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Abstract In this paper, we study gradient solitons to the Ricci flow coupled with harmonic map heat

flow. We derive new identities on solitons similar to those on gradient solitons of the Ricci flow. When

the soliton is compact, we get a classification result. We also discuss the relation with quasi-Einstein

manifolds.
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1 Introduction

In recent years, various geometric flows have been studied extensively. In [11], Müller introduced
a new flow generalizing Hamilton’s Ricci flow, called the Ricci flow coupled with harmonic map
heat flow, which we call Ricci–Harmonic flow or RH flow for short in the sequel. In addition to
sharing many good properties with the Ricci flow, the RH flow is less singular than the Ricci
flow or the harmonic map flow alone. See [11] for details, as well as [8, 13] for results and
examples of this coupled flow. In [6], we developed a stochastic approach to the harmonic map
heat flow on manifolds with time-dependent metric; there, however, the evolution of the metric
is not coupled to the heat flow.

We start by briefly introducing the setting and our notations. Let (M, g(t)) and (N, h) be
two Riemannian manifolds of dimension m and n, respectively. The metric g(t) evolves along
the RH flow equation on M , and h is a static metric on the target manifold N . In addition, let
c(t) denote a nonnegative time-dependent constant, φ(t) : M → N a time-dependent map and
τ (φ) = trace∇dφ the tension field of φ.
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The RH flow is the coupled system
⎧
⎪⎨

⎪⎩

∂g

∂t
= −2Rc + 2c(t) dφ ⊗ dφ,

∂φ

∂t
= τ (φ),

(1.1)

where dφ⊗dφ = φ∗h is the pullback of h via φ. In this paper, we use both notations to respect
the original reference.

As in Hamilton’s Ricci flow, it is important to study self-similar solutions, i.e., solutions
that change only by diffeomorphisms and rescaling. The simplest self-similar solutions are the
gradient solitons which associate canonical solutions to the RH flow, see [11]. There are two
methods to study gradient solitons: one is to treat them as static manifolds, and the other is
to associate them with canonical solutions to the flow.

In this article, we will study solitons with respect to a fixed metric on M . The following
definition is taken from [11].

Definition 1.1 Assume that (M, g) and (N, h) are two static Riemannian manifolds and let
φ : M → N be a smooth map. If there is a nonnegative constant c, a smooth function f : M → R

and a constant σ such that

Rc − c dφ ⊗ dφ + Hessf + σg = 0, (1.2)

τ (φ) − dφ (∇f) = 0, (1.3)

then ((M, g), (N, h), φ, f, σ) is called a gradient RH soliton and f a potential function. The
soliton is called shrinking, steady or expanding for σ < 0, σ = 0 or σ > 0, respectively.

As in Ricci flow, on a gradient RH soliton ((M, g), (N, h), φ, f, σ) one can construct a self-
similar solution to (1.1) which changes only by diffeomorphisms and rescalings. Here the dif-
feomorphism is generated by ∇f and the rescaling factor is determined by σ.

We now list examples of gradient RH solitons.
(i) Gradient RH solitons cover the case of gradient solitons to the Ricci flow. Indeed, letting

φ be a constant map in Definition 1.1, the RH soliton equations reduce to the gradient Ricci
soliton equation.

(ii) Let φ : M → N be a harmonic map and f = const. Then the RH soliton equations
reduce to the condition

Rc − c dφ ⊗ dφ + σg = 0, (1.4)

which generalizes the notion of Einstein manifold. For instance, let (M, g) be an Einstein
manifold, i.e., Rc = αg for some constant α, and Id: M → M the identity map which is
trivially harmonic. Then ((M, g), (M, g), Id, const, σ) satisfies (1.4) with σ = c − α. Likewise,
one may take (N, h) = (R, can) with φ and f constant functions, then the RH soliton equations
reduce to Rc + σg = 0.

(iii) Assume (M, g) is a Riemannian manifold with strictly positive Ricci curvature. Then
it is known that Id: (M, g) → (M, Rc) is harmonic, see [1, Chapter 10, Section 2]. Hence, (1.4)
holds for c = 1 and σ = 0. Thus ((M, g), (M, Rc), Id, const, 0) is a steady RH soliton with c = 1.

Recently, there have been some papers generalizing gradient Ricci solitons, for instance
[2, 12] on almost Ricci solitons, [3] on quasi-Einstein manifolds and [7] on generalized quasi-
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Einstein manifolds. The gradient RH soliton is a generalization of gradient Ricci solitons in a
different way.

In this article, we will use Ricci flow techniques to study gradient RH solitons. We note
that in [4, 14] some results on RH solitons were obtained.

2 Identities on Gradient RH Solitons

In this section, we derive first identities on gradient RH solitons. To simplify notations, we
define a symmetric two tensor

S � Rc − c dφ ⊗ dφ

and S � traceS = R − c |dφ|2 where |dφ|2 = gijhαβ∂iφ
α∂jφ

β .
We first derive a formula generalizing the corresponding formula in gradient Ricci solitons.

Lemma 2.1 On a gradient RH soliton, we have

S (∇f, ·) =
1
2

dS. (2.1)

Proof Identity (2.1) can be found implicitly in [10, Chapter 4]. For the sake of completeness,
we include a different proof here. The proof is a direct calculation based on the soliton equations
(1.2) and (1.3). Tracing (1.2) with respect to the metric g, we have

R − c |dφ|2 + Δf + mσ = 0. (2.2)

Taking divergence of (1.2), we get

Div(Rc) − c Div (dφ ⊗ dφ) + Div(Hessf) = 0. (2.3)

In the above, by the contracted second Bianchi identity, we have Div(Rc) = dR/2. For the
second term, we have

Div (dφ ⊗ dφ) = τ (φ)dφ +
1
2

d|dφ|2. (2.4)

Identity (2.4) will be proved in the appendix using local coordinates. By Bochner’s formula
and (2.2), the third term in (2.2) writes as

Div(Hessf) = dΔf + Rc(∇f, ·) = −d
(
R − c|dφ|2) + Rc(∇f, ·).

Plugging into (2.3), we get

1
2

dR − c

(

τ (φ)dφ +
1
2

d|dφ|2
)

− d
(
R − c|dφ|2) + Rc(∇f, ·) = 0,

or
−1

2
dR +

c

2
d|dφ|2 − cτ (φ)dφ + Rc(∇f, ·) = 0.

Using τ (φ) = dφ(∇f), we finally have

(Rc − c dφ ⊗ dφ) (∇f, ·) =
1
2

d
(
R − c |dφ|2) .

According to our notations, this completes the proof. �
The main result of this section is the following new identity.

Theorem 2.2 On a gradient RH soliton, there holds

ΔS + 2|S |2 − dS(∇f) + 2σS + 2c |dφ(∇f)|2 = 0. (2.5)



Gradient Solitons of the Ricci–Harmonic Flow 1801

Proof By (1.2), one gets

Rc(∇f, ·) = c dφ ⊗ dφ(∇f, ·) − Hessf(∇f, ·) − σdf.

The above combined with (2.1) yields

c dφ ⊗ dφ(∇f, ·) − Hessf(∇f, ·) − σdf =
1
2

dS + c dφ ⊗ dφ(∇f, ·).
Using d|∇f |2 = 2Hessf (∇f, ·), one gets

d
(
S + |∇f |2 + 2σf

)
= 0. (2.6)

Taking divergence of (2.6), we have

0 = ΔS + 2σΔf + Δ|∇f |2
= ΔS + 2σΔf + 2|Hessf |2 + 2Rc(∇f,∇f) + 2d(Δf)(∇f)

= ΔS + 2σ (−S − mσ) + 2|S + σg|2 + dS(∇f) + 2c dφ ⊗ dφ(∇f,∇f) − 2dS(∇f)

= ΔS + 2σS + 2|S |2 − dS(∇f) + 2c |dφ(∇f)|2,
where we used (2.1), or equivalently,

Rc(∇f, ·) = c dφ ⊗ dφ(∇f, ·) + dS/2

for the third equality. �

3 On Compact Gradient RH Solitons

In this section, we use (2.5) to prove results for compact solitons.

Theorem 3.1 Assume that ((M, g), (N, h), φ, f, σ) is a gradient RH soliton. If M is compact,
then we have Smin = 0 in the steady case; in the shrinking case 0 ≤ Smin ≤ −mσ and in
particular S ≥ 0; in the expanding case −mσ ≤ Smin ≤ 0 and in particular S ≥ −mσ.

Proof Using |S |2 ≥ S2/m and dropping the last term in (2.5), we get

ΔS +
2
m

S2 + 2σS − dS(∇f) ≤ 0. (3.1)

When M is compact, there is a point p0 ∈ M such that S attains its minimum Smin in p0. At
the point p0, we have ΔS(p0) ≥ 0 and dS(p0) = 0. By (3.1), we obtain

2
m

S2
min + 2σSmin ≤ 0.

Thus if σ = 0, we have Smin = 0. If σ < 0, we have 0 ≤ Smin ≤ −mσ. If σ > 0, we have
−mσ ≤ Smin ≤ 0. �

Corollary 3.2 Assume that M is compact and ((M, g), (N, h), φ, f, σ) is a steady or expanding
soliton, then f is constant, φ is a harmonic map and Rc = c dφ ⊗ dφ − σg.

Proof On gradient RH solitons, we have Δf = −S−mσ. In the steady case, one has S ≥ 0 and
σ = 0 and thus Δf ≤ 0. In the expanding case, one has S ≥ −mσ and thus Δf = −S−mσ ≤ 0.
Hence on either steady or expanding solitons, we find that f is subharmonic. Since M is
compact, we get that f must be a constant function. By (1.3), then τ (φ) = 0. �

Remark 3.3 If ((M, g), (N, h), φ, f, σ) is a steady RH soliton and M is compact, then the
Ricci curvature of (M, g) must be strictly positive unless φ is a constant map.



1802 Guo H. X., et al.

Unlike the steady or expanding case, for compact shrinking soliton the potential function
is not necessarily a constant. However, we have the following observation.

Corollary 3.4 Assume that M is compact and ((M, g), (N, h), φ, f, σ) a shrinking soliton. If
in addition Smin = −mσ, then f is constant, φ is harmonic, Rc = c dφ⊗dφ−σg and S ≡ Smin.

Proof If Smin = −mσ, then S ≥ −mσ and thus Δf = −S − mσ ≤ 0. Hence f is constant.
Plugging into the soliton equations, we get all conclusions. �

4 A Discussion on Generalization of Quasi-Einstein Manifolds

In [3], Case–Shu–Wei introduced quasi-Einstein manifolds. A triple (Mm, g, f) is called quasi-
Einstein if it satisfies the equation

Rc + Hessf − 1
m

df ⊗ df + σg = 0. (4.1)

We notice that in the definition of RH soliton, if we drop condition (1.3) and consider only (1.2)
itself, then this is a generalization of quasi-Einstein (4.1). For convenience, we call ((Mm, g),
(Nn, h), φ, f) a generalized quasi-Einstein manifold if it satisfies (1.2), i.e.,

Rc + Hessf − c φ∗h + σg = 0. (4.2)

Here we do not require c to be nonnegative.
We first consider a special case of (4.2) when f is a constant. Note that the condition

Rc(g) = cφ∗h − σg (4.3)

is not a special case of the RH soliton by taking the potential function f to be constant, since
the RH soliton equation is a coupled equation system and the second equation will immediately
imply φ is harmonic when f is constant. Here we drop the second equation of the RH soliton,
however we still have the following.

Lemma 4.1 Assume that φ : (M, g) → (N, h) satisfies Rc(g) = c φ∗h − σg for c 	= 0. Then
τ (φ)dφ = 0 as a one form, where τ (φ)dφ = h(τ (φ), dφ ·) = hαβτα(φ)∂iφ

βdxi. Furthermore, if
there is a vector field X ∈ T (M) such that τ (φ) = dφ(X), then φ is harmonic.

Proof By Rc = cφ∗h − σg, one has R = c|dφ|2 − σm and

1
2

dR = DivRc = c Divφ∗h = c

(

τ (φ)dφ +
1
2

d|dφ|2
)

= cτ (φ)dφ +
1
2

dR.

If c 	= 0, one gets τ (φ)dφ = 0. In addition, if τ (φ) can be represented as dφ(X) for some X,
then

0 = (τ (φ)dφ) (X) = τ (φ) (dφ(X)) = |τ (φ)|2.
Thus φ is harmonic. �

We present an immediate application of Lemma 4.1.

Corollary 4.2 Assume that (M, g) has positive Ricci curvature Rc. Then the identity map
Id : (M, g) → (M, Rc) is harmonic. Similarly, if (M, g) has negative Rc, then Id: (M, g) →
(M,−Rc) is harmonic.

Proof First note that Id: (M, g) → (M,±Rc) satisfies Rc = ±Id∗ (±Rc). Thus the assumption
in Lemma 4.1 holds with c = ±1 and σ = 0. Hence we have τ (φ)d(Id) = 0, in local coordinates
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this means

±Rijτ
i(Id)dxj = 0.

Definiteness of the Ricci tensor then implies τ i(Id) = 0 for any i, hence Id is harmonic. �
Recall that any Riemannian manifold M of dimension m ≥ 3 carries a complete metric with

negative Ricci curvature, see [9]. Thus one cannot say anything about the manifold M without
restrictions on the target manifold (N, h). In (4.3), the target manifold plays an essential rule.

5 Appendix

Assume that (M, g) and (N, h) are two Riemannian manifolds and φ : M → N a map. In this
appendix, we prove formula (2.4) using local coordinates, i.e.,

Div (dφ ⊗ dφ) = τ (φ)dφ +
1
2

d|dφ|2.

Recall that in our notation dφ ⊗ dφ = φ∗h. For any p ∈ M , let {xi}m
i=1 be local coordinates

orthonormal at p, and let {φα}n
α=1 be local coordinates orthonormal at φ(p) ∈ N . We use Γk

ij

and Γγ
αβ to denote Christoffel symbols of M and N , respectively. Let ∂i � ∂

∂xi and ∂α � ∂
∂φα .

We use Einstein convention of implicit summation over repeated indices. By definition, at the
point p we get

τα(φ) = ∂i∂iφ
α − Γj

ii∂jφ
α + Γα

βγ∂iφ
β∂iφ

γ .

At p, we then obtain

Div (dφ ⊗ dφ) (∂i) = (∇j (dφ ⊗ dφ)) (∂j , ∂i)

= ∂j (dφ ⊗ dφ(∂j , ∂i)) − dφ ⊗ dφ(∇j∂j , ∂i) − dφ ⊗ dφ(∂j ,∇j∂i)

= ∂j

(
hαβ∂jφ

α∂iφ
β
) − Γk

jj∂kφα∂iφ
α − Γk

ji∂jφ
α∂kφα

= ∂jφ
γ∂γ (hαβ) ∂jφ

α∂iφ
β + ∂j∂jφ

α∂iφ
α + ∂jφ

α∂j∂iφ
α

− Γk
jj∂kφα∂iφ

α − Γk
ji∂jφ

α∂kφα

=
(
Γβ

γα + Γα
γβ

)
∂jφ

γ∂jφ
α∂iφ

β + ∂j∂jφ
β∂iφ

β + ∂jφ
α∂j∂iφ

α

− Γk
jj∂kφβ∂iφ

β − Γk
ji∂jφ

α∂kφα

=
(
Γβ

γα∂jφ
γ∂jφ

α + ∂j∂jφ
β − Γk

jj∂kφβ
)
∂iφ

β

+ Γα
γβ∂jφ

γ∂jφ
α∂iφ

β + ∂jφ
α∂j∂iφ

α − Γk
ji∂jφ

α∂kφα.

In the last equality, the first line is τβ(φ)∂iφ
β. For the second line, we calculate at the point p :

∂i‖dφ‖2 = ∂i(gklhαβ∂kφα∂lφ
β)

= ∂i(gkl)∂kφα∂lφ
α + ∂γ(hαβ)∂iφ

γ∂kφα∂kφβ + 2∂i(∂kφα)∂kφα

= −2Γl
ki∂kφα∂lφ

α + 2Γβ
γα∂iφ

γ∂kφα∂kφβ + 2∂i(∂kφα)∂kφα.

Thus, we have

Div (dφ ⊗ dφ) (∂i) = τβ(φ)∂iφ
β +

1
2

∂i|dφ|2 =
(

τ (φ)dφ +
1
2

d|dφ|2
)

(∂i).
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