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Abstract We define martingales on manifolds with time-dependent connection,
extending in this way the theory of stochastic processes on manifolds with time-
changing geometry initiated by Arnaudon et al. (C R Acad Sci Paris Ser I 346:773–
778, 2008). We show that some, but not all, properties of martingales on manifolds
with a fixed connection extend to this more general setting.
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1 Introduction

Stochastic analysis on manifolds with a fixed connection or a fixed Riemannian met-
ric has been studied for a long time, see e.g. the books by Hackenbroch and Thal-
maier [9] and Hsu [10]. Motivated by Perelman’s proof of the geometrization and
hence the Poincaré conjecture using Ricci flow [14–16], Arnaudon, Coulibaly and
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Thalmaier [1] introduced Brownian motion on a manifold with a time-dependent Rie-
mannian metric. Thanks to the subsequent papers by Coulibaly-Pasquier [5], Kuwada
and Philipowski [11,12] and Paeng [13], Brownian motion in such a time-dependent
framework is now well understood.

Stochastic analysis onmanifolds, however, is not restricted to the study of Brownian
motion. Another important topic is martingale theory, which in the case of a fixed
connection is treated in depth in e.g. [6,7,9,10], but which has not yet been studied in
the case of a time-dependent connection. The aim of the present paper was to fill this
gap.

The results of this paper will be fundamental for various geometric applications in
subsequent papers which include a study of the harmonic map heat flow on manifolds
with time-dependent metric, stochastic representations of harmonic forms in a time-
dependent setting, as well as new entropy formulas for positive solutions to the heat
equation under Ricci flow.

2 Horizontal Lift, Stochastic Parallel Transport and Stochastic Development on
Manifolds with Time-Dependent Connection

Let M be a d-dimensional differentiable manifold, π : F(M) → M the frame bun-
dle and (∇(t))t≥0 a family of linear connections on M depending smoothly on t .
Let (�,F , P, (Ft )t≥0) be a filtered probability space. Throughout the whole paper,
the notions of martingale, semimartingale, etc., are understood with respect to this
filtration. Moreover, all processes are tacitly assumed to be continuous.

Definition 2.1 (cf. [9, Definition 7.135] for the case of a fixed connection) AnF(M)-
valued semimartingale U is said to be (∇(t))t≥0-horizontal if

ωt (◦ dUt ) = 0, (2.1)

where ωt is the Rd×d -valued connection form with respect to ∇(t).

Proposition 2.2 (cf. [9, Satz 7.141] for the case of a fixed connection) Let X be an
M-valued semimartingale and U0 an F0-measurable F(M)-valued random variable
with π U0 = X0. Then there exists a unique (∇(t))t≥0-horizontal lift U of X starting
at U0, i.e. an F(M)-valued semimartingale satisfying (2.1) and π U = X. Moreover,
starting with an arbitrary lift Ũ of X satisfying Ũ0 = U0 (which can be constructed
using charts, see e.g. [9, Proof of Satz 7.141]) the horizontal lift U can be constructed
in the following way: Let

γt :=
t∫

0

ωs

(
◦ dŨs

)
, (2.2)
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and G the solution to the GLd(R)-valued SDE

dGt = −
d∑

α,β=1

EαβGt ◦ dγ αβ
t , G0 = I, (2.3)

where Eαβ ∈ R
d×d is the matrix whose (i, j)-entry is 1 if i = α and j = β, and 0

otherwise. Then

Ut = Ũt Gt . (2.4)

Proof Wefirst show that the processU defined by (2.4) is indeed (∇(t))t≥0-horizontal.
Letting � : F(M) × GLd(R) → F(M) defined by �(u, g) := ug, we have

(
�∗ωt

)
(u,g)

=
(

R∗
gωt

)
u

+ θg,

where θg := d L−1
g (Lg and Rg denoting left resp. right multiplication with g). Since

moreover by [9, Bemerkung 7.128 (ii)], R∗
gωt = Ad(g−1)ωt , we obtain

ωt (◦ dUt ) = ωt

(
◦ d�(Ũt , Gt )

)

= (
�∗ωt

) (◦ d
(

Ũt , Gt

))

= (
R∗

Gt
ωt
) (◦ dŨt

)
+ θGt (◦ dGt )

= Ad
(

G−1
t

)
ωt

(
◦ dŨt

)
+ dL−1

Gt
(◦ dGt )

= Ad
(

G−1
t

)
◦ dγt −

d∑
α,β=1

G−1
t EαβGt ◦ dγ αβ

t = 0.

To show uniqueness, assume that U ′ is another (∇(t))t≥0-horizontal lift of X with
U ′
0 = U0. Then, U = U ′G with a GLd(R)-valued semimartingale G = (Gt )t≥0

starting at I . The above computation yields d L−1
Gt

(◦ dGt ) = 0 and hence dGt = 0,
so that Gt = I for all t ≥ 0. 	


Definition 2.3 (cf. [9, Definition 7.144] for the case of a fixed connection) The
(∇(t))t≥0-parallel transport along an M-valued semimartingale X is the family of
isomorphisms //s,t : TXs M → TXt M (0 ≤ s ≤ t) defined by

//s,t := Ut U−1
s ,

where U is an arbitrary (∇(t))t≥0-horizontal lift of X . (As in the case of a fixed
connection, the result does not depend on the choice of the horizontal lift.)
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Definition 2.4 (cf. [9, Definition 7.136] for the case of a fixed connection) Let X be
an M-valued semimartingale, U0 an F0-measurable F(M)-valued random variable
with π U0 = X0, and U the unique (∇(t))t≥0-horizontal lift of X starting at U0. The
R

d -valued process

Zt :=
t∫

0

ϑ(◦ dUs) (2.5)

is called the (∇(t))t≥0-antidevelopment of X (or U ) with initial frame U0; here ϑ is
the canonical Rd -valued 1-form on F(M),

ϑu(w) = u−1(dπw), w ∈ TuF(M).

Remark 2.5 A (∇(t))t≥0-horizontal semimartingale U can be recovered from its
(∇(t))t≥0-antidevelopment Z and its initial value U0 as the solution to the SDE

dUt =
d∑

i=1

H∇(t)
i (Ut ) ◦ dZi

t , (2.6)

where (H∇(t)
i )d

i=1 are the standard ∇(t)-horizontal vector fields on F(M), i.e.

H∇(t)
i (u) = h∇(t)

u (uei ), u ∈ F(M),

where h∇(t)
u : Tπ(u)M → TuF(M) is the horizontal lift with respect to the connection

∇(t).

Proof To verify that U solves SDE (2.6), one has to show that

f (Ut ) − f (U0) =
d∑

i=1

t∫

0

H∇(s)
i f (Us) ◦ dZi

s

for all f ∈ C∞(F(M)). As in [9, Proof of Satz 7.137], this can be done as follows:
first, note that for u ∈ F(M) and ξ ∈ TuF(M), we have

d∑
i=1

H∇(s)
i f (u)ϑ i

u(ξ) =
d∑

i=1

d f (u)H∇(s)
i (u)ϑ i

u(ξ)

=
d∑

i=1

d f (u)h∇(s)
u (uei )

(
u−1π∗ξ

)i

=
d∑

i=1

d f (u)h∇(s)
u (π∗ξ).
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Together with the horizontality of U and (2.5), this implies that

f (Ut ) − f (U0) =
t∫

0

d f (◦ dUs)

=
d∑

i=1

t∫

0

H∇(s)
i f (Us)ϑ

i
u(◦ dUs)

=
d∑

i=1

t∫

0

H∇(s)
i f (Us) ◦ dZi

s,

as claimed. 	

Corollary 2.6 Let U be a (∇(t))t≥0-horizontal semimartingale, and X := π U. Then
we have the following Itô formulas:

1. For all smooth functions f on R+ × F(M) we have

d( f (t, Ut )) = ∂ f

∂t
(t, Ut ) dt +

d∑
i=1

H∇(t)
i f (t, Ut ) ◦ dZi

t

= ∂ f

∂t
(t, Ut ) dt +

d∑
i=1

H∇(t)
i f (t, Ut ) dZi

t

+1

2

d∑
i, j=1

H∇(t)
i H∇(t)

j f (t, Ut ) d〈Zi , Z j 〉t .

2. For all smooth functions f on R+ × M we have

d( f (t, Xt )) = ∂ f

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei ) f (t, Xt ) ◦ dZi
t

= ∂ f

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei ) f (t, Xt ) dZi
t

+1

2

d∑
i, j=1

Hess∇(t) f (Ut ei , Ut e j ) d〈Zi , Z j 〉t .

Remark 2.7 In the situation of Proposition 2.2 let Z̃t := ∫ t
0 ϑ(◦ dŨs) where Ũ is an

arbitrary lift of X with the same initial condition. Then,

dZt = G−1
t ◦ d Z̃t . (2.7)
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Proof Since π Ut = π Ũt , we have

dZt = ϑ(◦ dUt ) = U−1
t ◦ π∗dUt = G−1

t Ũ−1
t ◦ π∗dŨt=G−1

t ϑ(◦ dŨt )=G−1
t ◦ d Z̃t .

	

Remark 2.8 In a formal way, the second part of Corollary 2.6 can be written as

dXt = Ut ◦ dZt , or equivalently, dZt = U−1
t ◦ dXt . (2.8)

In the same manner, the Itô differential d∇(t) Xt of X is defined as

d∇(t) Xt = Ut dZt , or equivalently, dZt = U−1
t d∇(t) Xt . (2.9)

We shall discuss the significance of these differentials in Sect. 5.

3 Alternative Definition of Horizontality in the Riemannian Case

In this section, we assume that for each t ≥ 0, the connection ∇(t) is the Levi-Civita
connection of a Riemannian metric g(t) depending smoothly on t (we call this the
Riemannian case). In this situation, it seems natural to require that eachUt takes values
in the g(t)-orthonormal frames of M , i.e. Ut ∈ Og(t)(M) for all t ≥ 0. To ensure this,
one has to add a correction term to (2.1).

Definition 3.1 An F(M)-valued semimartingale U is said to be (g(t))t≥0-Riemann-
horizontal if U0 ∈ Og(0)(M) and

ωt (◦ dUt ) = −1

2

d∑
α,β=1

∂g

∂t

(
t, Ut eα, Ut eβ

)
Eαβ dt. (3.1)

In Proposition 3.7 below, we will show that any (g(t))t≥0-Riemann-horizontal
semimartingale U satisfies indeed Ut ∈ Og(t)(M) for all t ≥ 0. Before doing so,
we show that the results of the previous section carry over to (g(t))t≥0-Riemann-
horizontal processes with appropriate modifications:

Proposition 3.2 Let X be an M-valued semimartingale and U0 an F0-measurable
Og(0)(M)-valued random variable with π U0 = X0. Then there exists a unique
(g(t))t≥0-Riemann-horizontal lift U of X starting at U0, i.e. an F(M)-valued semi-
martingale satisfying (3.1) and π U = X. Moreover, starting with an arbitrary lift Ũ
of X satisfying Ũ0 = U0, the (g(t))t≥0-Riemann-horizontal lift U can be constructed
in the following way: Let

γt :=
t∫

0

ωs

(
◦ dŨs

)
, (3.2)
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and G the solution to the GLd(R)-valued SDE

dGt = −
d∑

α,β=1

EαβGt ◦ dγ αβ
t

−1

2

d∑
α,β=1

∂g

∂t

(
t, Ũt Gt eα, Ũt Gt eβ

)
Gt Eαβ dt, G0 = I, (3.3)

Then

Ut = Ũt Gt . (3.4)

Proof We first show that the process U defined by (3.4) is indeed (g(t))t≥0-Riemann-
horizontal. As in the proof of Proposition 2.2 we obtain

ωt (◦dUt ) = (
R∗

Gt
ωt
) (◦dŨt

)
+ θGt (◦dGt )

= Ad
(

G−1
t

)
ωt

(
◦dŨt

)
+ d L−1

Gt
(◦dGt )

= Ad
(

G−1
t

)
◦ dγt −

d∑
α,β=1

G−1
t EαβGt ◦ dγ αβ

t

−1

2

d∑
α,β=1

∂g

∂t

(
t, Ũt Gt eα, Ũt Gt eβ

)
Eαβ dt

= −1

2

d∑
α,β=1

∂g

∂t

(
t, Ut eα, Ut eβ

)
Eαβ dt.

Uniqueness of U can be proved in the same way as in Proposition 2.2 	
.
Definition 3.3 The (g(t))t≥0-Riemann-parallel transport along an M-valued semi-
martingale X is the family of isomorphisms //s,t : TXs M → TXt M (0 ≤ s ≤ t)
defined by

//s,t := UtU
−1
s ,

where U is an arbitrary (g(t))t≥0-Riemann-horizontal lift of X .

Definition 3.4 Let X be an M-valued semimartingale, U0 an F0-measurable Og(0)
(M)-valued random variable with π U0 = X0, and U the unique (g(t))t≥0-Riemann-
horizontal lift of X starting at U0. The Rd -valued process

Zt :=
t∫

0

ϑ(◦ dUs)
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is called the (g(t))t≥0-Riemann-antidevelopment of X (or U ) with initial frame U0.

Remark 3.5 A (g(t))t≥0-Riemann-horizontal process U can be recovered from its
(g(t))t≥0-antidevelopment X and its initial value U0 as the solution to the SDE

dUt =
d∑

i=1

H∇(t)
i (Ut ) ◦ dZi

t − 1

2

d∑
α,β=1

∂g

∂t

(
t, Ut eα, Ut eβ

)
Vαβ(Ut ) dt,

where (Vα,β)d
α,β=1 are the canonical vertical vector fields defined as

V αβ f (u) = d

ds

∣∣∣
s=0

f
(
u(I + s Eαβ)

)

(I denoting the identity matrix).

Proof Noting that ωt (Vαβ) = Eαβ (by the definition of ωt ), this can be proved in the
same way as Remark 2.5. 	


Corollary 3.6 Let U be a (g(t))t≥0-Riemann-horizontal semimartingale, and X :=
π U. Then we have the following Itô formulas:

1. For all smooth functions f on R+ × F(M) we have

d ( f (t, Ut )) = ∂ f

∂t
(t, Ut ) dt +

d∑
i=1

H∇(t)
i f (t, Ut ) ◦ dZi

t

−1

2

d∑
α,β=1

∂g

∂t

(
t, Ut eα, Ut eβ

)
Vαβ f (t, Ut ) dt

= ∂ f

∂t
(t, Ut ) dt +

d∑
i=1

H∇(t)
i f (t, Ut ) dZi

t

+1

2

d∑
i, j=1

H∇(t)
i H∇(t)

j f (t, Ut ) d〈Zi , Z j 〉t

−1

2

d∑
α,β=1

∂g

∂t

(
t, Ut eα, Ut eβ

)
Vαβ f (t, Ut ) dt. (3.5)

2. For all smooth functions f on R+ × M we have

d( f (t, Xt )) = ∂ f

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei ) f (t, Xt ) ◦ dZi
t
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= ∂ f

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei ) f (t, Xt ) dZi
t

+1

2

d∑
i, j=1

Hess∇(t) f (Ut ei , Ut e j ) d〈Zi , Z j 〉t .

Proposition 3.7 Let U be a (g(t))t≥0-Riemann-horizontal semimartingale. If U0 ∈
Og(0)(M), then Ut ∈ Og(t)(M) for all t ≥ 0.

Proof We have to show that 〈Ut ei , Ut e j 〉g(t) is constant for all i, j ∈ {1, . . . , d}. To
do so, we fix i, j ∈ {1, . . . , d} and apply Itô’s formula (3.5) to the function f (t, u) :=
〈uei , ue j 〉g(t). Obviously,

∂ f

∂t
(t, u) = ∂g

∂t
(uei , ue j ).

Since f is constant along horizontal curves in F(M), we have

H∇(t)
i f = H∇(t)

i H∇(t)
j f = 0.

Finally, for u ∈ Og(t)(M),

V αβ f (t, u) = d

ds

∣∣∣
s=0

f
(
t, u(I + s Eαβ)

)

= d

ds

∣∣∣
s=0

〈u (I + s Eαβ

)
ei , u

(
I + s Eαβ

)
e j 〉g(t)

= d

ds

∣∣∣
s=0

〈(I + s Eαβ

)
ei ,
(
I + s Eαβ

)
e j 〉Rd

= 〈Eαβei , e j 〉Rd + 〈ei , Eαβe j 〉Rd

=

⎧⎪⎨
⎪⎩
2 if α = β = i = j,

1 if i �= j and (α = i, β = j or α = j, β = i) ,

0 otherwise,

so that

1

2

d∑
α,β=1

∂g

∂t
(t, ueα, ueβ)Vαβ f (t, u) = ∂g

∂t
(uei , ue j ) = −∂ f

∂t
(t, u).

	

Remark 3.8 In the situation of Proposition 3.2 let Z̃t := ∫ t

0 ϑ(◦ dŨs). Then

dZt = G−1
t ◦ d Z̃t . (3.6)

Proof This can be proved in the same way as Remark 2.7. 	


123



J Theor Probab (2015) 28:1038–1062 1047

Remark 3.9 Let X be an M-valued semimartingale and U0 an F0-measurable
Og(0)(M)-valued random variable with π U0 = X0. Then, X has on the one hand
a unique (∇(t))t≥0-horizontal lift U starting at U0, (∇(t))t≥0-parallel transports //

s,t (0 ≤ s ≤ t) and a (∇(t))t≥0-antidevelopment Z , and on the other hand a unique
(g(t))t≥0-Riemann-horizontal lift URiem starting at U0, (g(t))t≥0-Riemann-parallel
transports //Riems,t (0 ≤ s ≤ t) and a (g(t))t≥0-Riemann-antidevelopment ZRiem.
Proposition 3.2 implies that

d
(

U−1
t URiem

t

)
= −1

2
U−1

t

(
∂g

∂t

)#

URiem
t dt

and

d
(
//−1

0,t //
Riem
0,t

)
= −1

2
//−1

0,t

(
∂g

∂t

)#

//Riem0,t dt.

Moreover, in this case, the process γ defined in (2.2) resp. (3.2) and therefore also
the process G defined in (2.3) resp. (3.3) is of finite variation, so that the Stratonovich
differential appearing in (2.7) resp. (3.6) may be replaced by an Itô differential.

Remark 3.10 For the Stratonovich differential dXt , resp. Itô differential d∇(t) Xt of
X , as introduced in Remark 2.8, one observes that

dXt = Ut ◦ dZt = URiem
t ◦ dZRiem

t , and

d∇(t) Xt = Ut dZt = URiem
t dZRiem

t .

This follows directly fromRemark 3.8 or from a comparison of Corollaries 2.6 and 3.6.

4 Quadratic Variation and Integration of 1-Forms

Proposition 4.1 Let X be an M-valued semimartingale, U a (∇(t))t≥0-horizontal or
(g(t))t≥0-Riemann-horizontal lift of X, and Zt := ∫ t

0 ϑ( ◦ dUs) the corresponding
(∇(t))t≥0-antidevelopment resp. (g(t))t≥0-Riemann-antidevelopment. Then for every
adapted T ∗M ⊗ T ∗M-valued process B above X (i.e. Bt ∈ T ∗

Xt
M ⊗ T ∗

Xt
M for all

t ≥ 0) we have

t∫

0

Bs(dXs, dXs) =
d∑

i, j=1

t∫

0

Bs
(
Usei , Use j

)
d〈Zi , Z j 〉s .

Proof By [9, Lemma 7.56 (iv)] there exist  ∈ N, real-valued adapted processes
(Bμν)μ,ν=1 and functions h1, . . . , h ∈ C∞(M) such that Bt = ∑

μ,ν=1 Bμν
t (dhμ ⊗

dhν)(Xt ) for all t ≥ 0. It follows that
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t∫

0

Bs (dXs, dXs) =
∑

μ,ν=1

t∫

0

(
Bμν

s dhμ ⊗ dhν

)
(dXs, dXs)

=
∑

μ,ν=1

t∫

0

Bμν
s d〈hμ(X), hν(X)〉s .

Since by Itô’s formula (Corollary 2.6 resp. Corollary 3.6)

d〈hμ(X), hν(X)〉s =
d∑

i, j=1

(Usei )hμ(Xs)(Use j )hν(Xs) d〈Zi , Z j 〉s

=
d∑

i, j=1

(
dhμ ⊗ dhν

) (
Usei , Use j

)
d〈Zi , Z j 〉s,

the claim follows. 	

By choosing Bs = Hess∇(s) f (Xs) or (in the Riemannian case) Bs = g(s, Xs), we

obtain the following two corollaries:

Corollary 4.2 For all smooth functions f on R+ × M we have

d ( f (t, Xt )) = ∂ f

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei ) f (t, Xt ) dZi
t

+1

2
Hess∇(t) f (dXt , dXt ). (4.1)

Corollary 4.3 (Riemannian quadratic variation) In the Riemannian case,

t∫

0

g(s)(dXs, dXs) =
d∑

i=1

〈Zi , Zi 〉t .

Remark 4.4 For a smooth function f on M (independent of time), using that

d∑
i=1

(Ut ei ) f (Xt ) dZi
t =

d∑
i=1

(d f )Xt (Ut ei ) dZi
t = (d f )Xt (Ut dZt )

= (d f )Xt (d
∇(t) Xt ),

formula (4.1) reads as

d( f (Xt )) = (d f )Xt (d
∇(t) Xt ) + 1

2
Hess∇(t) f (dXt , dXt ), (4.2)

or more generally, replacing d f by a general 1-form α ∈ �(T ∗M) we obtain
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α(◦ dXt ) = α(d∇(t) Xt ) + 1

2
(∇(t)α)(dXt , dXt ). (4.3)

Formula (4.3) gives the relation between Itô and Stratonovich differential. In local
coordinates, we have formulas analogous to the time-independent case (see for
instance [3, p. 423]):

α(◦ dXt ) =
∑

i

αi (Xt ) dXi
t + 1

2

∑
i, j

∂αi

∂x j
(Xt ) d〈Xi

t , X j
t 〉, (4.4)

α(d∇(t) Xt ) =
∑

i

αi (Xt )
(
dXi

t + 1

2

∑
j,k

�i
jk(t, Xt ) d〈Xi

t , X j
t 〉
)

(4.5)

where �i
jk(t, · ) are the Christoffel symbols with respect of ∇(t).

Proposition 4.5 Let X be an M-valued semimartingale, U a (∇(t))t≥0-horizontal or
(g(t))t≥0-Riemann-horizontal lift of X, and Zt := ∫ t

0 ϑ( ◦ dUs) the corresponding
(∇(t))t≥0-antidevelopment resp. (g(t))t≥0-Riemann-antidevelopment. Then for every
adapted T ∗M-valued process � above X (i.e. �t ∈ T ∗

Xt
M for all t ≥ 0) we have

t∫

0

�s(◦ dXs) =
d∑

i=1

t∫

0

�s(Usei ) ◦ dZi
s .

Proof By [9, Lemma 7.56 (v)], there exist  ∈ N, real-valued adapted processes
�1, . . . , � and functions h1, . . . , h ∈ C∞(M) such that �t = ∑

ν=1 �ν
t dhν(Xt )

for all t ≥ 0. It follows that

t∫

0

�s(◦ dXs) =
∑

ν=1

t∫

0

(
�ν

s dhν

)
(◦ dXs)

=
∑

ν=1

t∫

0

�ν
s ◦ dhν(Xs).

Since by Itô’s formula (Corollary 2.6 resp. Corollary 3.6)

dhν(Xs) =
d∑

i=1

dhν(Usei ) ◦ dZi
s,

the claim follows. 	

Remark 4.6 In the situation of Proposition 4.5, repeating the calculation with Itô
differentials and taking into account (4.2), resp. (4.2), we obtain the analogous formula
for the Itô integral:
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t∫

0

�s(d
∇(s) Xs) =

d∑
i=1

t∫

0

�s(Usei ) dZi
s .

See Émery [6, Chapter VII] for the general framework.

By choosing �s = α(Xs) for α ∈ �(T ∗M), we have the following corollary:

Corollary 4.7 (Itô and Stratonovich integration of 1-forms along a semimartingale)
Let X be an M-valued semimartingale, U a ∇(t)-horizontal lift and Z the ∇(t)-
antidevelopment of X, resp. URiem a g(t)-Riemann-horizontal lift and ZRiem the cor-
responding g(t)-antidevelopment of X. Then for each α ∈ �(T ∗M) the following
formulas hold:

t∫

0

α(◦ dXs) =
d∑

i=1

t∫

0

α(Xs)(Usei ) ◦ dZi
s

=
d∑

i=1

t∫

0

α (Xs)
(

URiem
s ei

)
◦ d

(
ZRiem

)i

s

t∫

0

α(d∇(s) Xs) =
d∑

i=1

t∫

0

α(Xs)(Usei ) dZi
s

=
d∑

i=1

t∫

0

α (Xs)
(

URiem
s ei

)
d
(

ZRiem
)i

s
.

5 Martingales on Manifolds with Time-Dependent Connection

Proposition 5.1 (cf. [9, Satz 7.147 (i)] for the case of a fixed connection) Let X be
an M-valued semimartingale. Then the following conditions are equivalent:

1. The (∇(t))t≥0-antidevelopment of X is an R
d -valued local martingale.

2. For any smooth f : M → R the process

f (Xt ) − f (X0) − 1

2

t∫

0

Hess∇(s) f (dXs, dXs), t ≥ 0,

is a real-valued local martingale.
3. For any α ∈ �(T ∗M) the process

t∫

0

α(d∇(s) Xs), t ≥ 0,
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is a real-valued local martingale.

Moreover, in the Riemannian case, these conditions are equivalent to the condition
that the (g(t))t≥0-Riemann-antidevelopment of X is an R

d-valued local martingale.

Definition 5.2 X is called a (∇(t))t≥0-martingale if the equivalent conditions of
Proposition 5.1 are satisfied.

Proof of Proposition 5.1 Let Z be the (∇(t))t≥0-antidevelopment or (g(t))t≥0-
Riemann-antidevelopment of X , and f ∈ C∞(M). Then by Corollary 4.2

f (Xt ) − f (X0) − 1

2

t∫

0

Hess∇(s) f (dXs, dXs) =
d∑

i=1

t∫

0

(Usei ) f (Xs)dZi
s .

This is a local martingale for all f ∈ C∞(M) if and only if Z is an R
d -valued local

martingale. The equivalence with the third item is clear from Corollary 4.7. 	

Proposition 5.3 (Local expression) A semimartingale X is a (∇(t))t≥0-martingale if
and only if in local coordinates

dXi
t = −1

2

∑
jk

�i
jk(t, Xt ) d〈X j , Xk〉t

up to the differential of a local martingale.

Proof This can be proved in the same way as in the case of a fixed connection (see
e.g. [7, Proposition 3.7]), or derived directly from the representation (4.5) in local
coordinates. 	

Example 5.4 Let M = R equipped with the standard metric g0, and let u be a
strictly positive smooth function on R+ × R. Define the metric g(t, ·) by g(t, x) =
u(t, x)g0(x), and let ∇(t) be its Levi-Civita connection. Let b and σ be smooth func-
tions on R+ × R, and X the solution to the SDE

dXt = b(t, Xt )dt + σ(t, Xt )dWt ,

where W is a standard one-dimensional Brownian motion. Then, X is a (∇(t))t≥0-
martingale if and only if

b = −u′σ 2

4u

on {(t, Xt ) | t ≥ 0} (the prime denotes differentiation with respect to x).

Proof Taking into account that the unique Christoffel symbol of ∇(t) equals u′/(2u),
the claim follows immediately from Proposition 5.3. 	
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6 Convergence of Martingales

6.1 Local Convergence

Proposition 6.1 (cf. [9, Lemma 7.187] or [10, Theorem 2.5.6] for the case of a fixed
connection) Let U ⊆ M be an open subset with the following property: There exists
a smooth function ϕ = (ϕ1, . . . , ϕd) : M → R

d such that

• ϕ|U is bounded,
• ϕ|U is a diffeomorphism onto its image, and
• Hess∇(t) ϕi (x) ≥ 0 for all i ∈ {1, . . . , d}, all x ∈ U and all t ≥ 0.

Then each (∇(t))t≥0-martingale X converges almost surely on the set

�0 := {X lies eventually in U } .

Remark 6.2 In the case of a fixed connection, each point x ∈ M has a neighbourhood
U with that property (see e.g. [9, Lemma 7.187] or [10, Theorem 2.5.6]).

Proof of Proposition 6.1 By Definition 5.2 for each i ∈ {1, . . . , d}, there exists a
real-valued local martingale Mi such that

ϕi (Xt ) = ϕi (X0) + Mi
t + Ai

t ,

where Ai
t := 1

2

t∫
0
Hess∇(s)ϕi (dXs, dXs).

Since Hess∇(s) ϕi ≥ 0 on U , the process A is eventually non-decreasing and in
particular bounded from below on �0. Since ϕi |U is bounded, it follows that the local
martingale Mi is bounded from above and hence convergent on �0 (because it is a
time-changed Brownian motion). This implies that the process Ai is bounded and
hence convergent on �0 (since it is eventually non-decreasing). Consequently, the
process ϕi (X) converges on �0, and, since ϕ|U is a diffeomorphism onto its image,
so does the process X .

6.2 Darling–Zheng

An important result of martingale theory in the case of a fixed connection is the
convergence theorem of Darling and Zheng (see e.g. [9, Satz 7.190]): let X be an M-
valuedmartingalewith respect to a fixed connection∇, and g0 an arbitraryRiemannian
metric on M . Then

{
X∞ exists in M

}
⊂
⎧⎨
⎩

∞∫

0

g0(dXs, dXs) < ∞
⎫⎬
⎭ ⊂

{
X∞ exists in M̂

}
, (6.1)
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where M̂ is the Alexandrov compactification of M . In the case of a time-dependent
connection, at least the second inclusion does not hold. To see this, consider the
following example:

Example 6.3 In the situation of Example 5.4 take u(t, x) = exp(a(t)x), σ (t, x) =
σ(t) and b(t, x) = − 1

4a(t)σ 2(t) with smooth functions a, σ : R+ → R. Then, X is a
(∇(t))t≥0-martingale, and

Xt = X0 − 1

4

t∫

0

a(s)σ (s)2ds +
t∫

0

σ(s)dWs,

so that
∫ t
0 g0(dXs, dXs) = ∫ t

0 σ(s)2ds. Ifσ is chosen in such away that
∫∞
0 σ(s)2ds <

∞, then
∫∞
0 g0(dXs, dXs) < ∞, but the function a (being arbitrary) can be chosen

in such a way that X does not converge in R̂.

In the Riemannian case, one might hope that the second inclusion of (6.1) holds if
we replace the arbitrary fixed metric g0 with the given metrics (g(s))s≥0, i.e. that

⎧⎨
⎩

∞∫

0

g(s)(dXs, dXs) < ∞
⎫⎬
⎭ ⊂

{
X∞ exists in M̂

}
.

This, however, turns out to be wrong as well:

Example 6.4 In the situation of Example 5.4 take u(t, x) = u(t), σ (t, x) ≡ 1 and
b(t, x) ≡ 0. Then X is a (∇(t))t≥0-martingale, and

Xt = X0 + Wt ,

so that
∫ t
0 g(s)(dXs, dXs) = ∫ t

0 u(s)ds. If u is chosen in such a way that
∫∞
0 u(s)ds <

∞, then
∫∞
0 g(s)(dXs, dXs) < ∞, but obviously X does not converge in R̂.

7 Uniqueness of Martingales with Given Terminal Value

Proposition 7.1 (cf. [9, Lemma 7.204] for the case of a fixed connection) Let M0 be
a submanifold of M which is totally geodesic in M with respect to ∇(t) for all t . Then
for each x0 ∈ M0 and each T ≥ 0 there exist an open neighbourhood V of x0 in M
and a non-negative function f ∈ C∞(V ) satisfying

f (x) = 0 ⇐⇒ x ∈ M0

and

Hess∇(s) f (x) ≥ 0 (7.1)

for all s ∈ [0, T ] and all x ∈ V .
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Proof Let d0 := dim M0. Choose coordinates x1, . . . , xd for M on a neighbourhood
O of x0 in such a way that

O ∩ M0 = O ∩ {xd0+1 = . . . = xd = 0
}
. (7.2)

We will show that for sufficiently small c > 0 the function

f (x) := 1

2

(
c2 + |x̃ |2

)
|x̂ |2,

where x̃ := (x1, . . . , xd0) and x̂ := (xd0+1, . . . , xd) does the job on a possibly smaller
neighbourhood V of x0. All we have to show is that (7.1) holds provided one chooses
c and V small enough.

Let �k
i j (s, x) be the Christoffel symbols with respect to ∇(s). Since M0 is totally

geodesic and because of (7.2) one has

�k
i j (s, x) = 0, i, j ≤ d0, k ≥ d0 + 1

for all s ≥ 0 and all x ∈ O ∩ M0. By the compactness of [0, T ], this implies the
existence of a constant C < ∞ such that

|�k
i j (s, x)| ≤ C |x̂ |, i, j ≤ d0, k ≥ d0 + 1. (7.3)

Since

Hess∇(s) f (x) =
d∑

i, j=1

Hi j (s, x) dxi ⊗ dx j ,

where

Hi j (s, x) := ∂2 f

∂xi∂x j
(x) −

d∑
k=1

�k
i j (s, x)

∂ f

∂xk
(x),

it suffices to show that the matrix H(s, x) is positive definite for all s ∈ [0, T ] and all
x ∈ V \ M0, provided that c and V are chosen small enough. Using the decomposition
of {1, . . . , d} into I = {1, . . . , d0} and J = {d0 + 1, . . . , d}, this is true if and only if
the same statement holds for the block matrix H∗(s, x) defined by

H∗(s, x) :=

⎛
⎜⎜⎜⎝

1

|x̂ |2 (Hi j (s, x))(i, j)∈I×I
1

c |x̂ | (Hi j (s, x))(i, j)∈I×J

1

c |x̂ | (Hi j (s, x))(i, j)∈J×I
1

c2
(Hi j (s, x))(i, j)∈J×J

⎞
⎟⎟⎟⎠
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(use the general fact that for any c > 0, a symmetric block matrix

(
A B
B C

)
is positive

definite if and only if the matrix

(
A cB

cB c2C

)
has this property).

Since

∂ f

∂xk
(x) =

{
xk |x̂ |2 1 ≤ k ≤ d0,

xk(c2 + |x̃ |2) d0 + 1 ≤ k ≤ d,

and

∂2 f

∂xi∂x j
(x) =

⎧⎪⎨
⎪⎩

δi j |x̂ |2 1 ≤ i, j ≤ d0,

2xi x j 1 ≤ i ≤ d0 and d0 + 1 ≤ j ≤ d,

δi j (c2 + |x̃ |2) d0 + 1 ≤ i, j ≤ d,

we obtain on [0, T ] × (O \ M0), using (7.3),

H∗(s, x)i j = δi j −
d0∑

k=1

�k
i j (s, x)xk −

(
c2 + |x̃ |2)

|x̂ |2
d∑

k=d0+1

�k
i j (s, x)xk

= δi j + O
(
|x̃ | + c2

)
if i, j ≤ d0,

H∗(s, x)i j = 2xi x j

c|x̂ | − |x̂ |
c

d0∑
k=1

�k
i j (s, x)xk −

(
c

|x̂ | + |x̃ |2
c|x̂ |

) d∑
k=d0+1

�k
i j (s, x)xk

= O

(
|x̃ | + |x̃ ||x̂ |

c
+ c|x̂ |

)
if i ≤ d0, j ≥ d0 + 1,

H∗(s, x)i j = δi j

(
1+|x̃ |2

c2

)
−|x̂ |2

c2

d0∑
k=1

�k
i j (s, x)xk−

(
1 + |x̃ |2

|x̂ |2
) d∑

k=d0+1

�k
i j (s, x)xk

= δi j + O

( |x̃ |2
c2

+ |x̃ ||x̂ |2
c2

+ |x̂ |2
)

if i, j ≥ d0 + 1.

This implies that

lim
c→0

lim
x→x0

H∗(s, x) = I

uniformly in s ∈ [0, T ], so that on [0, T ] × (V \ M0) the matrix H∗(s, x) is positive
definite provided that c and V are small enough (the choice of V has to depend on the
choice of c). 	

Corollary 7.2 Let M0 be submanifold of M which is totally geodesic in M with respect
to ∇(t) for all t . Then given T > 0 each point x0 ∈ M0 has an open neighbourhood
V in M with the following property: If X is a V -valued (∇(t))t≥0-martingale such
that a.s. XT ∈ M0, then a.s. Xt ∈ M0 for all t ∈ [0, T ].
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Proof Choose V and f as in Proposition 7.1. Then f (X) is a non-negative submartin-
gale with f (XT ) = 0 a.s., hence f (X) ≡ 0 a.s. on [0, T ]. 	

Corollary 7.3 (Uniqueness of (∇(t))t≥0-martingales with given terminal value)
Given T > 0 each point x ∈ M has an open neighbourhood V with the following
property: If X and Y are two V -valued (∇(t))t≥0-martingales such that a.s. XT = YT ,
then a.s. Xt = Yt for all t ∈ [0, T ].
Proof Apply Corollary 7.2 to the diagonal embedding of M into M × M equipped
with the product connections ∇(t) ⊗ ∇(t). 	


8 Behaviour of Semimartingales Under Maps

Proposition 8.1 (cf. [9, Satz 7.156] for the case of fixed connections) Let N be
another manifold, also equipped with a smooth family of connections (∇̃(t))t≥0,
and let f ∈ C∞(R+ × M, N ). Let X be a semimartingale on M, U a (∇(t))t≥0-
horizontal or (g(t))t≥0-Riemann-horizontal lift of X, and Z the corresponding
(∇(t))t≥0-antidevelopment or (g(t))t≥0-Riemann-antidevelopment. Moreover, let Ũ
be a (∇̃(t))t≥0-horizontal or (g̃(t))t≥0-Riemann-horizontal lift of the image process
X̃t := f (t, Xt ), and Z̃ the corresponding (∇̃(t))t≥0-antidevelopment or (g̃(t))t≥0-
Riemann-antidevelopment. Then the following formula holds:

d Z̃t = Ũ−1
t

∂ f

∂t
(t, Xt ) dt + Ũ−1

t d f Ut dZt

+1

2
Ũ−1

t Hess∇(t),∇̃(t) f (t, Xt )(dXt , dXt ). (8.1)

Proof Let n := dim N and ϕ ∈ C∞(N ). Then by Corollary 4.2 and the pullback
formula for the quadratic variation (see e.g. [9, Satz 7.61]),

dϕ(X̃t ) =
n∑

k=1

(
Ũt ek

)
ϕ(X̃t ) d Z̃ k

t + 1

2
Hess∇̃(t)ϕ

(
d X̃t , d X̃t

)

=
n∑

k=1

(
Ũt ek

)
ϕ(X̃t ) d Z̃ k

t + 1

2

(
f ∗ Hess∇̃(t)ϕ

)
(d Xt , dXt ) . (8.2)

On the other hand, using the Hessian composition formula

Hess∇(t)(ϕ ◦ f ) = dϕ ◦ Hess∇(t),∇̃(t) f + f ∗ Hess∇̃(t) ϕ

(see e.g. [9, Satz 7.155]), we obtain

dϕ(X̃t ) = d(ϕ ◦ f )(t, Xt )

= ∂(ϕ ◦ f )

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei )(ϕ ◦ f )(t, Xt ) dZi
t
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+1

2

d∑
i, j=1

Hess∇(t)(ϕ ◦ f )(dXt , dXt )

= ∂(ϕ ◦ f )

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei )(ϕ ◦ f )(t, Xt ) dZi
t

+1

2

(
dϕ ◦ Hess∇(t),∇̃(t) f

)
(dXt , dXt )

+1

2

(
f ∗ Hess∇̃(t)ϕ

)
(dXt , dXt ). (8.3)

Combining (8.2) and (8.3) we obtain

n∑
k=1

(
Ũt ek

)
ϕ(X̃t ) d Z̃ k

t = ∂(ϕ ◦ f )

∂t
(t, Xt ) dt +

d∑
i=1

(Ut ei )(ϕ ◦ f )(t, Xt ) dZi
t

+ 1

2

(
dϕ ◦ Hess∇(t),∇̃(t) f

)
(dXt , dXt ).

Since this holds for all ϕ ∈ C∞(N ), it follows that

n∑
k=1

(
Ũt ek

)
d Z̃ k

t = ∂ f

∂t
(t, Xt ) dt +

d∑
i=1

d f (t, Ut ei ) dZi
t

+1

2
Hess∇(t),∇̃(t) f (dXt , dXt )

and hence

d Z̃t = Ũ−1
t

∂ f

∂t
(t, Xt ) dt + Ũ−1

t d f Ut dZt + 1

2
Ũ−1

t Hess∇(t),∇̃(t) f (t, Xt )(dXt , dXt ).

	

Corollary 8.2 If the connections ∇(t) are the Levi-Civita connections of Riemannian
metrics g(t) and if X is a (g(t))t≥0-Brownian motion (whose (g(t))t≥0-Riemann-
antidevelopment W is a Euclidean Brownian motion), then

d Z̃t = Ũ−1
t

(
∂ f

∂t
+ 1

2
�g(t),∇̃(t) f

)
(t, Xt )dt + Ũ−1

t d f Ut dWt , (8.4)

where �g(t),∇̃(t)u is the tension field of u with respect to g(t) and ∇̃(t).

Corollary 8.3 The function f maps (g(t))t≥0-Brownian motions to (∇(t))t≥0-
martingales if and only if

∂ f

∂t
+ 1

2
�g(t),∇̃(t) f = 0
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for all t ≥ 0.

Remark 8.4 In the situation of Proposition 8.1, one may consider the “intrinsic” anti-
developments of X , respectively X̃ , defined by

At := U0Zt , respectively Ãt := Ũ0 Z̃t ,

which take values in T M
X0
, respectively TX̃0

N . Note that,

dAt = //−1
0,t ◦ dXt , respectively dÃt = ˜//−1

0,t ◦ d X̃t ,

where //0,t ≡ UtU
−1
0 and /̃/0,t ≡ Ũt Ũ

−1
0 denote the parallel transports along X ,

respectively X̃ . Then, formula (8.1) reads more intrinsically as

dÃt = ˜//−1
0,t

∂ f

∂t
(t, Xt ) dt + ˜//−1

0,t d f //0,tdAt

+1

2
˜//−1
0,t Hess∇(t),∇̃(t) f (t, Xt )(dXt , dXt ). (8.5)

The same remark applies to formula (8.4) which then reads as

dÃt = ˜//−1
0,t

(
∂ f

∂t
+ 1

2
�g(t),∇̃(t) f

)
(t, Xt )dt + ˜//−1

0,t d f //0,tdAt .

Recall that in this formula, At = U0Wt is a Euclidean Brownian motion in TX0 M .

Remark 8.5 In terms of Itô differentials (see Remark 3.10 above)

d∇(t) Xt = //0,t dAt , respectively d∇̃(t) X̃t = ˜//−1
0,t dAt ,

formula (8.5) simplifies to

d∇̃(t) X̃t = ∂ f

∂t
(t, Xt ) dt + d f

(
d∇(t) Xt

)

+1

2
Hess∇(t),∇̃(t) f (t, Xt )(dXt , dXt ). (8.6)

9 Derivative Processes, Martingales on the Tangent Bundle and Applications to
the Non-linear Heat Equation

In this section, we assume for simplicity that the connections ∇(t) are torsion-free.
Let∇′(t) the complete and∇h(t) the horizontal lift of∇(t) to the tangent bundle T M .
In the same way as in [4], one can obtain the following results.

Theorem 9.1 (cf. [4, Theorem 3.1] for the case of a fixed connection) Let I be an
open interval containing 0 and (Xt (s))t≥0,s∈I a C1-family of continuous M-valued
(∇(t))t≥0-martingales. Then the T M-valued derivative process (X ′

t )t≥0 defined by
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X ′
t := ∂

∂s

∣∣∣
s=0

Xt (s)

is a (∇′(t))t≥0-martingale.

Theorem 9.2 (cf. [4, Corollary 4.4] for the case of a fixed connection) A T M-valued
semimartingale J is a (∇h(t))t≥0-martingale if and only if

1. its projection X to M is a (∇(t))t≥0-martingale, and

2. d(//−1
0,t Jt )

m= 0.

Theorem 9.3 (cf. [4, Theorem 4.12] for the case of a fixed connection) A T M-valued
semimartingale J is a (∇′(t))t≥0-martingale if and only if

1. its projection X to M is a (∇(t))t≥0-martingale, and

2. d(�−1
0,t Jt )

m= 0, where �0,t : TX0 M → TXt M denotes the damped parallel
transport along X, defined by the covariant equation

d
(
//−1

0,t �0,t

)
= −1

2
//−1

0,t R∇(t) (�0,t , dXt
)
dXt , �0,0 = IdTX0 M .

Remark 9.4 In the Riemannian case, the condition d(//−1
0,t Jt )

m= 0 in Theorem 9.2 can

also be expressed using the Riemann-parallel transport //Riem0,t ; using Remark 3.9 one
obtains that it is equivalent to

d

((
//Riem0,t

)−1
Jt

)
m= 1

2

(
//Riem0,t

)−1
(

∂g

∂t

)#

Jt dt.

Similarly, the equation defining the damped parallel transport is equivalent to

d

((
//Riem0,t

)−1
�0,t

)
= 1

2

(
//Riem0,t

)−1
(

∂g

∂t

)#

�0,t dt

−1

2

(
//Riem0,t

)−1
Rg(t)(�0,t , dXt )dXt . (9.1)

If X is a (g(t))t≥0-Brownian motion, (9.1) simplifies to

d

((
//Riem0,t

)−1
�0,t

)
= 1

2

(
//Riem0,t

)−1
((

∂g

∂t

)#

− (Ricg(t))#

)
�0,tdt, (9.2)

which coincides with the expression given in [1, Definition 2.1] and [5, Definition 3.1].

Combining Theorems 9.1 and 9.3, one obtains

Corollary 9.5 Let I be an open interval containing 0, (Xt (s))s∈I a C1-family of con-
tinuous M-valued martingales, Xt := Xt (0), and (X ′

t )t≥0 the T M-valued derivative
process defined by X ′

t := ∂
∂s |s=0Xt (s). Then the process (�−1

0,t X ′
t )t≥0 is a TX0 M-

valued local martingale.
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Let now N be another differentiable manifold and T1 < T2. Let (g(t))T1≤t≤T2 be a
smooth family of Riemannian metrics on M, ∇(t) the Levi-Civita connection of g(t)
and (∇̃(t))T1≤t≤T2 a smooth family of connections on N . Let u : [T1, T2] × M → N
be a solution of the non-linear heat equation

∂u

∂t
= 1

2
�g(t),∇̃(t)u. (9.3)

We fix x ∈ M , let (Xt )0≤t≤T2−T1 be an M-valued (g(T2 − t))0≤t≤T2−T1 -Brownian
motion starting at x , and define

X̃t := u(T2 − t, Xt ), 0 ≤ t ≤ T2 − T1.

Proposition 9.6 (cf. [4, (5.22)] for the case of fixed Riemannian metrics) Let

u : [T1, T2] × M → N

be a solution of Eq. (9.3). Let �0,t : Tx M → TXt M be the damped parallel transport
along X, and �̃0,t : TX̃0

N → TX̃t
N the damped parallel transport along X̃ , where X

and X̃ are defined as above. Then for each v ∈ Tx M the Tu(T,x)N-valued process

�̃−1
0,t du(T2 − t, Xt )�0,t v, 0 ≤ t ≤ T2 − T1,

is a local martingale.

Proof Let γ : R → M be a smooth curve with γ (0) = x and γ̇ (0) = v. By [2,
Theorem 3.1] there exists a smooth family (Xt (s))0≤t≤T2−T1, s∈R of M-valued (g(T2−
t))0≤t≤T2−T1 -Brownian motions satisfying X0(s) = γ (s) for all s ∈ R, Xt (0) = Xt

for all t ∈ [0, T2 − T1] and

∂

∂s

∣∣∣
s=0

Xt (s) = �0,tv.

Let

X̃t (s) := u(T2 − t, Xt (s)).

By Corollary 8.3, the process (X̃t (s))0≤t≤T2−T1 is an N -valued (∇̃(T2− t))0≤t≤T2−T1 -
martingale for each s ∈ R. Moreover,

∂

∂s

∣∣∣
s=0

X̃t (s) = du(T2 − t, Xt )
∂

∂s

∣∣∣
s=0

Xt (s) = du(T2 − t, Xt )�0,tv.

Therefore, the result follows immediately from Corollary 9.5. 	
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Remark 9.7 If the local martingale in Proposition 9.6 is a true martingale, we obtain
the stochastic representation formula

du(T2, x) = E
[
�̃−1

0,T2−T1
du(T1, XT2−T1)�0,T2−T1

]
. (9.4)

Theorem 9.8 Let M be a connected differentiable manifold equipped with a smooth
family (g(t))−∞<t≤T of Riemannian metrics satisfying

∂g

∂t
+ Ricg(t) ≥ K > 0 (9.5)

(uniformly strict super Ricci flow), and let (N , g̃) be a Riemannian manifold of non-
positive sectional curvature. Then every ancient solution u : (−∞, T ] × M → N of
the non-linear heat equation

∂u

∂t
= 1

2
�g(t),g̃u

whose differential is bounded is constant.

Proof of Theorem 9.8. The curvature conditions imply that ‖�0,s‖ ≤ e−K1s/2 and
‖�̃−1

0,s‖ ≤ 1, so that the local martingale in Proposition 9.6 is bounded and hence a
true martingale. The representation formula (9.4) then implies that

‖du(t, x)‖g̃ ≤ e−K s/2 sup
y∈M

‖du(t − s, y)‖.

The claim now follows from letting s → ∞. 	

Remark 9.9 More refined representation formulas and Liouville theorems for the non-
linear heat equation in the spirit of [17] can be found in our recent preprint [8].
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