to rewrite such an operator in Hörmander form (4.1) and then to
construct an L-diffusion by solving a Stratonovich SDE.

In the special case M = Rn and

L =

n∑

i=1

bi∂i +
1

2

n∑

i, j=1

(σσ∗)i j∂i∂j,

an L-diffusion can be constructed directly as the solution of the Itô SDE on Rn:

{
dX = b(X) dt + σ(X) dB,

X0 = x,

where B is again a Brownian motion on Rr .

4.1 Feynman–Kac formula. Let L be as in Eq. (4.1). Suppose that the lifetime
of Xt (x) is infinite a.s. for all x ∈ M .

Proposition 4.1 (Feynman–Kac formula). Let f : M → R be continuous and

bounded and let V : M → R be continuous and bounded above, i.e., V(x) ≤ K
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for some constant K > 0. Let u : R+×M → R be a bounded solution of the following

“initial value problem” {
∂
∂t

u = Lu + Vu,

u|t=0 = f ,

i.e., {
∂
∂t

u(t, ·) = Lu(t, ·) + V(·) u(t, ·),

u(0, ·) = f (·).

Then the solution u is given by the formula

u(t, x) = E

[
exp

(∫ t

0

V(Xs(x)) ds

)
f (Xt (x))

]
.

Remark 4.2. Operators of the form H = L+V (whereV is the multiplication operator
by V) are called Schrödinger operators, for instance, H = 1

2
△ +V . The function V is

called potential. If H is (essentially) self-adjoint, then

u(t, ·) = etH f

by semigroup theory.

Proof (of Proposition 4.1). Fix t > 0 and consider the process Ys := AsZs, where

{
As := exp

(∫ s

0
V(Xr (x)) dr

)
,

Zs := u(t − s, Xs(x)).

We will show that (Ys)0≤s≤t is a martingale in our setting.

Indeed, first note that by Itô’s formula,

dZs =

(
∂su(t − s, ·) + Lu(t − s, ·)

)
(Xs(x)) ds + dNs,

where Ns is a local martingale. Thus, since As is of bounded variation, we have

dYs = ZsdAs + AsdZs

= ZsAsV(Xs(x)) ds + As

(
∂su(t − s, ·) + Lu(t − s, ·)

)
(Xs(x)) ds + AsdNs

= As

(
−∂tu + Lu + Vu

)

︸                 ︷︷                 ︸
=0

(t − s, Xs(x)) ds + AsdNs .
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Hence (Ys)0≤s≤t is a local martingale, and as it is bounded, (Ys)0≤s≤t is a true
martingale. In particular, by taking expectations we obtain

u(t, x) = E [Y0] = E[Yt ] = E

[
exp

(∫ t

0

V(Xr (x)) dr

)
u(0, Xt (x))

]

= E

[
exp

(∫ t

0

V(Xr (x)) dr

)
f (Xt (x))

]
. �

4.2 Elliptic boundary value problems. Let L be a second-order partial dif-
ferential operator on a differential manifold M , e.g.,

L = A0 +
1

2

r∑

i=1

A2
i on a differential manifold M , or

L =

n∑

i=1

bi∂i +
1

2

n∑

i, j=1

(σσ∗)i j∂i∂j in local coordinates on M .

Remark 4.3 (Ellipticity).

(1) The diffusion vector fields A1, . . . , Ar define for each x ∈ M a linear map

A(x) : Rr → TxM, z 7→

r∑

i=1

Ai(x)zi .

The operator

L = A0 +
1

2

r∑

i=1

A2
i

is called elliptic on some subset D ⊂ M if the map A(x) is surjective for each
x ∈ D.

(2) Similarly, an operator of the type

L =

n∑

i=1

bi∂i +
1

2

n∑

i, j=1

(σσ∗)i j∂i∂j

is called elliptic on some subset D ⊂ M if the linear map

σ(x) : Rr → Rn, z 7→ σ(x)
︸︷︷︸
n×r

z

is surjective for each x ∈ D.



118 Anton Thalmaier

It is easily checked that both notions of ellipticity are compatible.

Note 4.4. The following conditions are equivalent:

σ(x) is surjective⇐⇒ σ∗(x) is injective

⇐⇒ a(x) := σ(x)σ∗(x) is invertible

⇐⇒ 〈a(x)v, v〉 > 0, ∀0 , v ∈ Rn.

Example 4.5 (Expected hitting time of a boundary). Let � , D ( M be some open,
relatively compact domain with boundary ∂D. Suppose that there exists a solution
u ∈ C2(D) ∩ C(D) to the problem

{
Lu = −1 on D,

u|∂D = 0.
(4.3)

(For instance, if L is elliptic on D and the boundary ∂D is smooth, it is well known
in classical PDE theory that such a solution exists.)

Let Xt (x) be an L-diffusion such that X0(x) = x and define

τD(x) = inf {t > 0 : Xt (x) ∈ ∂D} .

Then, for each x ∈ D,

u(x) = E
[
τD(x)

]
.

In particular, we see that u > 0 on D.

Proof. For x ∈ D, let Xt = Xt (x) and τD = τD(x). We know that the process

u(Xt∧τD ) − u(x) −

∫ t∧τD

0

Lu(Xs) ds, t ≥ 0

is a martingale (starting at 0), and hence

E[u(Xt∧τD )] − u(x) = E

[∫ t∧τD

0

Lu(Xs)︸  ︷︷  ︸
=−1

ds

]
.

This shows that
E[t ∧ τD] = u(x) − E[u(Xt∧τD )]. (4.4)

Recall that u is bounded, since u ∈ C(D) with D compact, and hence by Beppo Levi,

E[τD] = lim
t→∞
E[t ∧ τD] < +∞.

Thus, by letting t ↑ +∞ in (4.4), we obtain

E[τD] = u(x) − E[u(XτD )] = u(x),

where we used that u|∂D = 0. �
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Corollary 4.6. If the smooth boundary value problem (4.3) has a solution, then

E[τD(x)] < ∞, and hence τD(x) < ∞ a.s., for all x ∈ D. Thus L-diffusions starting

at any point x ∈ D eventually hit ∂D with probability 1.

Remark 4.7. The property of an L-diffusion of hitting the boundary with probability
1 is a “nondegeneracy” condition on the operator L. We demonstrate this in the
following simple example on Rn.

Example 4.8. Consider an operator of the form

L =

n∑

i=1

bi∂i +
1

2

n∑

i, j=1

(σσ∗)i j∂i∂j on Rn, ai j = (σσ
∗)i j,

and let D ⊂ Rn be relatively compact. Suppose that L is nondegenerate in the
following weak sense: For some 1 ≤ ℓ ≤ n there holds

min
x∈D̄

aℓℓ(x) > 0.

Then E[τD(x)] < ∞ for any x ∈ D.

Proof. Set
A := min

x∈D̄
aℓℓ(x) and B := max

x∈D̄
|b(x)|.

For constants µ, ν > 0 consider the smooth function

h(x) = −µeνxℓ , x ∈ D.

Then, choosing ν > 2B/A and taking K = minx∈D̄ xℓ , we get

−Lh(x) = µeνxℓ

(
ν2

2
aℓℓ(x) + νbℓ(x)

)

≥
1

2
µνA eνxℓ

(
ν −

2B

A

)

≥
1

2
νµAeνK

(
ν −

2B

A

)

≥ 1 for µ sufficiently large.

Thus
Lh ≤ −1 on D.

As above, we may proceed as follows. The process

Nh
t := h(Xt∧τD ) − h(x) −

∫ t∧τD

0

Lh(Xs) ds, t ≥ 0
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is a martingale (where again Xt = Xt (x) and τD = τD(x)). By taking expectations
we obtain

h(x) − E[h(Xt∧τD )] = −E

[∫ t∧τD

0

Lh(Xs)︸  ︷︷  ︸
≤−1

ds

]
≥ E[t ∧ τD].

Hence,

E[τD] = E
[
lim inf
t→∞

t ∧ τD

]

≤ lim inf
t→∞

E[t ∧ τD]

≤ 2 max
y∈D̄

|h(y)| < ∞,

which shows the claim. �

Definition 4.9 (Generalized Dirichlet problem). Let � , D ( M be an open and
relatively compact domain and let L be a second-order PDO on M as above. Assume
g, k ∈ C(D̄), k ≥ 0 and ϕ ∈ C(∂D) are given. The generalized Dirichlet problem
consists in finding u ∈ C2(D) ∩ C(D̄) such that

{
−Lu + ku = g on D,

u|∂D = ϕ.
(GDP)

Theorem 4.10 (Stochastic representation of solutions to the GDP). Assume that u

solves (GDP). For x ∈ D, let Xt (x) be an L-diffusion, starting from x, and assume

that

E[τD(x)] < ∞, for all x ∈ D.

Then

u(x) = E

[
ϕ(XτD ) exp

{
−

∫ τD

0

k(Xs) ds

}
+

∫ τD

0

g(Xs) exp

{
−

∫ s

0

k(Xr ) dr

}
ds

]
,

where τD = τD(x) and Xt = Xt (x).

Proof. Consider the semimartingale

Nt := u(Xt ) exp

{
−

∫ t

0

k(Xs) ds

}
+

∫ t

0

g(Xs) exp

{
−

∫ s

0

k(Xr ) dr

}
ds.

We find that

dNt = exp

{
−

∫ t

0

k(Xs) ds

} [
d
(
u(Xt )

)
− u(Xt )k(Xt ) dt + g(Xt ) dt

]

m
= exp

{
−

∫ t

0

k(Xs) ds

} [
(Lu)(Xt ) dt − u(Xt )k(Xt ) dt + g(Xt ) dt

]
= 0,
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where as before the symbol m= denotes equality modulo differentials of (local) mar-
tingales. Thus, the process

(Nt∧τD )t≥0

is a martingale. In particular, by dominated convergence, we get

u(x) = E[N0] = E[Nt∧τD ] → E[NτD ],

and thus

u(x) = E

[
u(XτD ) exp

{
−

∫ τD

0

k(Xs) ds

}
+

∫ τD

0

g(Xs) exp

{
−

∫ s

0

k(Xs) dr

}
ds

]
.

Since u|∂D = ϕ, we have u(XτD ) = ϕ(XτD ) which gives the claim. �

We shall consider the result of Theorem 4.10 in some special cases.

(I) Classical Feynman–Kac formula. Consider the boundary value problem of
finding u ∈ C2(D) ∩ C(D̄) such that

{
−Lu + ku = g on D,

u|∂D = 0.

Its solution is given by

u(x) = E

[∫ τD (x)

0

g(Xt (x)) exp

{
−

∫ t

0

k(Xr (x)) dr

}
dt

]

, x ∈ D. (4.5)

In particular, if k ≡ 0 then

u(x) = E

[∫ τD (x)

0

g(Xt (x)) dt

]

(Green’s kernel).

Note that −Lu = g is equivalent to u = −L−1
g. Thus the Green kernel gives

an inverse to −L.

(II) Classical Dirichlet problem. Consider the problem of finding u ∈ C2(D) ∩

C(D̄) such that {
Lu = 0 on D,

u|∂D = ϕ.
(DP)

If Xt (x) is an L-diffusion, then

u(x) = E
[
ϕ(XτD (x))

]
=

∫

∂D

ϕ dµx,
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where the exit measure µx is given by

µx(B) := P{XτD (x) ∈ B}, B ⊂ ∂D measurable.

Note that u(x) =
∫
∂D
ϕ dµ(x)makes sense also for boundary functions ϕwhich

are just bounded and measurable.

Example 4.11. Assume that ∂D = A ∪ B, where A ∩ B = �. In physics, a solution
u ∈ C2(D) ∩ C(D̄) to the Dirichlet problem




Lu = 0 on D,

u|A = 1,

u|B = 0

is called the equilibrium potential for the capacitor (A, B). Let ϕ|∂D be defined as

ϕ(x) =

{
1 if x ∈ A,

0 if x ∈ B.

Then

u(x) = E
[
ϕ(XτD (x))

]
= P

{
τA(x) < τB(x)

}
,

where

τA(x) = inf{t > 0, Xt (x) ∈ A},

τB(x) = inf{t > 0, Xt (x) ∈ B}.

Thus u(x) corresponds to the probability that an L-diffusion, starting from x, hits A

before hitting B.

4.3 Parabolic boundary value problems. Let D ⊂ M be an open and rela-
tively compact domain. Consider a second-order PDO L on M and let (Xt (x))t≥0 be
an L-diffusion. Let T > 0 and V be a measurable function on D such that

E

[

exp

(∫ T∧τD (x)

0

V−(Xs(x)) ds

)]

< ∞, ∀x ∈ D,

whereV− := (−V)∨0 denotes the negative part ofV and τD(x) = inf{s ≥ 0 : Xt (x) ∈

∂D}. Furthermore, let f , g ∈ C(D̄) and ϕ ∈ C(∂D).
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Problem. Find a solution to the following parabolic boundary value problem:





∂
∂t

u = Lu − Vu + g on [0,T] × D,

u(t, ·)|∂D = ϕ for t ∈ [0,T],

u|t=0 = f .

(BVP)

Note that necessarily f |∂D = ϕ.

Theorem 4.12. Every solution u ∈ C2([0,T] × D) ∩C([0,T] × D̄) of (BVP) is of the

form

u(t, x) = E

[
f (Xt∧τD ) exp

(
−

∫ t∧τD

0

V(Xs) ds

)
+

∫ t∧τD

0

g(Xs) exp

(
−

∫ s

0

V(Xr ) dr

)
ds

]
,

where Xt = Xt (x) and τD = τD(x).

Proof. For 0 < t0 ≤ T , we check by Itô’s formula that

Nt := u(t0 − t, Xt ) exp

(
−

∫ t

0

V(Xs)ds

)

+

∫ t

0

g(Xs) exp

(
−

∫ s

0

V(Xr )dr

)
ds, t ≤ t0 ∧ τD

is a martingale. Then it suffices to evaluate u(t0, x) = E[N0] = E[Nt0∧τD ], which
gives the claim. �

In the discussion of this section we have restricted ourselves to representation for-
mulas for solutions to elliptic–parabolic equations of second order. For establishing
the existence of solutions by probabilistic methods the reader may consult [54].

5 Stochastic calculus on manifolds

5.1 Quadratic variation and integration of 1-forms. In this section we
give canonical constructions related to continuous semimartingales on a manifold
M , including the quadratic variation of continuous semimartingales with respect to
bilinear forms on T M and the integral of 1-forms on M along semimartingales; see
[19] for more details.

The following technical lemma on continuous processes is well known (e.g., see
[24]) and very useful for a localization in space of continuous adapted processes,
besides the usual localization in time (through a sequence of stopping times).
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Lemma 5.1. Let (Vk)k∈N be a countable covering of M by open sets Vk and X be a

continuous adapted M-valued process. Then there exists a nondecreasing sequence

(τn)n≥0 of stopping times with τ0 = 0 and supn τn = ∞, such that on each of the

intervals [τn, τn+1] ∩
(
R+ × {τn < τn+1}

)
, the process X takes values in only one of

the Vk .

Given a filtered probability space (Ω,F , P; (Ft )t∈R+), we denote byS the vector
space of real-valued continuous semimartingales:

S =M0 ⊕ A ,

whereM0 denotes the space of continuous local martingales starting at 0 andA the
space of continuous adapted processes pathwise locally of bounded variation.

Lemma 5.2. Let M be an arbitrary differentiable manifold. There exist finitely many

functions h1, . . . , hℓ ∈ C∞(M) such that the following properties hold:

(i) Each function f ∈ C∞(M) factorizes through (h1, . . . , hℓ) as f = f ◦(h1, . . . , hℓ)
for some f ∈ C∞(Rℓ).

(ii) Each section b ∈ Γ(T∗M ⊗ T∗M) can be written as b =
∑ℓ

i, j=1 bi j dhi ⊗ dh j

with functions bi j ∈ C∞(M).

(iii) Each differential form α ∈ Γ(T∗M) can be written as α =
∑ℓ

i=1 αi dhi with

functions αi ∈ C∞(M).

Proof. We represent M via a Whitney embedding h : M ֒→ Rℓ as a closed subman-
ifold of some Rℓ . Then there exists a differentiable partition (ϕλ)λ∈Λ of the unity
on M and a family (Iλ)λ∈Λ of subsets Iλ ⊂ {1, . . . , ℓ} with the following property:
For each λ ∈ Λ the (hi)i∈Iλ define a chart for M on some open neighborhood of
supp (ϕλ).

Part (i) is evident: One defines f |h(M) through f = f ◦h and extends f constantly
along the normal subspaces ⊥xM to an open neighborhood of M � h(M). Then,
one may smooth f by multiplication with a function identical to 1 locally about
h(M) and vanishing outside a suitable larger neighborhood. For part (ii), note that
ϕλ b =

∑ℓ
i, j=1 bλ

i j
dhi ⊗ dh j with bλ

i j
∈ C∞(M) such that supp (bλ

i j
) ⊂ supp (ϕλ) and

bλ
i j

:= 0 for {i, j} 1 Iλ, but then

b =

ℓ∑

i, j=1

bi j dhi ⊗ dh j, where bi j :=
∑

λ

bλi j .

The proof of part (iii) is analogous to (ii). �
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Theorem 5.3. Let X be an M-valued semimartingale. There exists a unique linear

mapping

Γ(T∗M ⊗ T∗M) → A , b 7→

∫
b(dX, dX),

such that for all f , g ∈ C∞(M),

df ⊗ dg 7→ [ f (X), g(X)], (5.1)

f b 7→

∫
f (X) b(dX, dX). (5.2)

Here, by definition b(dX, dX) := d
∫

b(dX, dX). Recall that [ f (X), g(X)] in condition
(5.1) denotes the quadratic covariation process of f (X) and g(X).

Definition 5.4. The process
∫

b(dX, dX) is called the integral of b along X or the
b-quadratic variation of X . The random variable giving its value at time t is usually
written as

∫ t

0
b(dX, dX).

Proof (of Theorem 5.3). By Lemma 5.2(ii) each section b ∈ Γ(T∗M ⊗ T∗M) can be
represented as b =

∑
bi j dhi ⊗ dh j . We define

∫
b(dX, dX) :=

∑ ∫ (
bi j ◦ X

)
d[hi(X), h j(X)]. (5.3)

Then uniqueness is obvious; to prove existence it remains to show that (5.3) is well
defined. To this end assume that

b =
∑

finite

uν df ν ⊗ dgν = 0.

We need to check that
∑

ν

uν(X) d[ f ν(X), gν(X)] = 0

as well. Without loss of generality, by means of Lemma 5.1, we may assume that h

is already a global chart for M . According to Lemma 5.2(i), we write uν = uν ◦ h,
f ν = f ν ◦ h, and gν = g

ν ◦ h in terms of appropriate extensions uν, f ν, gν ∈ C∞(Rℓ).
Defining X = h ◦ X , the claim then follows from the following calculation:

∑

ν

uν(X) d[ f ν(X), gν(X)] =
∑

ν

uν(X) d[ f ν(X), gν(X)]

=

∑

i, j

∑

ν

uν(X) (Di f ν)(X) (Djg
ν)(X) d[X i, X j]

=

∑

i, j

(∑

ν

uν df ν ⊗ dgν
) ((

∂

∂hi

)
X
,
(

∂

∂h j

)
X

)
d[X i, X j] = 0. �
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Corollary 5.5. The b-quadratic variation
∫

b(dX, dX) depends only on the symmetric

part of b. In particular,
∫

b(dX, dX) = 0 if b is antisymmetric.

Proof. Defining b(A, B) := b(B, A), the assignment b 7→
∫

b(dX, dX) has the defin-
ing properties (5.1) and (5.2) as well. �

Theorem 5.6 (Pullback formula for the b-quadratic variation). Let φ : M → N be a

differentiable map and b ∈ Γ(T∗N ⊗T∗N). Let φ∗b ∈ Γ(T∗M ⊗T∗M) be the pullback

of b via φ, i.e.,

(φ∗b)p(u, v) := bφ(p)(dφp u, dφp v) , u, v ∈ TpM , p ∈ M .

Then, for any semimartingale X on M ,

∫
(φ∗b) (dX, dX) =

∫
b
(
d(φ ◦ X), d(φ ◦ X)

)
. (5.4)

Proof. The left-hand side of (5.4) obviously has the defining properties for the b-
quadratic variation of the image process φ ◦ X . �

We now turn to the problem of integrating 1-forms on M along M-valued semi-
martingales.

Theorem 5.7. Let X be a semimartingale taking values in M . There is a unique

linear mapping

Γ(T∗M) → S , α 7→

∫
α( ◦ dX) ≡

∫

X

α

such that, for all f ∈ C∞(M),

df 7→ f (X) − f (X0), (5.5)

f α 7→

∫
f (X) ◦ α( ◦ dX). (5.6)

In (5.6) the integral means the Stratonovich integral of the process f (X) with respect

to the semimartingale
∫
α( ◦ dX). Thus, in other words, f (X) ◦ α( ◦ dX) ≡ f (X) ◦

d
(∫
α( ◦ dX)

)
.

Definition 5.8 (Stratonovich integral of 1-forms along semimartingales). The process∫
α( ◦ dX) is called the Stratonovich integral of α along X . We alsowrite

∫
X
α instead

of
∫
α( ◦ dX).
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Proof (of Theorem 5.7). By Lemma 5.2(iii) each differential form α ∈ Γ(T∗M) can
be represented as α =

∑
i αi dhi with functions αi ∈ C∞(M). We define
∫

X

α :=
∑

i

∫
αi(X) ◦ d(hi(X)). (5.7)

Uniqueness is again obvious; it is thus sufficient to show that formula (5.7) is well
defined. To this end, we have to verify that if α =

∑
finite uν df ν = 0 then

∑

ν

uν(X) ◦ d( f ν(X)) = 0

holds as well. Proceeding as in the proof of Theorem 5.7, without loss of generality,
we may assume again that h is already a global chart for M . But then we have

∑

ν

uν(X) ◦ d( f ν(X)) =
∑

ν

uν(X) ◦ d( f ν(X))

=

∑

i

∑

ν

uν(X) ◦
[
Di f ν(X) ◦ dX i

]

=

∑

i

((∑

ν

uν df ν
) (

∂

∂hi

)
X

)
◦ dX i

= 0,

which gives the claim. �

Example 5.9. In the special case of a deterministic C1 curve X in M , say Xt = x(t),
which is trivially a semimartingale, we obtain

∫

X

α =

∫
α

(
Ûx(t)

)
dt, α ∈ Γ(T∗M). (5.8)

Indeed, the right-hand side of (5.8) obviously has the defining properties of
∫
X
α.

Theorem 5.10 (Pullback formula for the Stratonovich integral of a 1-form). Let
φ : M → N be a differentiable map and α ∈ Γ(T∗N). Then, for any semimartingale

X on M , we have ∫

X

φ∗α =

∫

φ◦X

α. (5.9)

Proof. The left-hand side of Eq. (5.9) satisfies the defining properties for the Strat-
onovich integral of α along φ ◦ X . By uniqueness we therefore have equality. �

Remark 5.11. Let α, β ∈ Γ(T∗M). Then α⊗ β ∈ Γ(T∗M ⊗T∗M) and for the quadratic
covariation process of

∫
X
α and

∫
X
β we have the formula

[∫

X

α,

∫

X

β

]
=

∫
(α ⊗ β) (dX, dX).



128 Anton Thalmaier

5.2 Martingales and Brownian motions. The aim of this section is to intro-
duce martingales and Brownian motions on manifolds. This task requires additional
geometric structures on the manifolds: linear connections and Riemannian metrics.
These results will then be extended later to the setting of sub-Riemannian geometry
where the metric is defined only on a subbundle of T M .

Notation 5.12. Let π : T M → M be the tangent bundle over M . A linear connection

in T M , or equivalently a covariant derivative on T M , is an R-linear mapping

∇ : Γ(T M) → Γ(T∗M ⊗ T M) (5.10)

satisfying the product rule ∇( f X) = df ⊗ X + f ∇X , for all X ∈ Γ(T M) and
f ∈ C∞(M). Alternatively, (5.10) may be written as a mapping

Γ(T M) × Γ(T M) → Γ(T M), (A, X) 7→ ∇AX ≡ (∇X)A,

which is C∞(M)-linear in the first variable and derivative in the second variable. For
f ∈ C∞(M), we have the second fundamental form (or Hessian) of f defined as

∇df ≡ Hess f ∈ Γ(T∗M ⊗ T∗M), (∇df )(A, B) = AB f − (∇AB) f .

The bilinear form
(A, B) 7→ (∇df )(A, B)

is symmetric for each f ∈ C∞(M) if and only if the connection ∇ is torsion-free, i.e.,
if for all A, B ∈ Γ(T M),

T(A, B) ≡ ∇AB − ∇BA − [A, B] = 0.

Definition 5.13 (∇-martingale). Let M be a manifold and ∇ be a linear connection
in T M . An M-valued semimartingale X defined on some filtered probability space
(Ω,F , P; (Ft )t≥0) is called ∇-martingale if for each f ∈ C∞(M),

d( f ◦ X) − 1
2
(∇df )(dX, dX)

m
= 0, (5.11)

where m
= means equality modulo differentials of local martingales.

Since (∇df )(dX, dX) depends only on the symmetric part of∇df , onemay always
assume that the linear connection∇ is torsion-free. Symmetrization of the connection
does not change the class of ∇-martingales.

Example 5.14. In the special case of M = Rn equipped with the canonical linear
connection ∇Di

Dj = 0, we have

(∇df )(Di,Dj) = DiDj f ,
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and hence ∇-martingales in the sense of Definition 5.13 coincide with the usual
class of continuous local martingales on Rn. Indeed, according to Itô’s formula, a
continuous Rn-valued semimartingale X is a local martingale if and only if

d( f ◦ X) −
1

2

∑

i, j

(DiDj f )(X) d[X i, X j]
m
= 0,

for all f ∈ C∞(Rn). This is exactly condition (5.11) of Definition 5.13.

Remark 5.15 (Martingales as solutions of SDEs). Let ∇ be a linear connection
on T M which without loss of generality is torsion-free. Let A0 ∈ Γ(T M) and
A ∈ Γ

(
Hom(M × Rr,T M)

)
, and suppose that X is a solution to the SDE

dX = A0(X) dt + A(X) ◦ dZ . (5.12)

Here Z may be an arbitrary continuous Rr -valued semimartingale. Then for f ∈

C∞(M) we have

d( f ◦ X) =
(
A0 f

)
(X) dt +

r∑

i=1

(
Ai f

)
(X) dZ i

+

1

2

r∑

i, j=1

(
AiAj f

)
(X) d[Z i, Z j],

where Ai = A(·)ei ∈ Γ(T M) for i = 1, . . . , r . Since (∇df )(Ai, Aj) = AiAj f −

(∇Ai
Aj) f and since on the other hand,

(∇df )(dX, dX) =

r∑

i, j=1

(∇df )(Ai, Aj)(X) d[Z i, Z j],

we obtain

d( f ◦ X) −
1

2
(∇df )(dX, dX) = (A0 f )(X) dt +

r∑

i=1

(
Ai f

)
(X) dZ i

+

1

2

r∑

i, j=1

(
∇Ai

Aj f
)
(X) d[Z i, Z j].

Denoting the drift of the semimartingale Z by Zdrift, we obtain that X is a∇-martingale
if

(
A0 f

)
(X) dt +

r∑

i=1

(
Ai f

)
(X) d(Zdrift)i +

1

2

r∑

i, j=1

(
∇Ai

Aj f
)
(X) d[Z i, Z j] = 0

for any f ∈ C∞(M). In the special case when Z is a Brownian motion on Rr we find
that solutions X to the SDE (5.12) are ∇-martingales if

A0 = −
1

2

r∑

i=1

∇Ai
Ai .



130 Anton Thalmaier

Definition 5.16 (Riemannian quadratic variation). Let (M, g) = (M, 〈·, ·〉) be a
Riemannian manifold and X be a semimartingale taking values in M . The process

[X, X] :=

∫
g(dX, dX) =

∫
〈dX, dX〉 (5.13)

is called a Riemannian quadratic variation of X .

Theorem 5.17 (Lévy’s characterization of M-valued Brownian motions). Let (M, g)
be a Riemannianmanifold and∇ be the Levi-Civita connection. For a semimartingale

X of maximal lifetime and taking values in M , the following conditions are equivalent:

(i) X is a Brownian motion on (M, g), i.e., for any f ∈ C∞(M) the real-valued

process

f ◦ X −
1

2

∫
∆ f ◦ X dt

is a local martingale; here ∆ f = trace∇df ∈ C∞(M) denotes the Laplace–

Beltrami operator on M .

(ii) X is a ∇-martingale such that [ f (X), f (X)] =
∫
‖∇ f ‖2(X) dt for every f ∈

C∞(M).

(iii) X is a ∇-martingale such that
∫

b(dX, dX) =
∫
(trace b)(X) dt for every b ∈

Γ(T∗M ⊗ T∗M).

In particular, for the Riemannian quadratic variation (5.13) of X , we then have

∫ t

0

g(dX, dX) = t dim M .

Proof. (1) To prove (ii)⇐⇒ (iii) we verify that for X the following two conditions
are equivalent:

(a) [ f (X), f (X)] =
∫
‖∇ f ‖2(X) dt.

(b)
∫

b(dX, dX) =
∫
(trace b)(X) dt for every b ∈ Γ(T∗M ⊗ T∗M).

Indeed, for f , h ∈ C∞(M) we have

trace(df ⊗ dh) =
∑

i

(df ⊗ dh)(ei, ei) =
∑

i

(df )(ei) (dh)(ei)

=

∑

i

〈∇ f , ei〉 〈∇h, ei〉 = 〈∇ f ,∇h〉.
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The implication (b)⇒ (a) is then the special case that b = df ⊗ df . To verify the
direction (a)⇒ (b), first note that by polarization (a) implies

[ f (X), h(X)] =

∫
〈∇ f ◦ X,∇h ◦ X〉 dt

for f , h ∈ C∞(M). Thus [ f ◦ X, h ◦ X] =
∫
(df ⊗ dh)(dX, dX) =

∫
trace (df ⊗

dh)(X) dt. By means of the uniqueness part of Theorem 5.3, we get
∫

b(dX, dX) =

∫
(trace b)(X) dt

for any bilinear form b ∈ Γ(T∗M ⊗ T∗M).
(2) (iii)⇒ (i): Part (1) applied to the given ∇-martingale X shows that b(dX, dX)

= (trace b)(X) dt for bilinear forms b ∈ Γ(T∗M ⊗ T∗M); thus in particular for
b = ∇df ,

d( f ◦ X)
m
=

1
2
∇df (dX, dX) = 1

2
(∆ f )(X) dt.

(3) (i)⇒ (ii): Now let X be a Brownian motion on M . According to ∇df 2
=

2 ( f ∇df + df ⊗ df ) we first note that ∆( f 2) = 2 f ∆ f + 2 ‖∇ f ‖2, and thus

d( f 2 ◦ X)
m
=

1
2
(∆ f 2)(X) dt = ( f ∆ f )(X) dt + ‖∇ f ‖2(X) dt.

On the other hand, by means of Itô’s formula,

d( f 2 ◦ X) = 2 f (X) d( f ◦ X) + d[ f (X), f (X)]
m
= f (X) (∆ f )(X) dt + d[ f (X), f (X)].

Uniqueness of the Doob–Meyer decomposition implies

[ f (X), f (X)] =

∫
‖∇ f ‖2(X) dt.

Finally, once again by means of part (1), the last formula gives

∇df (dX, dX) = (trace∇df )(X) dt = (∆ f )(X) dt

from which we conclude that X is a ∇-martingale. �

On Rn with the canonical Euclidean metric, Brownian motions in the sense of
Lévy’s characterization coincidewith the usual class ofRn-valuedBrownianmotions.

Theorem 5.18 (M-valued Brownian motions as solutions of an SDE). Let (M, g) be
a Riemannian manifold and ∇ be the Levi-Civita connection on M . Consider the

SDE

dX = A0(X) dt + A(X) ◦ dB (5.14)

with A0 ∈ Γ(T M) and A ∈ Γ
(
Hom(M × Rr,T M)

)
; here B is a Brownian motion

on Rr . Then maximal solutions to (5.14) are Brownian motions on (M, g) if the two
subsequent conditions are satisfied:
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(i) A0 = −
1
2

∑
i ∇Ai

Ai with Ai ≡ A(·)ei for i = 1, . . . , r .

(ii) The map A(x)∗ : TxM → Rr is an isometric embedding for every x ∈ M , i.e.,

A(x) A(x)∗ = idTxM , where A(x)∗ is the adjoint to A(x) ∈ Hom(Rr,TxM).

Proof. Let X be a solution to Eq. (5.14) and assume that conditions (i) and (ii) are
satisfied. According to Remark 5.15 condition (i) guarantees that X is a∇-martingale.
In addition, we have for f ∈ C∞(M),

d( f ◦ X)
m
=

1

2

r∑

i=1

(∇df )(Ai, Ai)(X) dt .

It is thus sufficient to verify that
∑

i

(∇df )(Ai, Ai) = ∆ f .

This is however a straightforward consequence of condition (ii). �

Remark 5.19. Conditions (i) and (ii) of Theorem 5.18 can always be satisfied for r

sufficiently large. For instance, let M ֒→ Rr be a Whitney embedding. Then TxM

can be seen as a subspace Rr for each x ∈ M . Defining A ∈ Γ(Hom(M × Rr,T M))

fiberwise as an orthogonal projection A(x) : Rr → TxM onto TxM and setting
A0 = − 1

2

∑
i ∇Ai

Ai , then every solution to the SDE (5.14) (with a given initial
condition) is a Brownian motion on (M, g). The drawback of this construction is that
to a given Riemannianmanifold (M, g) there is no canonical choice of the coefficients
A0 and A; there is however a canonical SDE on the orthonormal frame bundleO(T M)

over M such that its solutions project to Brownian motions on (M, g). We deal with
this construction in the next subsection.

Theorem 5.20 (Brownian motions on submanifolds of Rn). Let M be a submanifold

of Rn endowed with the induced Riemannian metric. Consider the SDE

dX = A(X) ◦ dB, (5.15)

where B is a Brownian motion on Rn and

A ∈ Γ(Hom(M × Rn,T M)), (x, v) 7→ A(x)v,

such that A(x) : Rn → TxM is the orthogonal projection onto TxM . Then every

solution of (5.15), for some specified initial condition, gives a Brownian motion on
(M, g).

Proof. In terms of the vector fields Ai ≡ A(·)ei ∈ Γ(T M), i = 1, . . . , n, it is sufficient
by Theorem 5.18 to verify that

∑
i ∇Ai

Ai = 0. This is however a straightforward
calculation. �
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5.3 Parallel transport and stochastically moving frames. The fundamen-
tal observation that diffusion processes on a manifold M can be horizontally lifted
via a connection to the frame bundle over M goes back to the pioneering work of
Malliavin, Eells, and Elworthy. Conversely, solving SDEs on the frame bundle and
projecting the solution down to the manifold M allows canonical constructions of
diffusion processes on M .

Intuitively this procedure corresponds to a “rolling without slipping” of the man-
ifold along the trajectories of a continuous Rn-valued semimartingale. It allows us to
construct, for each semimartingale inTxM , its stochastic development on M , together
with a notion of parallel transport along the paths of the obtained process. Clearly this
method requires a connection on M . The problem that in sub-Riemannian geometry,
typically only “partial connections” are canonically given, will be addressed in the
next subsection.

Notation 5.21. Let M be an n-dimensional differentiable manifold and denote by
P = L(T M) its frame bundle. Then π : P → M is a G-principal bundle with
G = GL(n;R). The fiber Px consists of the linear isomorphisms u : Rn → TxM

where u ∈ Px is identified with the R-basis

(u1, . . . , un) := (ue1, . . . , uen).

A linear connection in T M induces canonically a G-connection in P given as a G-
invariant differentiable splitting h of the following exact sequence of vector bundles
over P:

0 ker dπ T P π∗T M 0.
dπ

h

This splitting induces a decomposition of T P:

T P = V ⊕ H := ker dπ ⊕ h(π∗T M).

G-invariance of the splitting means that Hug=(dRg)Hu for each u ∈ P, where Rgu :=

u g denotes the right action of g∈G. For u∈P, we call Hu the horizontal space at u

and Vu={v∈TuP : (dπ)v = 0} the vertical space at u. The bundle isomorphism

h : π∗T M ∼−→ H ֒→ TP (5.16)

is called the horizontal lift of theG-connection; fiberwise it reads hu : Tπ(u)M
∼−→Hu .
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By means of theG-connection in P each vector field X ∈ Γ(T P) decomposes into
a horizontal and a vertical part:

X = hor X + vert X .

Definition 5.22 (Connection form). Each u ∈ P defines an embedding Iu : G ֒→ P,
g 7→ ug. Its differential at the unit element e ∈ G,

ιu ≡ (dIu)e : TeG → TuP, A 7−→ Â(u) , (5.17)

gives an identification κu : g ∼−→ Vu of the Lie algebra g = TeG ofG with the vertical
fiber Vu at u. The vertical vector field Â ∈ Γ(TP) on P defined by (5.17) is called the
standard-vertical vector field to A ∈ g. The g-valued 1-form ω ∈ Γ(T∗P ⊗ g) on P,
defined by

ωu(Xu) := κ−1
u (vert X)u, X ∈ Γ(TP), (5.18)

is called the connection form of the G-connection.

Note that for the frame bundle π : L(T M) → M over M we have g = GL(n;R).
In the case that M is a Riemannian manifold it is natural to consider the orthonormal
frame bundle π : O(T M) → M over M with structure group G = O(n;R). The fiber
Px then consists of the linear isometries u : Rn → TxM . As above ametric connection
on T M then gives rise to a G-invariant splitting TP = V ⊕ H. The connection form
then takes its values in the Lie algebra g of skew symmetric n × n matrices.

In the sequel we deal with the two cases ofG-principal bundles: P = L(T M) over
a manifold M with G = GL(n;R) and P = O(T M) over a Riemannian manifold M

with G = O(n;R). In addition to the g-valued connection form (see Definition 5.22)
we have the canonical 1-form

ϑ ∈ Γ(T∗P ⊗ Rn), ϑu(Xu) := u−1(dπXu), u ∈ P and X ∈ Γ(T P), (5.19)

where as usual we read u ∈ P as a linear isomorphism (resp. isometry), u : Rn ∼−→

Tπ(u)M .

Remark 5.23. The frame bundles P = L(T M) with M a manifold (resp. P = O(T M)

with M a Riemannian manifold), considered as manifolds, are parallelizable, i.e., the
tangent bundles T L(T M) → L(T M) and T O(T M) → O(T M) are trivial.

Proof. Indeed a G-connection in P decomposes TP = V ⊕ H. A canonical trivi-
alization for TP is given as follows: the vertical subbundle V is trivialized by the
standard-vertical vector fields Â to A, where A runs through a basis of g; the hori-
zontal subbundle H is trivialized by the standard-horizontal vector fields L1, . . . , Ln

in Γ(TP) defined by
Li(u) := hu(uei).
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For any u ∈ P, then

(Â(u), Li(u) : A ∈ basis for g, i = 1, . . . , n)

is a basis for TuP = Vu ⊕ Hu which is obvious from the isomorphisms g ∼−→ Vu ,
A 7→ Â(u), and hu : Tπ(u)M

∼−→ Hu . �

Remark 5.24. The standard-vertical (resp., standard-horizontal) vector fields are
determined by the relations

ϑ(Â) = 0 and ϑ(Li) = ei (resp. ω(Â) = A and ω(Li) = 0).

The canonical second-order partial differential operator ∆hor :=
∑

i L2
i
is called the

horizontal Laplacian on L(T M) (resp. O(T M)).

Definition 5.25 (Horizontal lift of an M-valued semimartingale). For any P-valued
semimartingale U the Stratonovich integral

∫
U
ω (defined componentwise with re-

spect to a basis of g) gives a semimartingale taking values in the Lie algebra g. We
call U horizontal if

∫
U
ω = 0 a.s. For an M-valued semimartingale X , a semimartin-

gale U taking values in P is called the horizontal lift of X , if U is horizontal and if
π ◦U = X a.s.

Remark 5.26. Definition 5.25 generalizes the classical notion of horizontal lift for
M-valued differentiable curves: a curve t 7→ u(t) over t 7→ x(t)is called horizontal if
π ◦ u = x and ω( Ûu) = 0.

For the remainder of this subsection we deal with the following situation: either
M will be a differentiable manifold equipped with a torsion-free connection, or M

will be a Riemannian manifold equipped with the Levi-Civita connection.

Definition 5.27 (Anti-development of an M-valued semimartingale). Let X be an
M-valued semimartingale and U a horizontal lift of X taking values in P = L(T M)

(resp. O(T M)). The Rn-valued semimartingale

Z =

∫

U

ϑ ≡

∫
ϑ(◦dU)

is called the anti-development of X into Rn (with respect to the initial frame U0). In
terms of the standard basis of Rn we have Z ≡ (Z1, . . . , Zn) where Z i

=

∫
U
ϑi .

Theorem 5.28. Let X be an M-valued semimartingale, U a horizontal lift of X to

P = L(T M) (resp. O(T M)), and Z an anti-development of X into Rn. The following

statements hold:

(i)
∫
U
σ =

∑n
i=1

∫
σ(U) Li(U) ◦ dZ i for each differential form σ ∈ Γ(T∗P).
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(ii)
∫
X
α =

∑n
i=1

∫
α(X)Uei ◦ dZ i for each differential form α ∈ Γ(T∗M).

In particular, d( f ◦U)=
∑n

i=1(Li f )(U) ◦ dZ i for each function f ∈C∞(P), or in short,

dU =

n∑

i=1

Li(U) ◦ dZ i, (5.20)

as well as d( f ◦ X)=
∑n

i=1(Uei)( f ) ◦ dZ i for each function f ∈C∞(M), or in short,

dX = U ◦ dZ . (5.21)

Proof. The additional claims follow from (i) and (ii) with σ = df where f ∈ C∞(P)

(resp. α = df where f ∈ C∞(M)).
To (i): According to Theorem 5.7 it is sufficient that the right-hand side of

(i) has the defining properties of
∫
U
σ. For f ∈ C∞(P) we have to show that

d( f ◦U) =
∑

i(df )(U) Li(U) ◦ dZ i ≡
∑

i(Li f )(U) ◦ dZ i , which is equivalent to

f ◦U − f ◦U0 =

∫

U

σ, where σ ∈ Γ(T∗P), σu :=
∑

i

(Li f )(u) ϑiu . (5.22)

But we observe that
∑

i(Li f )(u) ϑiu = (df )u ◦ prHu
; indeed for A ∈ TuP we have

∑

i

(Li f )(u) ϑiu(A) =
∑

i

(df )u Li(u) ϑ
i
u(A)

=

∑

i

(df )u hu(uei)
(
u−1(dπ)uA

) i

= (df )u hu(u u−1(dπ)uA)

= (df )u hu
(
(dπ)uA

)

=

(
(df )u ◦ prHu

)
(A).

On the other side, we have (df ◦ prV )u = (df )u κu ωu = d( f ◦ Iu)e ωu . But U is
horizontal and hence

∫
U

df ◦ prV = 0 which shows that

f ◦U − f ◦U0 =

∫

U

df =

∫

U

df ◦ prH +

∫

U

df ◦ prV =

∫

U

df ◦ prH =

∫

U

σ.

The second defining property of the Stratonovich integral is obvious.
To (ii): It is sufficient to show that

d( f ◦ X) =
∑

i

(df )(X)Uei ◦ dZ i ≡
∑

i

(Uei)( f ) ◦ dZ i
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holds for each function f ∈ C∞(M). With part (i), using that (dπ)u Li(u) = uei , we
obtain

d( f ◦ π ◦U) =
∑

i

d( f ◦ π)(U) Li(U) ◦ dZ i

=

∑

i

(df )
(
π(U)

)
(dπ)(U) Li(U) ◦ dZ i

=

∑

i

(df )(X)Uei ◦ dZ i ,

which shows the claim. �

Theorem 5.29. Let X be an M-valued semimartingale, U a horizontal lift of X to

P = L(T M) (resp. O(T M)), and Z an anti-development of X into Rn. Then

(i)
∫

a(dU, dU) =
∑n

i, j=1

∫
a(U)

(
Li(U), Lj(U)

)
d[Z i, Z j] for a ∈ Γ(T∗P ⊗ T∗P);

(ii)
∫

b(dX, dX) =
∑n

i, j=1

∫
b(X)

(
Uei,Ue j

)
d[Z i, Z j] for b ∈ Γ(T∗M ⊗ T∗M).

Proof. It is again sufficient to consider the special case a = dϕ1 ⊗ dϕ2 where
ϕ1, ϕ2 ∈ C∞(P) (resp. b = df1 ⊗ df2 where f1, f2 ∈ C∞(M)). Then the statements
follow from Remark 5.11. �

Theorem 5.30 (Existence of horizontal lifts to M-valued semimartingales). Let P

be a G-principal bundle over a manifold M endowed with a G-connection. Let

x0 be an M-valued random variable and u0 a P-valued random variable over x0,

i.e., π ◦ u0 = x0 a.s. Then to each M-valued semimartingale X with X0 = x0 there is

exactly one horizontal lift U to P with U0 = u0 a.s.

Proof. See [53] or [24, Chapter 7]. The existence part is straightforward. Accord-
ing to Theorem 3.22, the semimartingale X can be realized as the solution of a
Stratonovich SDE of the form

dX =

ℓ∑

i=1

Ai(X) ◦ dZ i, X0 = x0, (5.23)

where Z is anRℓ-valued semimartingale for some ℓ. Let Ai ∈ Γ(T P) be the horizontal
lift of Ai ∈ Γ(T M), i.e., Ai(u) = hu(Ai(πu)) for u ∈ P, and consider the “horizontally
lifted SDE” on P:

dU =

ℓ∑

i=1

Ai(U) ◦ dZ i, U0 = u0. (5.24)

It is clear that solutions to (5.24) are canonical candidates for the wanted horizontal
lift. Indeed, we have d(π ◦ U) =

∑
i(dπ)U Ai(U) ◦ dZ i ≡

∑
i Ai(π ◦ U) ◦ dZ i with

π ◦U0 = x0, and hence π ◦U = X by the uniqueness of solutions to (5.23). On the
other hand, we have

∫
U
ω =

∑
i

∫
ω(U) Ai(U) ◦ dZ i

= 0. It remains to verify that U

and X have identical lifetimes. �
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We want to summarize the theory developed so far. Let M be a differentiable
manifold equipped with a torsion-free connection, or a Riemannian manifold with the
Levi-Civita connection. For a semimartingale X on M we defined its horizontal lift
U to P = L(T M) (resp. O(T M)), and its anti-development Z into Rn. Then (modulo
choice of initial conditions X0 = x, U0 = u) each of the three processes X , U, Z

determines the two others.
Indeed, we have

(a) Z determinesU as the solution to the SDE dU =
∑n

i=1 Li(U) ◦ dZ i withU0 = u;

(b) U determines X via X = π ◦U;

(c) X determines Z as Z =
∫
U
ϑ whereU is the unique horizontal lift of X to P with

U0 = u.

Typically, one starts with Z on Rn to determine X on M (the stochastic development
of Z). The frame U moves along X by parallel transport.
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In the deterministic special case of a differentiable curve Z : t 7→ z(t) in Rn,
stochastic development reduces to the canonical Cartan development of z(t).

Example 5.31 (Cartan development). The Cartan development of an Rn-valued
curve t 7→ z(t) is the construction of curves x : t 7→ x(t) ∈ M and u : t 7→ u(t) ∈ P

(where P = L(T M), resp. P = O(T M) in the Riemannian case) such that u(·) lies
above x(·) and such that

(i) Ûx = u Ûz, or in equivalent notation dx(t) = u(t) dz(t);

(ii) u is parallel along x, i.e., ∇Du ≡ (∇Du1, . . . ,∇Dun) = 0, where D = ∂/∂t.

Condition (ii) means that u(·) is a horizontal curve; thus Ûu ∈ Hu ≡ hu(Tπ(u)M),
and hence Ûu = hu( Ûx) = hu(u Ûz) by using (i). Since hu(u Ûz) =

∑
i hu(uei) Ûz

i
=∑

i Li(u) Ûz
i , conditions (i) and (ii) are seen to be equivalent to

du =
∑

i

Li(u) dzi .

Definition 5.32 (Parallel transport along a semimartingale). Let M be a differentiable
manifold equipped with a torsion-free connection, or a Riemannian manifold with
the Levi-Civita connection. Let X be a semimartingale on M and U an arbitrary
horizontal lift of X to L(T M) (resp. O(T M)). For 0 ≤ s ≤ t, let //s,t := Ut ◦U−1

s be
given by

TXs
M TXt

M

Rn.

∼

Us Ut

The isomorphisms (resp. isometries in the Riemannian case)

//0,t : TX0
M → TXt

M

are called the stochastic parallel transport along X .

Theorem 5.33 (Geometric Itô formula). Let M be a differentiable manifold equipped

with a linear connection∇ (without restriction∇ torsion-free). Let X be an M-valued

semimartingale, U a horizontal lift of X to L(T M), and Z =
∫
U
ϑ the corresponding

anti-development of X into Rn. For each f ∈ C∞(M) the following formula holds:

d( f ◦ X) =

n∑

i=1

(df )(X) (Uei) dZ i
+

1

2

n∑

i, j=1

(
∇df

)
(X) (Uei,Ue j) d[Z i, Z j], (5.25)
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or in abbreviated form (see Theorem 5.29),

d( f ◦ X) = (df )(U dZ) +
1

2
∇df (dX, dX). (5.26)

Proof. From dU =
∑

i Li(U) ◦ dZ i we first see that

d( f ◦ X) = d( f ◦ π ◦U) =
∑

i

Li( f ◦ π)(U) ◦ dZ i

=

∑

i

Li( f ◦ π)(U) dZ i
+

1

2

∑

i, j

LiLj( f ◦ π)(U) d[Z i, Z j],

where Li( f ◦ π)(u) = d( f ◦ π)uLi(u) = (df )π(u)(dπ)uhu(uei) = (df )π(u)(uei). A
straightforward calculation, however, shows that

LiLj( f ◦ π)(u) = ∇df (uei, ue j),

from where formula (5.25) results. �

Remark 5.34. Let M be a Riemannian manifold with its Levi-Civita connection.
Denoting by ∆hor =

∑
i L2

i
the horizontal Laplacian onO(T M) and by ∆ the Laplace–

Beltrami operator on M , then for each f ∈ C∞(M) the following relation holds:

∆hor( f ◦ π) = (∆ f ) ◦ π.

Proof. Indeed, for u ∈ O(T M), we have
∑

i

L 2
i ( f ◦ π)(u) =

∑

i

∇df (uei, uei) = (trace∇df )π(u) = (∆ f ) ◦ π(u). �

Theorem5.35. Let M be a differentiablemanifold equippedwith a torsion-free linear

connection ∇. Let X be an M-valued semimartingale and U0 an L(T M)-valued F0-

measurable random variable such that π ◦ U0 = X0 a.s.; furthermore let Z =
∫
U
ϑ

be the anti-development of X into Rn with respect to the initial frame U0.

(i) Then X is a ∇-martingale on M if and only if Z is a local martingale on Rn.

(ii) If ∇ is the Levi-Civita connection to some Riemannian metric g on M and if

U0 takes its values in O(T M), then X is a Brownian motion on (M, g) if and
only if Z is a Brownian motion on Rn (more precisely, a Brownian motion on

Rn stopped at the lifetime ζ of X).

Proof. (i) According to Definition 5.13, X is a ∇-martingale if

d( f ◦ X) − 1
2
(∇df )(dX, dX)

m
= 0,
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for functions f ∈ C∞(M). By means of the geometric Itô formula (Theorem 5.33)
this means that ∑

i

(df )(X) (Uei) dZ i m
= 0

for any f ∈ C∞(M), which is easily seen to be equivalent to the condition that Z is a
local martingale.

(ii) According to Theorem 5.17, X is a Brownian motion on (M, g) if

d( f ◦ X) − 1
2
(∆ f ◦ X) dt

m
= 0,

for all f ∈ C∞(M). According to formula (5.25), clearly if Z is a Brownian motion
Rn, then X will be a Brownian motion on (M, g). Conversely, if X is a Brownian
motion on (M, g), then by Lévy’s characterization of M-valued Brownian motions
(Theorem 5.17), X is a ∇-martingale, and thus Z a local martingale by part (i). On
the other hand, we have Z i

=

∫
U
ϑi , where ϑ i

u = 〈dπ( · ), uei〉 = π
∗〈·, uei〉. We may

calculate the quadratic variation of Z using Remark 5.11 as follows:

d[Z i, Z j] = d
[∫
U
ϑi,

∫
U
ϑ j

]
= (ϑi ⊗ ϑ j) (dU, dU)

= π∗
(
〈·,Uei〉 ⊗ 〈·,Ue j〉

)
(dU, dU)

=

(
〈·,Uei〉 ⊗ 〈·,Ue j〉

)
(dX, dX)

= trace
(
〈·,Uei〉 ⊗ 〈·,Ue j〉

)
(X) dt = δi j dt.

By means of Lévy’s characterization for Brownian motions on Rn we see that Z is a
Brownian motion. �

Theorem 5.35 provides a canonical construction of Brownian motions on Rie-
mannian manifolds. One obtains Brownian motions on (M, g) with starting point
x ∈ M as a stochastic development of a Brownian motion B on Rn as follows.
Choose u ∈ O(T M) such that π(u) = x and solve the SDE

dU =

n∑

i=1

Li(U) ◦ dBi, U0 = u.

According to Theorem 5.35, then X = π ◦ U will be a Brownian motion on (M, g)
starting from X0 = x.

Remark 5.36. Let X be an M-valued semimartingale with starting point x ∈ M . The
anti-development Z of X into Rn (see Definition 5.27) required the choice of a frame
u above x,

Z =

∫

U

ϑ, U0 = u.



142 Anton Thalmaier

Considering the anti-development of X into TxM , i.e.,

Z ′
= U0

∫

U

ϑ,

makes the notion intrinsic. Then we have the formula

dZ ′
= U0U−1

t ◦ dX = //−1
0,t ◦dX .

5.4 Subelliptic diffusions and sub-Riemannian Brownian motions. In
this subsection we want to adapt the results developed so far from the Riemannian to
the sub-Riemannian setting.

A sub-Riemannian structure on a differentiable manifold M is a pair (H, g), where
H is a subbundle of T M and g is a positive-definite metric tensor defined only onH.
Any sub-Riemannian structure induces a vector bundle morphism

♯ : T∗M → T M,

determined by the properties ♯(T∗M) = H and q(v) = g(v, ♯q) for any q ∈ T∗M

and v ∈ H. The kernel of ♯ is the subbundle Ann(H) ⊆ T∗M of elements of T∗M

vanishing onH. Then the so-called co-metric g∗ on T∗M , defined by

g
∗(q1, q2) = q1(♯q2), q1, q2 ∈ T∗

x M, x ∈ M,

degenerates along Ann(H). It is obvious that sub-Riemannian structures on M and
co-metrics degenerating along a subbundle of T∗M are equivalent structures.

Definition 5.37. Let (H, g) be a sub-Riemannian structure on M . A continuous
semimartingale X taking values in M is called horizontal, or a sub-Riemannian

diffusion, if ∫
α( ◦ dX) = 0, for all α ∈ Γ(Ann(H)).

Here
∫
α( ◦ dX) ≡

∫
X
α denotes the Stratonovich integral of α along X .

Remark 5.38. Note that if X is a horizontal semimartingale then
∫
X
β is well defined

for β ∈ Γ(H∗). The same holds true for
∫

b(dX, dX) if b ∈ Γ(H∗ ⊗H∗) is a bilinear
form onH∗. In particular, the sub-Riemannian quadratic variation of X ,

[X, X] =

∫
g(dX, dX), (5.27)

is well defined.
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As we saw in Theorem 3.22, a continuous semimartingale X taking values in M

can always be obtained as the solution of an SDE of the type dX =
∑

i Ai(X) ◦ dZ i .
Then obviously X is horizontal if the vector fields Ai are horizontal in the sense that
Ai ∈ Γ(H).

To define horizontal martingales in the sub-Riemannian setting we need to specify
a connection ∇. To this end it is enough to have a so-called partial connection onH
(see [32] and [20, Section 2]),

Γ(H) × Γ(H) → Γ(H), (A, B) 7→ ∇AB,

and correspondingly the partial Hessian of a function f ∈ C∞(M),

∇df ≡ Hess f ∈ Γ(H∗ ⊗H
∗), (∇df )(A, B) = AB f − (∇AB) f , f ∈ C∞(M).

Definition 5.39. Let (H, g) be a sub-Riemannian structure on M and ∇ a partial
connection on H. A continuous semimartingale X taking values in M is called a
horizontal martingale if H is horizontal and for any f ∈ C∞(M),

d( f ◦ X) − 1
2
(∇df )(dX, dX)

m
= 0.

Remark 5.40. (a) Often partial connections are induced from (full) connections ∇̃
on M in terms of a projection p : T M → H as

∇AB = p(∇̃AB), A, B ∈ Γ(H).

For instance, one may extend the metric g from H to a full Riemannian metric
g̃ on T M (this is a common procedure in the case of sub-Riemannian structures
related to Riemannian foliations); then

∇AB = prH(∇̃AB), A, B ∈ Γ(H) (5.28)

(where ∇̃ is the Levi-Civita connection to g̃ on M and prH is the orthogonal
projection of T M ontoH) defines a partial connection onH which is, moreover,
metric, i.e., ∇Ag = 0, for all A ∈ Γ(H). Note that (5.28) is the horizontal part of
the so-called Bott connection on M; see [57, Chapter 5].

(b) More generally, it is straightforward to show the following result. Given a
projection p : T M → H, there exists a unique partial connection on H which is
metric and has the property

∇AB − ∇BA − p[A, B] = 0.

This is actually the connection in (5.28) defined relative to any Riemannian
metric g̃ such that p is the orthogonal projection.
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Theorem 5.17 is now easily adapted to the sub-Riemannian setting. Given a
partial connection ∇ onHwhich is metric (i.e., ∇Ag = 0, for all A ∈ Γ(H)) we define
the sub-Laplacian ∆H relative to (H, g,∇) as

∆H f = traceH∇df , f ∈ C∞(M).

If the partial connection ∇ is as in Remark 5.40(b), then ∆H coincides with the
sub-Laplacian relative to the complement V = ker p as defined in [21, Section 2.2].

Theorem5.41 (Lévy’s characterization of sub-RiemannianBrownianmotions onM).
Let (H, g) be a sub-Riemannian structure on M and ∇ a partial metric connection

on H. For a horizontal semimartingale X of maximal lifetime on M the following

conditions are equivalent:

(i) X is a sub-Riemannian Brownian motion on M , i.e., for any f ∈ C∞(M), the

real-valued process

f ◦ X −
1

2

∫
(∆H f ) ◦ X dt

is a local martingale.

(ii) X is a ∇-martingale such that [ f (X), f (X)] =
∫
g
∗(df , df )(Xt ) dt for every

f ∈ C∞(M).

(iii) X is a ∇-martingale such that
∫

b(dX, dX) =
∫
(traceH b)(X) dt for every

b ∈ Γ(H∗ ⊗H∗).

In particular, for the sub-Riemannian quadratic variation (5.27) of X , we then have

∫ t

0

g(dX, dX) = t dimH.

Analogously to Theorem 5.18, we can construct sub-Riemannian Brownian mo-
tions on M as solutions to SDEs.

Theorem 5.42 (Sub-Riemannian Brownian motions as solutions of an SDE on M).
Let (H, g) be a sub-Riemannian structure on M and ∇ a partial metric connection

onH. Consider an SDE of the type

dX = A0(X) dt + A(X) ◦ dB (5.29)

with A0 ∈ Γ(H) and A ∈ Γ
(
Hom(M × Rr,H)

)
; the driving process B is a Brownian

motion on Rr (for some r).

Then maximal solutions to (5.29) are sub-Riemannian Brownian motions M if the

two following conditions are satisfied:
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(i) A0 = −
1
2

∑
i ∇Ai

Ai with Ai ≡ A(·)ei for i = 1, . . . , r .

(ii) The map A(x)∗ : Hx → Rr is an isometric embedding for every x ∈ M ,

i.e., A(x) A(x)∗ = id
Hx

, where A(x)∗ is the adjoint to A(x) ∈ Hom(Rr,Hx).

The problem of defining sub-Riemannian Brownian motions and corresponding
random walk approximations has recently been addressed in [15].

The results of Section 5.3 easily carry over to the case of horizontal martingales
and sub-Riemannian Brownian motions. Instead of L(T M) (resp. O(T M)), we work
with the G-principal bundle P = L(H) of frames inH (resp. P = O(H) of orthonor-
mal frames inH), where now G = GL(k;R) (resp. G = O(k;R)), and k = dimH. In
other words,

Px =
{
u : Rk → Hx | u linear isomorphisms (resp. u linear isometry)

}
, x ∈ M .

A partial connection ∇ onH (resp. a metric partial connection ∇ onH), now induces
a G-invariant subbundle H ⊂ T P such that

π∗ : Hu
∼−→ Hπ(u),

where π is the projection P → M . In terms of the horizontal lift of thisG-connection,

h : π∗H ∼−→ H ֒→ TP,

we have the standard-horizontal vector fields

Li ∈ Γ(T P), Li(u) = hu(uei), u ∈ P, i = 1, . . . , k .

The g-valued connection form ω and the Rk-valued canonical 1-form ϑ are defined
as in the Riemannian case, but for a partial connection they are given only on H ⊕ V

with V = ker dπ, and no longer globally on T P; in other words,

ω ∈ Γ((H∗ ⊕ V∗) ⊗ g) and ϑ ∈ Γ((H∗ ⊕ V∗) ⊗ Rk).

One can now define stochastic developments of Rk-valued semimartingales ac-
cording to

dU =

k∑

i=1

Li(U) ◦ dZ i, U0 = u,

X = π(U),

aswe did in Section 5.3. The resulting processes X will be horizontal semimartingales
on M . Horizontal lifts of such semimartingales X to P = L(H) can be established as
in the Riemannian case, for instance, by representing X as the solution to an SDE on
M with vector fields Ai ∈ Γ(H) and solving the “horizontally lifted” SDE on P (see
the proof of Theorem 5.30).
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Theorem 5.43 (Geometric Itô formula for horizontal diffusions). Let (H, g) be a sub-
Riemannian structure on M and ∇ a partial connection onH. Let X be an M-valued

horizontal semimartingale, U a horizontal lift of X to P = L(H) and Z =
∫
U
ϑ the

corresponding anti-development of X into Rk . For each f ∈ C∞(M) the following

formula holds:

d( f ◦ X) =

k∑

i=1

(df )(X) (Uei) dZ i
+

1

2

k∑

i, j=1

(
∇df

)
(X) (Uei,Ue j) d[Z i, Z j], (5.30)

or in abbreviated form,

d( f ◦ X) = (df )(U dZ) + 1
2
∇df (dX, dX). (5.31)

This finally gives the following sub-Riemannian version of Theorem 5.35.

Theorem 5.44. Let (H, g) be a sub-Riemannian structure on M and ∇ a partial

connection onH. Let X be an M-valued horizontal semimartingale andU0 an L(H)-
valued F0-measurable random variable such that π ◦U0 = X0 a.s.; furthermore, let

Z =
∫
U
ϑ be the anti-development of X into Rk with respect to the initial frame U0.

(i) Then X is a ∇-martingale on M if and only if Z is a local martingale on Rk .

(ii) If ∇ is a metric partial connection onH and ifU0 takes its values inO(H), then
X is a sub-Riemannian Brownian motion on M if and only if Z is a Brownian

motion on Rk (more precisely, a Brownian motion on Rk stopped at the lifetime

ζ of X).

Following Remark 5.36 we have the following remark.

Remark 5.45. Let∇ be a partial connection onH and let be X an M-valued horizontal
semimartingale with starting point x ∈ M . Let Z be the anti-development of X into
Hx ,

Z =

∫
//−1

0,t ◦dX .

(a) Then X is a ∇-martingale on M if and only if its anti-development Z intoHx is
a local martingale onHx .

(b) If ∇ is a metric partial connection on H, then X is a sub-Riemannian Brownian
motion on M if and only if its anti-development Z intoHx is a Brownian motion
onHx .

Here //
0,t

: HX0

∼−→ HXt
denotes the stochastic parallel transport of horizontal

tangent vectors along X . Recall that the //
0,t

are linear isomorphisms for a partial
connection, and isometries for a metric partial connection.
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6 Control theory and support theorems

6.1 Control systems. Consider a Stratonovich SDE on M of the type

dX = A0(X)dt +

r∑

i=1

Ai(X) ◦ dBi, (6.1)

driven by a Brownian motion B = (B1, . . . , Br ) on Rr .

Definition 6.1. Solutions X to SDE (6.1) are called hypoelliptic diffusions if the
vector fields A1, . . . , Ar are bracket generating in the sense that

dim Lie(A1, . . . , Ar )(x) = dim M, for all x ∈ M . (6.2)

To the SDE (6.1) we associate the control system

Ûx(t) = A0(x(t)) +

r∑

i=1

Ai(x(t))u
i(t), (6.3)

where the control u = u(·) lies in

U = {u : R+ → R
r piecewise constant}; (6.4)

see for instance [56]. In the space U of controls we could have equally taken u

piecewise smooth or piecewise continuous with values in Rr .
We denote by

• Xt (x) the solution to SDE (6.1) with starting point X0 = x; and by

• φt (x, u) the solution to the control system (6.3) with initial condition x(0) = x

and u = u(·) ∈ U .

For simplicity, in the remainder of Section 6, all vector fields of the form

A0 +

r∑

i=1

Aiu
i, u ∈ Rr fixed (“frozen vector fields”)

are assumed to be complete.
We consider the following orbits:

O+(x) := {y ∈ M : y = φt (x, u), t ≥ 0, u = u(·) ∈ U } “forward orbit”,

O+t (x) := {y ∈ M : y = φt (x, u), u = u(·) ∈ U } “forward orbit at time t”.
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We call the control system (6.3)

• completely controllable if O+(x) = M for each x ∈ M;

• strongly controllable if O+t (x) = M for each t > 0 and each x ∈ M;

• completely accessible if O+(x) has nonvoid interior for each x ∈ M;

• strongly accessible if O+t (x) has nonvoid interior for each t > 0 and each
x ∈ M .

Remark 6.2. Geometric control theory characterizes properties of control problems
in terms of Lie-algebra conditions on the vector fields A0, . . . , Ar . For example, for
system (6.3),

(1) complete accessibility holds if dim Lie(A0, A1, . . . , Ar )(x) = dim M for each
x ∈ M;

(2) strong accessibility holds if dim Lie
(
A0 +

∂
∂t
, A1, . . . , Ar

)
(t, x) = dim M + 1 for

each t > 0 and x ∈ M;

(3) strong controllability holds if dim Lie(A1, . . . , Ar ) = dim M for each x ∈ M .

See for instance [2, 16, 31].

6.2 Support theorems. The famous support theorem of Stroock–Varadhan
(1972) establishes a bridge between the theory of SDEs and control theory, more
precisely, between Eq. (6.1) and Eq. (6.3).

Induced by X.(x) : Ω −→ C(R+,M), we have the following measures:

Px := P ◦ X.(x)
−1 probability measure on Cx(R+,M);

Pt,x := P ◦ Xt (x)
−1 probability measure on M .

Here Cx(R+,M) denotes the space of continuous trajectories R+ → M starting from
x at time 0.

Theorem 6.3 (Support theorem; Stroock–Varadhan [55]). For the supports of the
probability measures Px (resp. Pt,x), the following properties hold:

(I) Path space: On Cx(R+,M) we have

suppPx =
{
φ.(x, u) : u ∈ U

}
.
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(II) State space: On M we have

suppPt,x = O+t (x),

supp Gλ(x, ·) = O+(x),

where

Gλ(x, ·) =

∫ ∞

0

e−λtPt,x(·) dt, λ > 0

denotes Green’s measure with exponent λ on M .

Proof. The support theorem is proved by approximating the drivingBrownianmotion
B through its piecewise linear polygonal approximation

Bπ
t = (ti+1 − ti)

−1
[
(ti+1 − t)Bti + (t − ti)Bti+1

]
, ti ≤ t ≤ ti+1,

for partitions
π : 0 = t0 < t1 < t2 < · · · .

See Stroock–Varadhan [55], Kunita [33], and Ichihara–Kunita [28, 29] for technical
details. �

Corollary 6.4. Suppose that the vector fields A1, . . . , Ar are bracket generating in

the sense that condition (6.2) holds. Then

suppPx = Cx(R+,M) and suppPt,x = M .

Proof. See Remark 6.2 above, as well as Stroock–Varadhan [55]. �

Remark 6.5. For stochastic representations of solutions to classical boundary value
problems on a relatively compact open domain D related to the Hörmander-type
operator

L = A0 +
1

2

r∑

i=1

A2
i

(see Sections 4.2 and 2.3) the following “finite exit time condition” has been crucial.

(a) Finite exit time condition. For each x ∈ D, the solution Xt to SDE (6.1) with
starting point X0 = x exits D in finite time almost surely.

In terms of the associated control system, a sufficient condition for (a) to hold is given
by the following escape condition.

(b) The domain D is said to satisfy the escape condition if, for each x ∈ D, there
is a control u = u(·) ∈ U such that the path t 7→ φt (x, u) in Cx(R+,M) escapes
from D̄ (i.e., there exists a T > 0 such that φT (x, u) < D̄).

The proof that the escape condition implies the finite exit time condition proceeds
along the lines of the support theorem; see [54].
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7 Stochastic flows of diffeomorphisms

We consider again an SDE on M of the type

dX = A(X) ◦ dZ, (7.1)

where Z = (t, B1, . . . , Br ) with B = (B1, . . . , Br ) a Brownian motion on Rr . In
equivalent form, Eq. (7.1) can be written as

dX = A0(X) dt +

r∑

i=1

Ai(X) ◦ dBi, (7.2)

where the vector fields Ai = A(·)ei ∈ Γ(T M) are taken with respect to the standard
basis (e0, e1, . . . , er ) of Rr+1.

Let (Xt (·), ζ(·)) be the partial flow to

L = A0 +
1

2

r∑

i=1

A2
i ,

in the sense that for each x ∈ M , the process Xt (x) has maximal lifetime ζ(x) and
solves SDE (7.1). For t ≥ 0 fixed, we then have the random set

Mt (ω) = {x ∈ M : t < ζ(x)(ω)}, ω ∈ Ω.

Theorem 7.1. The following assertions hold P-almost surely (in ω ∈ Ω):

(i) Mt (ω) is an open subset of M for each t ≥ 0, i.e., ζ(·)(ω) is lower semicontin-
uous on M .

(ii) For each t ≥ 0, the map

Xt (·)(ω) : Mt (ω) −→ Rt (ω)

is a diffeomorphism onto an open subset Rt (ω) of M .

(iii) The path map s 7−→ Xs(·)(ω) is continuous from [0, t] into C∞(Mt (ω),M) with

its C∞-topology.

Proof. See Kunita’s theory of stochastic flows [36]. �

Remark 7.2. Under “mild” growth conditions (see [36] for precise statements) on
the vector fields A0, . . . , Ar and their derivatives (which are trivially fulfilled if M is
compact), we have almost surely

Xt (·) ∈ Diff(M), for all t .
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7.1 Tangent flows and pullback of vector fields under stochastic flows.

Proposition 7.3. In the situation of a partial flow to the SDE

dX =

r∑

i=0

Ai(X) ◦ dZ i (7.3)

we consider the “tangent flow” Xt∗ := T Xt , defined as the differential of the map

x 7→ Xt (x),

TxM → TXt (x)M, v 7−→ Xt∗v, x ∈ Mt (ω).

The tangent map

Ut := Xt∗

solves the (formally) differentiated SDE (7.3), i.e.,

dU =

r∑

i=0

(DAi)X U ◦ dZ i, (7.4)

where (DAi)X = TX Ai ≡ Tπ(U)Ai . In addition, the inverse tangent flow U ′
t = X−1

t∗

solves the SDE

dU ′
= −

r∑

i=0

U ′(DAi)X ◦ dZ i . (7.5)

Proof. These are standard formulas in the theory of SDEs and are checked in a
straightforward way using stochastic calculus; see [35, 36]. �

We now come to a crucial notion: the pullback of a vector field V on M under a
stochastic flow x 7→ Xt (x). More precisely, forV ∈ Γ(T M)we consider the (random)
vector field X−1

t∗ V on Mt defined as

(X−1
t∗ V)x = (TxXt )

−1VXt (x) ∈ TxM, x ∈ Mt .

In other words, we have

(X−1
t∗ V)( f ) = V( f ◦ X−1

t ) ◦ Xt, f ∈ C∞(M).

Lemma 7.4. The pullback vector field X−1
t∗ V satisfies the equation

d(X−1
t∗ V) =

r∑

i=0

X−1
t∗ [Ai,V] ◦ dZ i

t .

In the special form of SDE (7.2) this means

d(X−1
t∗ V) = X−1

t∗ [A0,V] dt +

r∑

i=1

X−1
t∗ [Ai,V] ◦ dBi

t .
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Proof. For instance, see [34, Section 5]. �

Corollary 7.5. Suppose that the vector field V commutes with A0, . . . , Ar . Then we

have X−1
t∗ V = V .

Remark 7.6. There are analogous formulas for the pushforward vector fields Xt∗V on
Rt , e.g.,

d(Xt∗V) =

r∑

i=0

[Xt∗Ai,V] ◦ dZ i
t ,

respectively,

d(Xt∗V) = [Xt∗A0,V] dt +

r∑

i=1

[Xt∗Ai,V] ◦ dBi
t .

7.2 Malliavin’s covariance matrix.

Definition 7.7 (Malliavin’s covariance matrix). Suppose that an SDE of the type

dX = A0(X) dt +

r∑

i=1

Ai(X) ◦ dBi

is given. For t > 0, the tensor

Ct (x) =

r∑

i=1

∫ t

0

(X−1
s∗ Ai)x ⊗ (X

−1
s∗ Ai)x ds ∈ TxM ⊗ TxM, x ∈ Mt (7.6)

defines a smooth (random) section of the bundle T M ⊗ T M over Mt . This section is
usually called Malliavin’s covariance matrix.

Malliavin’s covariance matrix is at the heart of the so-called Malliavin calculus,
also known as stochastic calculus of variations [47, 50]. In the sequel we use different
notions of writing Malliavin’s covariance matrix (7.6).

Notation 7.8. Putting together the diffusion vector fields A1, . . . , Ar into a bundle
map A : M × Rr → T M over M , we have

(X−1
s∗ A)x : Rr → TxM, z 7→

r∑

i=1

(X−1
s∗ Ai)x zi . (7.7)

(Note that the drift vector field A0 is not included.) Considering the dual map to
Eq. (7.7),

(X−1
s∗ A)∗x : T∗

x M −→ (Rr )∗ ≡ Rr,

we may read Malliavin’s covariance matrix (7.6) as

Ct (x) =

∫ t

0

(X−1
s∗ A)x(X

−1
s∗ A)∗x ds ∈ Hom(TxM,TxM), x ∈ Mt .
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Example 7.9. On R2 consider the SDE

dXt = A0(Xt ) dt + A1(Xt ) ◦ dB1
t , X0 = x = (x1, x2), (7.8)

where A0 = x1 ∂
∂x2 and A1 =

∂
∂x1 . Obviously SDE (7.8) can be written as

dX1
t = dB1

t , dX2
t = X1

t dt, (X1
0, X

2
0 ) = (x

1, x2),

and so we have an explicit expression for the solution as




X1
t = x1

+ B1
t ,

X2
t = x2

+ x1t +

∫ t

0

B1
sds.

Thus

Xt∗ =

(
1 0

t 1

)
and X−1

t∗ =

(
1 0

−t 1

)
.

For Malliavin’s covariance matrix we get

Ct (x) =

(
t −t2/2

−t2/2 t3/3

)
.

Note that Ct (x) is independent of x and invertible for t > 0. SDE (7.8) is degenerate
in the sense that A1 does not span TxR

2, but observe that [A0, A1] =
∂

∂x2 . It is easy to

see that the random vector (X1
t , X

2
t ) has a Gaussian distribution with covariance

(
t t2/2

t2/2 t3/3

)
.

For t > 0 the covariance is nonsingular, and hence (X1
t , X

2
t ) has a smooth Gaussian

density function with respect to two-dimensional Lebesgue measure.

8 Stochastic flows and hypoellipticity

The purpose of this section is to sketch a probabilistic proof of Hörmander’s hypoel-
lipticity theorem. We follow some of the arguments in Bismut [14].

Consider a second-order PDO in Hörmander form,

L = A0 +
1

2

r∑

i=1

A2
i , (8.1)
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on a differentiable manifold M with smooth vector fields A0, . . . , Ar . For simplicity,
we assume again that all vector fields of the form

A0 +
1

2

r∑

i=1

Aiu
i, u ∈ Rr

are complete.
We denote by D ′(M) the space of distributions on M . Recall that an operator L

of type (8.1) is called hypoelliptic if u ∈ D ′(M) and Lu|U ∈ C∞(U), where U ⊂ M

is open, implying that u|U ∈ C∞(U).
Our goal is to show hypoellipticity of operator (8.1) under a certain Hörmander-

type nondegeneracy.

8.1 Hypoellipticity under Hörmander conditions. Consider the following
two canonical measures on M:

Pt (x, dy) := P {Xt (x) ∈ dy} , and (8.2)

Gλ(x, dy) :=

∫ ∞

0

e−λt P {Xt (x) ∈ dy} dt, λ > 0. (8.3)

Remark 8.1. In Section 4, these measures were used for stochastic representation
formulas of classical PDEs.

(i) Recall that every bounded solution u(t, x) to the initial value problem

∂

∂t
u = Lu, u|t=0 = f

can be represented as

u(t, x) =

∫
Pt (x, dy) f (y) = E[ f ◦ Xt (x)].

(ii) According to the Feynman–Kac formula (4.5), solutions to

(λ − L)u = f

have a representation as

u(x) =

∫
Gλ(x, dy) f (y), x ∈ M .

In this sense, the operator Gλ defines the inverse to λ − L, formally Gλ =

(λ − L)−1.
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Choosing a smooth volume measure, vol, on M , we now come to the following
fundamental question.

Problem 8.2. When do measures like Pt (x, ·) or Gλ(x, ·) have densities with respect
to vol?

Definition 8.3. To the vector fields A0, . . . , Ar defining the operator

L = A0 +
1

2

r∑

i=1

A2
i ,

we associate several important Lie algebras [28, 29, 5].

• On M ,

L := Lie(A0, A1, . . . , Ar ),

B := Lie(A1, . . . , Ar ),

I := ideal in L generated by B.

• On M × R,

L̂ := Lie

(
A0 +

∂

∂t
, A1, . . . , Ar

)
.

By definition we have B ⊂ I ⊂ L .

In terms of these Lie algebras we consider the following Hörmander conditions
(n = dim M):

dim L (x) = n at each point x of M, (H0)

dim L̂ (t, x) = n + 1 at each point (x, t) of M × R. (H1)

Hypothesis (H0) means that

Lie(A0, A1, . . . , Ar )(x) = TxM, for all x ∈ M,

whereas (H1) is equivalent to

Lie
(
A1, . . . , Ar, [Ai, Aj]0≤i, j≤r,

[Ai, [Aj, Ak]]0≤i, j,k≤r, . . .
)
(x) = TxM, for all x ∈ M .

This last condition can be equivalently stated as

dim I (x) = n at each point x of M .
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Theorem 8.4 (Hörmander (1967) [26]).

(1) Under hypothesis (H0) the operator L is hypoelliptic on M .

(2) Under hypothesis (H1) the space-time operator L + ∂
∂t

is hypoelliptic on M ×R.

It can be shown that Hörmander’s condition (H0) is necessary for hypoellipticity
for operators L with analytic coefficients. Such is not the case for smooth vector
fields A0, A1, . . . , Ar . The stochastic approach allows us to derive sharper criteria for
hypoellipticity that allow Hörmander’s condition to fail on tiny subsets of M; see for
instance [11].

Remark 8.5. Let L∗ be the formal adjoint operator to L (with respect to the chosen
volume measure). It can be written as

L∗ =
1

2

r∑

i=1

A2
i + Ã0 + a, where A0 + Ã0 ∈ B.

Thus we have the following equivalences:

(i) L satisfies (H0) if and only if L∗ − a satisfies (H0).

(ii) L + ∂
∂t
satisfies (H1) if and only if L∗ + ∂

∂t
− a satisfies (H1).

Corollary 8.6. We may consider the measures Gλ(x, ·) and Pt (x, ·) as distributions
as follows:

Gλ(x, dy) ∈ D
′(M × M), Pt (x, dy) ∈ D

′(]0, t[ × M × M).

Denoting by Λ the diagonal in M × M , the following equations hold in the weak

sense:

(λ − Lx)Gλ = 1Λ, (λ − L∗y)GΛ = 1Λ,(
∂

∂t
− Lx

)
Pt (x, dy) = 0,

(
∂

∂t
− L∗y

)
Pt (x, dy) = 0.

By means of Hörmander’s Theorem 8.4 we obtain the following:

(a) Suppose that condition (H0) holds. Then the operator L is hypoelliptic and there

exists a function gλ ∈ C∞((M × M) \ ∆) such that

Gλ(x, dy) = gλ(x, y) vol(dy).

(b) Suppose that condition (H1) holds. Then the operator
∂
∂t
− L is hypoelliptic and

there exists a function pt (x, y) in C∞(]0,∞[ × M × M) such that

Pt (x, dy) = pt (x, y) vol(dy).
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In the sequel, to avoid technical problems, we assume that A0, A1, . . . , Ar ∈

Γ(T M), alongwith their derivatives, satisfy some growth conditions. Such conditions
will be necessary below to make some quantities well defined. To this end we choose
a Riemannian metric on M; the volume form vol(dy) will be taken with respect to
this metric.

Standing Hypothesis. Assume that the vector fields A0, A1, . . . , Ar are smooth with
bounded derivatives of all orders.

Remark 8.7. This hypothesis is far from being necessary, but it guarantees that
solutions to the Eqs. (7.3)–(7.5) lie in any Lp space (1 ≤ p < ∞) uniformly over
compact time intervals.

The following theorem gives a probabilistic approach to Hörmander’s hypoel-
lipticity theorem; see [14, 38, 39, 40, 49, 50], as well as Malliavin’s original
work [44, 45, 46].

Theorem 8.8. For x ∈ M , let X ≡ X.(x) be the solution to the Stratonovich SDE

dX = A0(X) dt +

r∑

i=1

Ai(X) ◦ dBi, with initial condition X0 = x. (8.4)

Suppose that for each t > 0 the following two conditions hold true:

(i) The bilinear form

Ct (x) :=

r∑

i=1

∫ t

0

(X−1
s∗ Ai)x ⊗ (X

−1
s∗ Ai)x ds on T∗

x M ⊗ T∗
x M

is almost surely nondegenerate.

(ii) In terms of the inner product on TxM and reading Ct (x) ∈ Hom(TxM,TxM),

we have

|Ct (x)
−1 | ∈ Lp for each p ≥ 1. (8.5)

Then there exists a function pt (x, y) in C∞(]0, t[ × M × M) such that

Pt (x, dy) = pt (x, y) vol(dy).

Remark 8.9. Thus proving Hörmander’s parabolic result will come down to showing
that under hypothesis (H1), conditions (i) and (ii) of Theorem 8.8 are satisfied. We
will sketch the essential steps of the proof in the remainder of this section.

The idea underlying the probabilistic approach is the following. The measure
Pt (x, dy) is the image of the Wiener measure under the mapping Xt (x) : ω 7→

Xt (x, ω). Since Wiener measure has a well-understood analytic structure, if this
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map were “smooth” then regularity properties of Pt (x, dy) could be obtained by in-
tegration by parts on Wiener space. The goal of Malliavin calculus is to overcome
the difficulty that the map Xt (x), however, is most pathological from the standpoint
of classical analysis or standard calculus. See [37, 25, 10] for survey articles along
these lines.

Theorem 8.10. Suppose that (H1) holds true, i.e.,

dim Lie
(
A1, . . . , Ar, [Ai, Aj]0≤i, j≤r,

[Ai, [Aj, Ak]]0≤i, j,k≤r, . . .
)
(x) = n for each x ∈ M . (H1)

Then, for each x ∈ M and each t > 0, almost surely,

Ct (x) =

r∑

i=1

∫ t

0

(X−1
s∗ Ai)x ⊗ (X

−1
s∗ Ai)xds ∈ TxM ⊗ TxM

defines a nondegenerate symmetric bilinear form on T∗
x M .

Proof. We fix x ∈ M and let

Gs := span
(
(X−1

s∗ Ai)x : i = 1, . . . , r
)
⊂ TxM,

Ut := span
( ⋃

s≤t

Gs

)
, t > 0,

U
+

t :=
⋂

s>t

Us .

Then (by the 0/1-law of Blumenthal) U +

0
is almost surely a fixed (deterministic)

linear subspace of TxM . We have to show that almost surely

U
+

0 = TxM .

Suppose that U +

0
$ TxM . Then the stopping time

σ := inf
{
t > 0 : Ut , U

+

0

}

is almost surely strictly positive. Let ξ ∈ TxM such that ξ ⊥ U +

0
. Then, in particular,

ξ ⊥ Ut for all t < σ. In other words, we have for each i = 1, . . . , r ,

〈ξ, (X−1
t∗ Ai)x〉 = 0, for any t < σ.
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However, for any V ∈ Γ(T M), we know that

d(X−1
s∗ V)x =

(
X−1
s∗ [A0,V]

)
x

ds +

r∑

j=1

(
X−1
s∗ [Aj,V]

)
x
◦ dB

j
s

=

(
X−1
s∗ [A0,V]

)
x

ds +

r∑

j=1

(
X−1
s∗ [Aj,V]

)
x

dB
j
s

+

r∑

j=1

(
X−1
s∗

[
Aj, [Aj,V]

] )
x

ds.

Thus, taking V = Ai , where 1 ≤ i ≤ r , we have for t < σ,

〈ξ, (X−1
t∗ Ai)x〉︸          ︷︷          ︸
=0

= 〈ξ, Ai(x)〉︸     ︷︷     ︸
=0

+

∫ t

0

〈ξ, (X−1
s∗ [A0, Ai])x〉 ds

+

r∑

j=1

∫ t

0

〈ξ, (X−1
s∗ [Aj, Ai])x〉 dB

j
s

+

r∑

j=1

∫ t

0

〈ξ, (X−1
s∗ [Aj, [Aj, Ai]])x〉 ds.

(8.6)

By uniqueness of the Doob–Meyer decomposition, canceling the martingale part in
Eq. (8.6), we first obtain

〈ξ, (X−1
s∗ [Aj, Ai])x〉 = 0, for 1 ≤ i, j ≤ r and s < σ.

By repeating the above calculation with [Aj, Ai] instead of Ai we get

〈ξ, (X−1
s∗ [Aj, [Aj, Ai]])x〉 = 0, for 1 ≤ i, j ≤ r and s < σ.

This allows us to cancel the bounded variation part in Eq. (8.6) which gives, in
addition,

〈ξ, (X−1
s∗ [A0, Ai])x〉 = 0, for 1 ≤ i ≤ r and s < σ.

By iteration, we see that if A[I ] is any of the brackets appearing in (H1), i.e.,

A[I ] ∈ Lie
(
A1, . . . , Ar, [Ai, Aj]0≤i, j≤r, [Ai, [Aj, Ak]]0≤i, j,k≤r, . . .

)
,

then
〈ξ, (X−1

s∗ A[I ])x〉 = 0, s < σ.

In particular, by taking s = 0, we find that

〈ξ, (A[I ])x〉 = 0.
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But, since according to (H1),

Lie
(
A1, . . . , Ar, [Ai, Aj]0≤i, j≤r, [Ai, [Aj, Ak]]0≤i, j,k≤r, . . .

)
(x) = TxM,

we conclude ξ = 0. �

In the sequel, we want to sketch the proof that, for given x ∈ M and t > 0,

Pt (x, dy) = pt (x, y) vol(dy), (8.7)

where pt (x, ·) ∈ C∞(M). This is the essential part in the stochastic proof of Corol-
lary 8.6(b). To this end, we have to show that µ = Pt (x, dy) as a distribution is
sufficiently smooth. This means that we have to find estimates for the distributional
derivatives of µ.

Lemma 8.11. Let µ be a probability measure on a manifold M (dim M = n) such

that

|〈 f ,D(α)µ〉| ≤ Cα‖ f ‖∞, for all α ∈ Nn and f ∈ C∞
c (M).

Then µ(dy) = ρ(y)vol(dy) with ρ ∈ L1(dy) ∩ C∞(M).

Hence to achieve (8.7) for the measure µ(dy) = Pt (x, dy), we have to show that
���E

[
(D(α) f )(Xt (x))

] ��� ≤ Cα‖ f ‖∞, ∀α ∈ Nn.

8.2 Girsanov’s theorem. In the sequel we shall use a basic fact from stochastic
analysis. This is a special case of Girsanov’s theorem [52] which specifies how to
remove a drift by change of measure.

Theorem 8.12 (Girsanov). Let B be a standard Brownian motion on Rr and let ut
be a continuous adapted process taking values in Rr as well, such that

E

[
exp

(
1

2

∫ t

0

|us |
2ds

)]
< ∞.

Consider the Brownian motion with drift B̂ defined as

dB̂t := dBt + ut dt .

Then, if B is a Brownian motion on Rr with respect to P, then B̂ is a Brownian motion

on Rr with respect to P̂, where the new probability measure P̂ is given by

dP̂

dP

����
Ft

= exp

(
−

∫ t

0

usdBs −
1

2

∫ t

0

|us |
2ds

)
.
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Hence, defining

Gt := exp

(
−

∫ t

0

usdBs −
1

2

∫ t

0

|us |
2ds

)
,

we have
dP̂ = Gt dP on Ft .

In particular, for any measurable functional F on path space, we conclude that

E
P
[F(B.)] = EP̂[F(B̂.)]. (8.8)

Eq. (8.8) specifies how a perturbation of a standard Brownian motion by an additive
drift can be compensated via a change of measure.

8.3 Elementary stochastic calculus of variations. We fix a point x ∈ M

and consider us = λ as, where λ ∈ T∗
x M and where as is a continuous adapted process

taking values in
TxM ⊗ (Rr )∗ ≡ TxM ⊗ Rr

such that

E

[
exp

(
1

2

∫ t

0

|λ as |
2 ds

)]
< ∞,

for all λ in a small neighborhood U about 0.
In the SDE (8.4) defining the stochastic flow X , we add a drift to the driving

Brownian motion B,
dBλ

t := dBt + λat dt,

and compensate this perturbation by changing the measure from P to Pλ,

Pλ |Ft = Gλ
t · P|Ft,

where

Gλ
t = exp

(
−

∫ t

0

λ asdBs −
1

2

∫ t

0

|λ as |
2ds

)
.

We denote by Xλ
. (x) the solution to SDE (8.4) when driven by Bλ

t instead of Bt .
By Girsanov’s theorem, we may conclude that

E

[
f

(
Xλ
t (x)

)
g(Bλ

. )Gλ
t

]
is independent of λ. (8.9)

Here f is a smooth function on M and g is a functional of Bλ
. |[0, t] such that g(B

λ
. )

is differentiable in λ. The explicit form of g will be determined later.
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We may assume that supp ( f ) lies in a chart of M; then we write (Di f )(x) :=

(df )x ei . Also, since x ∈ M is fixed, we identify TxM with Rn.
From Eq. (8.9) we know that

∂

∂λk

����
λ=0

E

[
f

(
Xλ
t (x)

)
g(Bλ

. )Gλ
t

]
= 0,

which gives

E

[∑

i

(Di f )
(
Xt (x)

) (
∂

∂λk

����
λ=0

Xλ
t (x)

) i
g(B.)

]

= −E

[
f
(
Xt (x)

) ∂
∂λk

����
λ=0

(
g(Bλ

. )Gλ
t

)]
.

We write (
∂

∂λk

����
λ=0

Xλ
t (x)

) i
=

(
∂Xt (x)

)
ik
.

It is easily checked that

∂Xt (x) ≡
∂

∂λ

����
λ=0

Xλ
t (x) = Xt∗

∫ t

0

(X−1
t∗ A)x as ds ∈ Hom(TxM,TxM).

Thus, if we take
as := (X−1

s∗ A)∗x : T∗
x M → Rr,

then
∂Xt (x) = Xt∗Ct (x).

Finally, taking

g(Bλ
. ) :=

(
Cλ
t (x)

−1 (Xλ
t∗)

−1
)
k j
γ(Bλ

. ),

where γ(Bλ
. ) is specified later, and then summing over k, we obtain

E

[
(Dj f )(Xt (x)) γ(B.)

]

= −E

[
f
(
Xt (x)

) ∑

k

∂

∂λk

����
λ=0

(
Cλ
t (x)

−1(Xλ
t∗)

−1
)
k j
γ(Bλ

. )Gλ
t

︸                                                  ︷︷                                                  ︸
=: Hj(γ)

]
.

By iteration, this shows that

E

[
(DiDjDk · · · f )

(
Xt (x)

) ]
= −E

[
f (Xt (x))

(
· · ·HkHjHi(1M )

) ]
. (8.10)
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From Eq. (8.10) we get the crucial estimate
���E

[
(DiDjDk · · · f )

(
Xt (x)

) ] ��� ≤ ‖ f ‖∞ × ‖ · · ·HkHjHi(1M )‖1, (8.11)

where 1M denotes the function on M which is identically equal to 1. Hence, to
conclude, it remains to show that

‖ · · ·HkHjHi(1M )‖1 < ∞ (8.12)

for arbitrary indices 1 ≤ i, j, k, . . . ≤ n.
The terms appearing in the norm in (8.12) can easily be worked out explicitly by

using formulas like

∂

∂λk

����
λ=0

Cλ
t (x)

−1
= −Ct (x)

−1 ∂

∂λk

����
λ=0

Cλ
t Cλ

t (x)
−1, (8.13)

∂

∂λk

����
λ=0

Gλ
t = −

(∫ t

0

(X−1
s∗ A)x dBs

)

k

. (8.14)

Note that apart fromC−1
t (x), only polynomial expressions of quantities appear, which

lie in each Lp-space (1 ≤ p < ∞).
To conclude the proof of Theorem 8.8, the integrability condition (8.5) still needs

to be verified. This requires some nontrivial technical estimates; see [39] for a
detailed exposition, as well as the simplifications due to [49]. A unified treatment of
these issues can be found in [50].

9 Future prospects

Given a sub-Riemannian structure on a differentiable manifold M we have discussed
the problem of defining a canonical sub-Laplacian L = ∆H on M , either as L =

traceH∇df by choosing a metric partial connection onH, or by endowing M with a
smooth volume measure and defining L as the divergence of the horizontal gradient.
Such sub-Laplacians have a representation in Hörmander form as

L = A0 +
1

2

r∑

i=1

A2
i

with vector fields A0, A1, . . . , Ar ∈ Γ(H) ⊂ Γ(T M). Under the assumption that
Hörmander’s bracket-generating condition (H1) is satisfied, the existence of a smooth
heat kernel pt (x, y) in C∞(]0,∞[ × M × M) is guaranteed,

Pt (x, dy) := P{Xt (x) ∈ dy} = pt (x, y) vol(dy),



164 Anton Thalmaier

and probabilistic methods can be applied to investigate the asymptotics of pt (x, y)
for small and large times. Heat kernel asymptotic expansion is well studied in
Riemannian and sub-Riemannian geometry. The classical results of Ben Arous,
Léandre, and others [12, 42, 41] include such asymptotic expansion for the cases
of diagonal pt (x, x) and off-diagonal and off cut-locus pt (x, y); the on cut-locus
case pt (x, y) is understood only up to the leading order [4]. For the application of
Malliavin calculus in the study of heat kernel expansions, see [58].

In terms of the Γ-operator

Γ( f , g) =
1

2
(L( f g) − f Lg − gL f ) , f , g ∈ C∞(M), (9.1)

the Carnot–Carathéodory distance on M is defined as

dCC(x, y) := sup
{
| f (x) − f (y)| : f ∈ C∞

c (M), Γ( f , f ) ≤ 1
}
. (9.2)

Under the strong Hörmander condition,

Lie(A1, . . . , Ar )(x) = TxM, x ∈ M,

the Carnot–Carathéodory distance is finite and (9.2) defines a metric structure on M .
As in Riemannian geometry, it is natural to investigate the radial process

Rt := dCC(x0, Xt (x)) (9.3)

for large times [27]. On a Riemannian manifold, by means of classical Laplacian
comparison theorems, the speed of the radial process can be controlled by lower
(Ricci) curvature bounds. Defining curvature in sub-Riemannian geometry however
is an intriguing problem [1]. Up to now, for instance, no direct probabilistic proof
for nonexplosion in finite time of sub-Riemannian diffusion by controlling the radial
process (9.3) under sub-Riemannian curvature bounds is known [23].

During recent years, several results have appeared linking sub-Riemannian geo-
metric invariants to properties of diffusions of corresponding second-order operators
and their heat semigroup; see [6, 7, 21, 22]. These so-called curvature-dimension
inequalities are based on a generalization of the Γ2-calculus for sub-Riemannian
manifolds introduced by Baudoin and Garofalo [8].

Connections between the probabilistic behavior of subelliptic diffusions and an-
alytic properties of the corresponding heat semigroups, most directly expressed in
functional inequalities, have attracted a lot of attention [17, 48, 43, 3]. For instance,
denoting by Pt f the (minimal) heat semigroup generated by

L = A0 +
1

2

r∑

i=1

A2
i ,
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acting on bounded functions f ∈ C∞(M), one seeks to find a constant C such that

|∇horPt f |2 ≤ CPt |∇
hor f |2 (9.4)

holds pointwise for any t > 0; see [17, 48]. Note that the squared norm of the
horizontal gradient ∇hor f is given by

|∇hor f |2 =

r∑

i=1

(Ai f )2.

Conversely, functional inequalities of the type in (9.4) can be used to deduce nonex-
plosion of the underlying diffusion [9, 23].
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