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CHAPTER 1

Introduction

1.1. Some financial vocabulary

Definition 1.1 (Option). An option is a contract which gives the holder the
right (but not the obligation) to purchase (or to sell) a certain quantity of an asset
(e.g. shares or stocks in a company, commodities such as gold, oil or electricity,
currencies etc) for a prescribed price (called exercise price) at a prescribed time in
the future (or up to a prescribed time in the future). This prescribed time is called
maturity date, date of expiry or expiration time.

Here, an asset refers to any financial object whose value is known at present
but is liable to change in the future.

Definition 1.2 (Call/Put options). Options to buy are called call options or
calls, while options to sell are called put options or puts.

According to the date of expiry , two kinds of options can be distinguished:

• American options which can be exercised by its holder at any time before
expiry, versus

• European options which can only be exercised by its holder at the expira-
tion time.

Definition 1.3 (Exercise price or strike price). The exercise price (or strike
price) is the prescribed price (fixed in advance) at which the transaction is done in
case the option is exercised.

The exercise price has to be distinguished from the price of the option.

Definition 1.4 (Price or value of an option). The price or value of an option
is the price which has to be paid (at time 0) to acquire the option.

Remark 1.5. Options are examples of so-called financial derivatives; their
value is derived from an underlying asset such as stocks, bonds, currencies, or
even indexes. In this sense, a derivative or contingent claim is a security whose
value depends on the value of some underlying asset. Financial derivatives include
forwards, futures, options, swaps, etc.

Example 1.6. Consider a European call with date of expiration T on a stock
or share of price St at time t where 0 ≤ t ≤ T . Here St is the spot price (i.e. price
of the stock at time t). Let K be the exercise price (strike price) of the call.

• At expiration time T : The value of the call is

(ST −K)+ = max(0, ST −K)

and coincides with the payoff of the option at maturity T .

1



2 1. INTRODUCTION

• At time 0 the situation is less clear. What is an appropriate price to pay for the
option? In other words, how much should the buyer of the option be willing to
pay at time 0?

Remark 1.7. This leads to the following two fundamental questions:

1. Problem of Pricing : How to evaluate at time 0 the amount (ST − K)+

disposable at time T?
2. Problem of Hedging : How can the seller (writer) of the option provide the

amount (ST −K)+ (necessary to meet his obligations from the contract)
at time T?

It will turn out that both questions are different perspectives of the same prob-
lem. The following hypothesis will be crucial for all subsequent considerations.

Fundamental hypothesis: Absence of arbitrage i.e. impossibility of receiving a
riskless gain.

Remark 1.8. This hypothesis is sometimes expressed as NFLVR which stands
for “No free lunch with vanishing risk”.

Example 1.9. Let Ct be the price of a European call and Pt the price of a
European put (at time t ≤ T ) with the same date T of expiration and same strike
price K, on a stock of price St at time t. Here we assume that options can also be
traded (bought and sold) at any time t between 0 and maturity T , and hence have
a value/price at time t. Note that

CT = (ST −K)+ and PT = (K − ST )+.

For simplicity, we suppose that it is possible to borrow and deposit money at a
constant interest rate r.
Observation. By absence of arbitrage, we are able deduce the so-called put-call
parity :

Ct − Pt = St −K e−r(T−t), ∀t ≤ T.

Why? For instance, suppose that for some t0 ∈ [0, T [ we have

Ct0 − Pt0 > St0 −K e−r(T−t0). (∗)
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We are going to show that (∗) opens up an arbitrage opportunity as follows. We
perform the following investment strategy:

At time t0, we buy one share/stock, buy a put option and sell a call option.
The balance of these operations amounts to:

∆ := Ct0 − Pt0 − St0 .
If ∆ > 0, we deposit the amount ∆ at an interest rate r in a cash account.
If ∆ < 0, we borrow the money at the same rate.

Then, at time T , there are two possibilities (scenarios): either ST > K or
ST ≤ K.

1. ST > K In this case the call is “in the money” and will hence be exercised by

its holder (buyer); we have to pay the difference ST − K. In addition, we sell
the share at the actual price ST and close the cash deposit, resp. loan. In total,
our balance reads as:

(K − ST ) + ST + er(T−t0)(Ct0 − Pt0 − St0) > 0.

Recall that er(T−t0)(Ct0 −Pt0 −St0) > −K by (∗). Hence, in this case, we make
a clear profit.

2. ST ≤ K We exercise the put and sell the stock. In total, again we gain:

(K − ST ) + ST + er(T−t0)(Ct0 − Pt0 − St0) > 0.

Conclusion: In both cases, at time T , we make a positive gain (profit), without
investing money at time 0. In other words, we found an arbitrage opportunity.

Comments 1.10.

• Some historical milestones:
– Louis Bachelier (1900): Théorie de la spéculation.
– Black-Scholes (1973): Absence of arbitrage and certain assumption on the

evolution of stock prices imply explicit formulas for the pricing of European
calls/puts and hedging strategies for the seller.

• Idea: Fair price of a call/put is the amount of money initially necessary to con-
struct a strategy which produces exactly the amount (St −K)+, resp. (K − ST )+,
at expiration time T .

1.2. A first example

Example 1.11. (A single period binary model; toy model) Suppose that the
current price in USD (American Dollar) of 100 EUR would be S0 = 150, in other
words, to buy 100 EUR would cost 150 USD. Let us consider in this situation a
European call with strike price K = 150 and expiration time T . What could be a
fair price for such an option?

We make the following simplifying hypothesis:

ST =

{
180, with probability p,
90, with probability 1− p.

In other words, at time T only two scenarios are possible. Recall that ST is the
cost in USD of 100 EUR at time T . The payoff of our option would thus be

PO = (ST −K)+ =

{
180− 150 = 30 USD, with probability p,
0, with probability 1− p.
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Then, taking expectation,

E[PO] = 30p.

This leads to the question whether 30p USD might be a fair price to pay for the
option?

Assumption: Suppose for simplicity that interest rates are zero and that cur-
rency is bought and sold at the same exchange rate. To make things even more
practical, let us suppose that p = 1/2.

Question: Is then 15 USD a fair price for the option? Note that fair price
means excluding risk-free profit for both the buyer and the seller of the option.

Claim 1.12. If the price is 15 USD, one can make a risk-free profit (as buyer).

Strategy: I buy the option and borrow 33,3 EUR (to convert it straight into
50 USD).

• At time 0: I have one option and 35 USD (50 from the conversion of my EUR
loan less 15 paid for the option).

• At time T : I am in one of the following two scenarios

1. ST = 180: In this case I exercise the option which allows me to buy 100 EUR
for 150 USD. I use 33,3 EUR to pay off my EUR debt, leaving me with 66,67
EUR. This amount I convert back into USD at the current exchange rate.
This nets

66,67× 1, 8 = 2/3× 180 = 120 USD.

In total: At time T , I have

35 USD − 150 USD + 120 USD = 5 USD

which is a clear profit.
2. ST = 90: In this case I throw away the (worthless) call and convert my 35

USD into EUR, netting

35/0,9 = 38,89 EUR.

I pay back my debt (= 33,33 EUR), leaving a profit of 5,56 EUR.

Conclusion: Whatever the actual exchange rate is at time T , the proposed
strategy allows to make a profit. Thus from the point of view of the seller, the price
of the option was too low.

What is the right price?
Let’s now take the point of view of the seller: If I am the seller, at time T , I’ll need
(ST −K)+ USD to meet the claim against me.

Question: How much money do I need at time 0 (to be held in combination of
EUR and USD) to guarantee this at time T?

Suppose that at time 0, my portfolio is constituted of x1 USD and x2 EUR
(this holding has to worth at least (ST −K)+ USD at time T ).

1. ST = 180:
In this case I need at least 30 USD, i.e.

x1 +
180

100
x2 ≥ 30. (A)
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2. ST = 90:
The payoff of the option is 0; I just need not to be out of the pocket, i.e.

x1 +
90

100
x2 ≥ 0. (B)

Profit is guaranteed (without risk) for the seller if (x1, x2) ∈ U where U is
the set of (x1, x2) satisfying (A) and (B). On the boundary ∂U , there is a positive
probability of profit, except at the point of intersection (x∗1, x

∗
2) of the lines

x1 +
180

100
x2 = 30 and x1 +

90

100
x2 = 0.

At (x∗1, x
∗
2) the seller is guaranteed to have exactly the money required to meet

the claim against him at time T .

x1 +
180

100
x2 = 30

x1 +
90

100
x2 = 0

⇐⇒ x∗1 = −30 USD; x∗2 =
100

3
EUR.

To purchase 100
3 EUR at time 0 requires 100

3 ×
150
100 = 50 USD. The value of the

portfolio at time 0 is then 50− 30 = 20 USD.

Conclusion: The seller requires 20 USD at time 0 to construct a portfolio
that will be worth the payoff of the option at time T (for any lower price there
is a strategy for which the buyer makes a risk-free profit). Thus the fair price is
20 USD.

Important observations:

1. We didn’t use the probability p at any point in the calculation!
2. The seller can hedge the contingent claim (ST −K)+ using a portfolio consisting

of x1 USD and x2 EUR. He replicates the claim by this hedging portfolio.

In this picture the price of a call/put should correspond to the amount of
money initially necessary to construct a portolio which produces exactly (ST−K)+,
respectively (K − ST )+, at expiration date.





CHAPTER 2

Financial markets (time-discrete models)

2.1. Time-discrete markets

Definition 2.1 (Discrete model for a financial market). A discrete model for
a financial market consists of the following data:

1. a probability space (Ω,F ,P) with card(Ω) <∞ such that

F = P(Ω) = {A : A ⊂ Ω}
and P({ω}) > 0 for each ω ∈ Ω, equipped with a filtration (Fn)n=0,1,...,N of
sub-σ-algebras of F :

F0 ⊂ F1 ⊂ . . . ⊂ FN .

We assume that

F0 = {∅,Ω} and FN = F = P(Ω).

Here Fn is interpreted as the information available at time n (“σ-algebra of
events up to time n”) and N as horizon, i.e. the expiry date of the options.

2. a family of non-negative adapted random variables:

(S0
n, S

1
n, . . . , S

d
n), n = 0, 1, . . . , N,

on (Ω, (Fn),P), representing the prices of d + 1 financial assets at time n. In
other words, for each n,

S0
n, S

1
n, . . . , S

d
n

are positive Fn-measurable random variables, or equivalently,

Sn := (S0
n, S

1
n, . . . , S

d
n)

is an Rd+1
+ -valued Fn-measurable random variable, the so-called “price vector”.

The asset indexed by 0 (i.e. S0
n) is called riskless asset :

S0
0 = 1 and S0

n = (1 + r)n,

where r denotes the interest rate over one period (for riskless deposits). The
assets indexed by 1, . . . , d are called risky assets.

The coefficient

βn :=
1

S0
n

=
1

(1 + r)n

is called discount factor at time n. It represents the amount of money (e.g. in
EUR) which needs to be invested at time 0 to have 1 EUR available at time n.
We call the prices

S̃n := βn Sn

discounted prices. We thus have

S̃n = (S̃0
n, S̃

1
n, . . . , S̃

d
n) = (1, βnS

1
n, . . . , βnS

d
n).

7
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2.2. Strategies and portfolios

Definition 2.2 (Trading strategy). A trading strategy (or portfolio) is a pre-
dictable stochastic process

φ = (φn)n=0,1,...,N

taking values in Rd+1, where the ith component φin of φn denotes the number of
shares of asset i held in the portfolio at time n (for i ∈ {0, 1, . . . , d}).

Recall that φ predictable means the following:{
φn is Fn−1-measurable, for each 1 ≤ n ≤ N,
φ0 is F0-measurable.

This reflects the fact that the composition of the portfolio at time n is decided with
respect to the information available at time n − 1 and is kept until time n when
new quotations are available.

Definition 2.3 (Value of the portfolio). The value of the portfolio at time n
(with respect to the strategy φ = (φn)n=0,...,N ) is given by

Vn(φ) := 〈φn, Sn〉Rd+1 =

d∑
k=0

φkn S
k
n, n = 0, 1, . . . , N.

The discounted value of the portfolio is:

Ṽn(φ) = βn Vn(φ) = 〈φn, S̃n〉Rd+1

where βn = 1/S0
n and S̃n = (1, βnS

1
n, . . . , βnS

d
n).

Definition 2.4 (Self-financing strategy). A strategy φ = (φn)n=0,1,...,N is
called self-financing, if

〈φn, Sn〉 = 〈φn+1, Sn〉 ∀n ∈ {0, 1, . . . , N − 1}.

Interpretation: The investor rearranges his positions between time n and time
n+ 1 (by passing from φn to φn+1) such that this readjustment preserves the total
value of the portfolio.

Remark 2.5. A strategy is self-financing if the variations of the value of the
portfolio are only due to changes in the stock prices, i.e., for each n = 0, . . . , N − 1
we have

〈φn, Sn〉 = 〈φn+1, Sn〉
⇐⇒ 〈φn+1, Sn+1 − Sn〉 = 〈φn+1, Sn+1 − Sn〉
⇐⇒ Vn+1(φ)− Vn(φ) = 〈φn+1, Sn+1 − Sn〉.

Proposition 2.6. The following conditions are equivalent:

i) The strategy φ = (φn)n=0,1,...,N is self-financing.
ii) For each n ∈ {1, . . . , N}, we have

Vn(φ)− Vn−1(φ) = 〈φn,∆Sn〉, where ∆Sn := Sn − Sn−1.

iii) For each n ∈ {1, . . . , N}, we have

Ṽn(φ)− Ṽn−1(φ) = 〈φn,∆S̃n〉, where ∆S̃n := S̃n − S̃n−1.
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iv) For each n ∈ {1, . . . , N}, we have

Vn(φ) = V0(φ) +

n∑
k=1

〈φk,∆Sk〉.

v) For each n ∈ {1, . . . , N}, we have

Ṽn(φ) = V0(φ) +

n∑
k=1

〈φk,∆S̃k〉.

Proof. By definition, the strategy (φn) is self-financing if and only if

〈φn−1, Sn−1〉 = 〈φn, Sn−1〉, ∀n
⇐⇒ Vn(φ)− Vn−1(φ) = 〈φn,∆Sn〉, ∀n

⇐⇒ 〈φn−1, S̃n−1〉 = 〈φn, S̃n−1〉, ∀n

⇐⇒ Ṽn(φ)− Ṽn−1(φ) = 〈φn,∆S̃n〉, ∀n.

Hence the conditions i), ii) and iii) are equivalent.

Next we verify ii)⇐⇒ iv). Suppose that Vk(φ)−Vk−1(φ) = 〈φk,∆Sk〉 for each
k ∈ {1, . . . , N}. Then, by summation,

Vn(φ)− V0(φ) =

n∑
k=1

Vk(φ)− Vk−1(φ)

=

n∑
k=1

〈φk,∆Sk〉.

Conversely, if for all n ∈ {1, . . . , N},

Vn(φ) = V0(φ) +

n∑
k=1

〈φk,∆Sk〉,

then

Vn(φ)− Vn−1(φ) = 〈φn,∆Sn〉.
This shows the equivalence of ii) and iv). The equivalence iii) ⇐⇒ v) is obtained
in the same way using discounted values. �

Remark 2.7. For a self-financing strategy, the discounted value of the portfolio
is expressed in terms of the initial wealth and the trading strategy φ1

n, . . . , φ
d
n,

1 ≤ n ≤ N . Since S̃0
k = 1 (thus ∆S̃0

k = 0), the 0-th component of the trading

strategy does not enter into the formula for Ṽn(φ).

More precisely, we have the following observation.

Proposition 2.8. For any predictable process, taking values in Rd,

(φ1
n, . . . , φ

d
n), 0 ≤ n ≤ N,

and any F0-measurable random variable V0, there exists a unique real-valued pre-
dictable process (φ0

n)0≤n≤N such that

(φ0
n, φ

1
n, . . . , φ

d
n)0≤n≤N

is a self-financing trading strategy with V0(φ) = V0.
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Proof. Indeed, the self-financing condition determines the component φ0
n as

follows:

Ṽn(φ)

‖
= 〈φn, S̃n〉Rd+1 = φ0

n S̃0
n︸︷︷︸

=1

+φ1
nS̃

1
n + . . .+ φdnS̃

d
n,

Ṽn(φ) = V0 +

n∑
k=1

〈φk,∆S̃k〉 = V0 +

n∑
k=1

(
φ1
k∆S̃1

k + . . .+ φdk∆S̃dk

)
,

from where φ0
n can be calculated. It remains to check the predictability of φ0

n.
Indeed, we can write

φ0
n = V0 +

n∑
k=1

(
φ1
k∆S̃1

k + . . .+ φdk∆S̃dk

)
−
(
φ1
nS̃

1
n + . . .+ φdnS̃

d
n

)
= V0 +

n−1∑
k=1

(
φ1
k∆S̃1

k + . . .+ φdk∆S̃dk

)
−
(
φ1
nS̃

1
n−1 + . . .+ φdnS̃

d
n−1

)
,

from where φ0
n is seen to be Fn−1-measurable. �

Interpretation:

φ0
n < 0: the investor borrows the amount |φ0

n| in the riskless asset at time n.
φkn < 0 for k = 1, . . . , d: the investor is “short” a number |φkn| of asset k, i.e.
short-selling and borrowing are allowed in the investment.

The idea that the investor should be able to pay back his debts (in riskless or
risky assets) at any time leads to the following definition.

Definition 2.9. A trading strategy φ = (φn)n=0,1,...,N is called admissible if

a) φ is self-financing, and
b) Vn(φ) ≥ 0, ∀n = 0, 1, . . . , N .

Definition 2.10. A trading strategy φ = (φn)n=0,1,...,N is called arbitrage
strategy if

a) φ is self-financing, and
b) V0(φ) = 0, VN (φ) ≥ 0 and P(VN (φ) > 0) > 0 (in other words, V0(φ) = 0,

but VN (φ) 	 0).

Definition 2.11. A financial market is called arbitrage-free (“viable”) if there
is no arbitrage opportunity on this market, i.e.

V0(φ) = 0 and VN (φ) ≥ 0 ⇒ VN (φ) = 0.

Lemma 2.12. If there exists an arbitrage strategy φ, then there exists also an
admissible arbitrage strategy φ∗, i.e. an arbitrage strategy such that

V0(φ∗) = 0, Vn(φ∗) ≥ 0, ∀n = 1, . . . , N and P {VN (φ∗) > 0} > 0.

Proof. Let

φ =
(
φ0, φ1, . . . , φd︸ ︷︷ ︸

=:ϕ

)
=
(
φ0
n, φ

1
n, . . . , φ

d
n︸ ︷︷ ︸

=:ϕn

)
0≤n≤N

be an arbitrage strategy. Let

u(n) := P {Vn(φ) ≥ 0} and v(n) := P {Vn(φ) > 0} .
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Define

p := min {n | u(n) = 1 and v(n) > 0} .
From the definition of p we derive the following two properties:

(a) Since v(0) = 0, u(N) = 1 and v(N) > 0, we have

1 ≤ p ≤ N.

(b) For each n < p, either v(n) = 0 or u(n) < 1 holds.

(I) Claim. There exists an Fp−1-measurable random variable η =
(
η1, . . . , ηd

)
,

taking values in Rd, such that

d∑
i=1

ηi∆S̃ip ≥ 0 and P

{
d∑
i=1

ηi∆S̃ip > 0

}
> 0. (∗)

Proof of the claim. Indeed, we either have v(p− 1) = 0 or u(p− 1) < 1.
i) Suppose that v(p− 1) = 0. Let η := ϕp. Then,

d∑
i=1

ηi∆S̃ip = 〈φp,∆S̃p〉Rd+1

= Ṽp(φ)− Ṽp−1(φ)︸ ︷︷ ︸
≤0

≥ Ṽp(φ), since v(p− 1) = 0.

Using u(p) = 1 and v(p) > 0 we obtain (∗).
ii) Suppose that u(p− 1) < 1. Let η := ϕp1{Vp−1(φ)<0}, then

d∑
i=1

ηi∆S̃ip = 1{Vp−1(φ)<0}〈φp,∆S̃p〉Rd+1

= 1{Vp−1(φ)<0}

(
Ṽp(φ)− Ṽp−1(φ)

)
≥ 1{Vp−1(φ)<0}

(
−Ṽp−1(φ)

)
, since u(p) = 1,

≥ 0.

Using u(p− 1) < 1 we obtain (∗).
(II) Let η be the Rd-valued random variable such that (∗) holds. Define a pre-

dictable sequence (ϕ∗n)n=0,1,...,N of Rd-valued random variables by

ϕ∗n =

{
η, for n = p,
0, for n 6= p.

Let

φ∗ = (φ∗n)n=0,1,...,N

be the self-financing strategy (with initial value V0(φ∗) = 0) associated to
(ϕ∗n) according to Proposition 2.8. Then

Ṽn(φ∗) =

n∑
k=1

〈φ∗k,∆S̃k〉 =

n∑
k=1

d∑
i=1

(φ∗k)
i
∆S̃ik =

n∑
k=1

d∑
i=1

(ϕ∗k)
i
∆S̃ik.
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Hence, by the definition of ϕ∗k, we get

Ṽn (φ∗) =


0, n < p,
d∑
i=1

ηi∆S̃ip, n ≥ p.

By (∗) of part 1), we thus have Ṽn (φ∗) ≥ 0 for each n ∈ {0, 1, . . . , N} and

P
{
ṼN (φ∗) > 0

}
> 0. �



CHAPTER 3

Martingales and arbitrage

3.1. Conditional expectation and martingales

Let X be a square-integrable real-valued random variable on a discrete proba-
bility space (Ω,F ,P), i.e. X is F -measurable and E[|X|2] <∞.

We denote the Hilbert space of all such random variables on (Ω,F ,P) by
L2(Ω,F ,P), i.e.

L2(Ω,F ,P) = {X random variable such that E[|X|2] <∞}.
Note that the inner product and the norm on L2(Ω,F ,P) are given by

〈X,Y 〉 = E[XY ], respectively ‖X‖ =
√
E[X2].

Let A ⊂ F be a sub-σ-algebra. We want to define the conditional expectation
E[X|A ]. By definition, E[X|A ] should be A -measurable. In addition, E[X|A ]
should be a “good” approximation of X.

Hence, we have X ∈ L2(Ω,F ,P), and we observe that

L2(Ω,A ,P|A )︸ ︷︷ ︸
=: L2(P|A )

⊂ L2(Ω,F ,P)︸ ︷︷ ︸
=: L2(P)

is a closed subspace.

Definition 3.1. We define E[X|A ] as the orthogonal projection of X onto
L2(P|A ). Thus, by definition

X − E[X|A ] ⊥ 1A ∀A ∈ A .

This characterizes E[X|A ] as the best A -measurable approximation of X in the
quadratic mean sense:

E
[
|X − E[X|A ]|2

]
= min
Y ∈ L2(P|A )

E
[
|X − Y |2

]
.

L2(P)

L2(P|A )

E[X|A ]

X

13
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Note. For A ∈ A we have

X − E[X|A ] ⊥ 1A ⇐⇒ E[1AX] = E [1AE[X|A ]] .

Hence, the property

E[1AX] = E [1AE[X|A ]] for all A ∈ A

characterizes E[X|A ].

Proposition 3.2. The conditional expectation has the following properties:

(i) (Positivity) If X ≥ 0, then E[X|A ] ≥ 0.
(ii) (Linearity) E[αX + βY |A ] = αE[X|A ] + βE[Y |A ], ∀α, β ∈ R.

(iii) (Contractivity)
∣∣E[X|A ]

∣∣ ≤ E[|X| |A ].
(iv) (Taking out what is known) E[Y X|A ] = Y E[X|A ] if Y is A -measurable.
(v) (Tower property) If A1 ⊂ A2 ⊂ F , then E [E[X|A2] |A1] = E[X|A1].
(vi) (Conditioning with respect to trivial σ-fields)

If A = {Ø,Ω}, then E[X|A ] = E[X].

Recall that a discrete financial market is called arbitrage-free if for any self-
financing strategy φ such that V0(φ) = 0 and VN (φ) ≥ 0 it follows that VN (φ) = 0.
The following characterization of arbitrage-free financial markets will be the basis
of all further considerations.

Theorem 3.3 (Fundamental theorem of asset pricing). A discrete financial
market is arbitrage-free if and only if there exists a probability measure P∗ equivalent
to P such that under P∗, the discounted prices (S̃n)n=0,...,N are martingales.

Recall. P∗ is equivalent to P (in symbols, P∗ ∼ P)

⇐⇒ P∗ � P and P� P∗,
⇐⇒ ∀A ∈ F , P∗(A) = 0 if and only if P(A) = 0,
⇐⇒ P∗ ({ω}) > 0 for each ω ∈ Ω.

Before starting to prove Theorem 3.3 we do some preparations and collect the
required concepts.

Definition 3.4 (Martingale). Let (Ω,F ,P) be a probability equipped with a
filtration (Fn)n=0,1,...,N of sub-σ-algebras

F0 ⊂ F1 ⊂ . . . ⊂ FN .

For simplicity we shall assume that card(Ω) <∞, F = P (Ω) and that P ({ω}) > 0
for each ω ∈ Ω.

An adapted sequence (Mn)n=0,1,...,N of real random variables is called

· martingale if E [Mn+1 |Fn ] = Mn, ∀n = 0, 1, . . . , N − 1.
· supermartingale if E [Mn+1 |Fn ] ≤ Mn, ∀n = 0, 1, . . . , N − 1.
· submartingale if E [Mn+1 |Fn ] ≥ Mn, ∀n = 0, 1, . . . , N − 1.

An adapted sequence (Mn)n=0,1,...,N of Rd-valued random variables is a martingale,
resp. a super-/submartingale, if each component (M i

n)n=0,1,...,N is a real-valued
martingale, resp. super-/submartingale, i = 1, . . . , d.
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Note.

i) An adapted process (Mn)0≤n≤N is a martingale if and only if

E [Mn |Fm ] = Mm, for all 0 ≤ m ≤ n ≤ N.

Thus, in particular,

E [Mn] = E [Mm] , ∀n,m ∈ {0, 1, . . . , N},
E [Mn] = E [M0] .

ii) Similar properties hold for super/sub-martingale.

Definition 3.5. Let (Mn)n=0,1,...,N be adapted and (Hn)n=0,1,...,N be pre-
dictable, i.e. Mn is Fn-measurable and Hn is Fn−1-measurable. Set

∆Mn := Mn −Mn−1.

The sequence (Xn)n=0,1,...,N defined by{
X0 := H0M0,
∆Xn = Hn∆Mn, for n ≥ 1,

is called transform of (Mn) by (Hn) (or (Hn)-transform of (Mn)) and denoted by

Xn = (H ∗M)n, n = 0, 1, . . . , N.

The sequence (H ∗M)n=0,1,...,N is thus given by (H ∗M)0 = H0M0,

(H ∗M)n = H0M0 +
n∑
k=1

Hk∆Mk, for n ≥ 1.

If (Mn) is a martingale, then H ∗M =̂ (H ∗M)n is called martingale transform of
(Mn) by (Hn).

Proposition 3.6 (Martingale transforms). On (Ω,F ,P; (Fn)) let (Mn)0≤n≤N
be an adapted sequence and (Hn)0≤n≤N a predictable sequence. If (Mn) is a mar-
tingale, then (H ∗M)n is a martingale as well.

In particular, (Mn) is a martingale if and only if (H ∗M)n is a martingale for
all predictable sequences (Hn).

Proof. Let (Mn) be a martingale and (Hn) be predictable. Let

Xn = (H ∗M)n = H0M0 +

n∑
k=1

Hk∆Mk.

Then (Xn)0≤n≤N is clearly adapted. For all n ≥ 0, we have

E[Xn+1 −Xn|Fn] = E[Hn+1∆Mn+1|Fn], as ∆Xn+1 = Hn+1∆Mn+1,

= Hn+1 E[∆Mn+1|Fn], as Hn+1 is Fn-measurable,

= Hn+1 E[Mn+1 −Mn|Fn]

= 0, as E[Mn+1 −Mn|Fn] = 0.

This shows that E[Xn+1 −Xn|Fn] = 0, hence E[Xn+1|Fn] = Xn. �
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Proposition 3.7 (Characterization of martingales). An adapted sequence (Mn)
of real valued random variables is a martingale if and only if

E

[
N∑
n=1

Hn∆Mn

]
= 0,

for all predictable sequences (Hn).

Proof. Let (Mn) be a martingale and (Hn) be predictable. Then (H ∗M)n
is a martingale and this implies:

E [(H ∗M)N ] = E [(H ∗M)0] .

Thus

0 = E [(H ∗M)N − (H ∗M)0] = E

[
N∑
n=1

Hn∆Mn

]
.

Conversely, suppose that

E

[
N∑
n=1

Hn∆Mn

]
= 0

for any predictable sequence (Hn). Let A ∈ Fm, m ∈ {0, 1, . . . , N − 1}.
We want to show that

E [1A(Mm+1 −Mm)] = 0.

Consider the predictable sequence (Hn) defined by

Hn =

{
0, n 6= m+ 1,

1A, n = m+ 1.

Then

0 = E

[
N∑
n=1

Hn∆Mn

]
= E [1A∆Mm+1]

= E [1A(Mm+1 −Mm)] .

Thus,

E[1AMm+1] = E[1AMm] ∀A ∈ Fm,

which means that

E[Mm+1|Fm = Mm. �

Remark 3.8. Let (Mn) be an adapted sequence of random variables taking
values in Rd and (Hn) be a predictable sequence of random variables taking values
in Rd as well. Define

(H ∗M)n =

d∑
i=1

(Hi ∗M i)n, n = 0, 1, . . . , N.

Then the following conditions are equivalent:

(i) (Mn) is a martingale;
(ii) (H ∗M)n is a martingale for any predictable sequence (Hn);

(iii) E
[∑N

n=1〈Hn,∆Mn〉Rd
]

= 0 for any predictable sequence (Hn);

(iv) E
[
(H ∗M)N

]
= E

[
(H ∗M)0

]
for any predictable sequence (Hn).
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3.2. Some tools from Convex Analysis

Theorem 3.9 (Theorem of Hahn-Banach: separation of convex sets). Let
(E, 〈 , 〉) be a finite-dimensional Euclidean vector space and let C be a closed convex
subset of E such that 0 /∈ C. Then there exists a linear form ξ = 〈ξ, ·〉 on E and a
constant α > 0 such that

∀x ∈ C, ξ(x) ≡ 〈ξ, x〉 ≥ α.
In particular, {ξ = 0} ∩ C = Ø.

{ξ = 0}

{ξ > 0}

{ξ < 0}

0

C

Proof. There exists a (unique) point a ∈ C of minimal norm, i.e.

‖a‖2 ≤ ‖x‖2 , ∀x ∈ C.

0

a C

Let x ∈ C be arbitrary and 0 < ϑ ≤ 1. Then, by the convexity of C, also

ϑx+ (1− ϑ)a = a+ ϑ(x− a) ∈ C.
Hence, for any ϑ ∈ ]0, 1],

‖a‖2 ≤ ‖a+ ϑ(x− a)‖2 .
In other words,

‖a‖2 ≤ ‖a‖2 + ϑ2 ‖x− a‖2 + 2ϑ 〈a, x− a〉 ∀ϑ ∈ ]0, 1] ,
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and thus

2〈a, x− a〉+ ϑ‖x− a‖2 ≥ 0.

Hence

〈a, x〉 ≥ ‖a‖2 =: α > 0 ∀x ∈ C,
and we may take ξ = 〈a, ·〉. �

Corollary 3.10. Let V ⊂ E be a linear subspace and let K ⊂ E be a convex
and compact subset such that V ∩K = Ø. Then there exists linear form ξ = 〈ξ, ·〉
on E such that

∀x ∈ K, ξ (x) > 0 and ∀x ∈ V, ξ (x) = 0

(i.e. the linear subspace V is contained in the hyperplane {ξ = 0} which does not
intersect K).

Proof. Let

C := K + V

which is obviously closed (V is closed as linear subspace of a finite-dimensional
vector space), convex and 0 /∈ C (since 0 ∈ C would mean that 0 = k + v for some
k ∈ K, v ∈ V and hence k = −v ∈ V ∩K, but V ∩K = Ø). Thus, by Hahn-Banach,
there exists a linear form ξ on E such that

∀x ∈ C, ξ (x) > 0.

Now, let y ∈ K and z ∈ V . Then y − λz ∈ C for any λ ∈ R. But then, for any
λ ∈ R,

ξ (y − λz) > 0, i.e. ξ (y)− λξ (z) > 0.

This clearly implies that

ξ (z) = 0 and ξ (y) > 0. �

3.3. Fundamental theorem of asset pricing

Theorem 3.11. A (discrete) financial market is arbitrage-free if and only if
there exists a probability measure P∗ with P∗ ({ω}) > 0, ∀ω ∈ Ω such that the

discounted asset prices
(
S̃in
)
n=0,1,...,N

are P∗-martingales (i = 1, . . . , d).

Proof.

1) Suppose that there exists a probability measure P∗ ∈ Prob(Ω) with supp P∗ = Ω

such that (S̃in)n=0,1,...,N are P∗-martingales (i = 1, . . . , d). Let φ = (φn) be a
self-financing strategy such that V0 (φ) = 0 and VN (φ) ≥ 0. Then

Ṽn(φ) = V0(φ) +

n∑
k=1

〈
φk,∆S̃k

〉
=

n∑
k=1

d∑
i=0

φik∆S̃ik

=

d∑
i=0

(
φi ∗ S̃i

)
n

= (φ ∗ S̃)n.
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But under P∗, the discounted price vector (S̃n)n=0,1,...,N is a P∗-martingale, and

hence (Ṽn(φ))n=0,1,...,N as martingale transform is a martingale as well. Thus,
in particular,

E∗
[
ṼN (φ)

]
= E∗

[
Ṽ0(φ)

]
= 0

where E∗[. . .] =
∫
. . . dP∗ denotes the expectation with respect to P∗. Hence if

ṼN (φ) ≥ 0 then

ṼN (φ) = 0.

2) Conversely, suppose now that the market is arbitrage-free. Let

• E = {X | X random variable on Ω} =̂ {X : Ω→ R} =̂ Rcard(Ω) and let 〈·, ·〉 be
the Euclidean scalar product on E:

〈X,Y 〉 =
∑
ω∈Ω

X(ω)Y (ω).

• V =
{
ṼN (φ) | φ ∈ S0

}
with

S0 = {φ |φ self-financing strategy such that V0(φ) = 0} .
Thus V is the “space of contingent claims (derivatives) attainable at price 0”.
Obviously V ⊂ E is a linear subspace.

• K =

{
X | X random variable on Ω, X ≥ 0 and

∑
ω∈Ω

X(ω) = 1

}
which is obviously a convex and compact subset of K.

Note that V ∩K = Ø by the assumption of arbitrage-freeness.

Now, by Hahn-Banach, there exists a random variable α on Ω, such that∑
ω∈Ω

α (ω)X (ω) > 0, ∀X ∈ K, and(3.1) ∑
ω∈Ω

α (ω) ṼN (φ) (ω) = 0, ∀φ ∈ S0.(3.2)

Relation (3.1) implies that α (ω) > 0 for all ω ∈ Ω (for instance, one may take
X = 1{ω} ∈ K). We define now

P∗ =
α

‖α‖
where ‖α‖ =

∑
ω∈Ω

α (ω) .

Then P∗ is a probability measure on Ω and P∗ ({ω}) = α(ω)
‖α‖ > 0, ∀ ω ∈ Ω.

Equation (3.2) writes as

E∗
[
ṼN (φ)

]
= 0, ∀φ ∈ S0.(3.3)

We have to show that (S̃n) is a martingale under P∗. Equivalently, we have to
show that, for all predictable sequence (ϕn)0≤n≤N with values in Rd,

E∗
[
N∑
n=1

〈ϕn,∆S̃n〉

]
= 0.

Thus let (ϕn)0≤n≤N be a predictable sequence with values in Rd and let φn =(
φ0
n, ϕn

)
be the self-financing strategy in S0 associated to (ϕn). Then

ṼN (φ) = Ṽ0(φ) +

N∑
n=1

〈ϕn,∆S̃n〉.
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Since Ṽ0(φ) = V0(φ) = 0, taking expectation with respect to P∗ on both sides
and using Eq. (3.3), we obtain

E∗
[
N∑
n=1

〈ϕn,∆S̃n〉

]
= 0

as wanted. �



CHAPTER 4

Option pricing and hedging

4.1. Examples of options

Definition 4.1 (European option). A European option (or contingent claim)
with maturity N is an FN -measurable non-negative random variable h. The ran-
dom variable h̃ = βNh is called the discounted option.

In other words, European options are characterized by their payoff (or value)
h at maturity. We may distinguish call and put options.

Example 4.2. Let (S`n)n=0,...,N be the price process of an underlying asset
labeled `.

1) A European call with strike price K and maturity (date of expiration) N on the
underlying S` is given by the following payoff at maturity:

h = (S`N −K)+

K S`N

h = (S`N −K)+

2) A European put with strike price K and maturity N on the same underlying is
given by the following payoff at maturity:

h = (K − S`N )+

K S`N

h = (K − S`N )+

3) Let a, b > 0 such that a < S`0 < b. The European option

h = S`N ∨ a ∧ b

is called “guaranteed placement”. It has the property that there is a limitation
of the losses at level a and a limitation of the profits at level b.

21
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4) A European option of the type

h =
∣∣S`N −K∣∣ =

(
S`N −K

)
+

+
(
K − S`N

)
+

is called a straddle. It is replicated by holding a European call and a European
put with the same strike price and maturity. A straddle can lead to substantial
profit if a large move in the stock price is expected, but if one does not know in
which direction the move will be.

5) Spread trading
(a) Bullish (resp. Bearish) vertical spread. Buy one European call (resp. put)

and sell a second one with the same maturity, but a higher (resp. lower)
strike price.
Note that the bullish vertical spread can be constructed with either calls
or puts. When it is done with calls, then as indicated you buy a call and
simultaneously sell a call at a higher strike. Since the call with the lower
strike price will always be worth more than the call with the higher strike
price, a bull vertical will always be established for a debit.
Similarly, if a bearish vertical spread is constructed with puts is done by
buying a put and selling a lower strike put. This construction will also
always be done for a debit, since the higher strike put will always be more
expensive than the lower strike put.

(b) Strip (resp. strap). Buy one (resp. two) European calls and two (resp. one)
European puts with the same strike price.

(c) Strangle. Buy a European call and a European put with same maturity
but different strike prices.

(d) Butterfly spread. Buy one European call with strike price K1, sell two
European puts with strike price K2, and buy one European call with strike
price K3 (where K1 ≤ K2 ≤ K3).

K1 K2 K3

if 2K2 = K1 +K3

K1 K2 K3

if 2K2 > K1 +K3

Note that up to now all options were of the type h = F (S`N ).
6) One may replace S`N by some mean value of the type

S`I =
1

|I|
∑
n∈I

S`n for some given subset I ⊂ {0, 1, . . . , N}.

This gives the notion of an Asiatic option. For example:

h := (S`I −K)+ is an Asiatic Call with strike K over I,
h := (K − S`I)+ is an Asiatic Put with strike K over I.

7) Lookback calls. These are options of the type

h = S`N − min
0≤n≤N

S`n.
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8) Barrier options. These are options which are activated (resp. deactivated) if the
asset price crosses a prescribed barrier.

a) Knock-ins. The barrier is up-and-in (resp. down-and-in) if the option is
only active if the barrier is hit from below (resp. above).

b) Knock-outs. The barrier is up-and-out (resp. down-and-out) if the option
is worthless if the barrier is hit from below (resp. above).

For example, if S`0 > c, a “down-and-in” call is given by

h = (S`N −K)+ 1{
min

0≤n≤N
S`n≤c

}.
4.2. Prices excluding arbitrage

Definition 4.3 (Pricing rule). A pricing rule for European options h of ma-
turity N is a mapping

π : h 7→ π(h),

where

π(h) = (πn(h))n=0,...,N

is an adapted sequence of random variables such that πn(h) ≥ 0 and πN (h) = h.

Interpretation πn(h) refers to the price (value) of the option h at time n ≤ N .
Options are traded at the stock market and thus have a price at any time n ≤ N ,
which equilibrates offer and demand. In this way, options can be considered as
additional risky assets on the financial market.

Definition 4.4 (Arbitrage-freeness of a pricing rule). A pricing rule for Euro-
pean options of maturity N is arbitrage-free if for any finite set of European options
h1, . . . , h` the financial market(

Ω, (Fn) ,P;S0, S1, . . . , Sd, π(h1), . . . , π(h`)
)

is arbitrage-free.

Definition 4.5 (Prices excluding arbitrage). Let h be a European option in
an arbitrage-free financial market (Ω, (Fn),P; (Sn)). If there exists an adapted
sequence (Hn){0≤n≤N} of positive random variables such that

i) HN = h,
ii) the financial market (Ω, (Fn) ,P; (Sn) , (Hn)) is still arbitrage-free,

then H0 is said to be a price excluding arbitrage (p.e.a) for the option h, and (Hn)
a sequence of prices excluding arbitrage.

Proposition 4.6. In an arbitrage-free market, let be given

• a European call C := (S`N −K)+, and
• a European put P := (K − S`N )+

with same strike price K > 0. Suppose that (Cn) is a sequence of p.e.a for the
call C and (Pn) a sequence of p.e.a for the put P , in the sense that the augmented
market

(Ω, (Fn) ,P; (Sn) , (Cn) , (Pn))

is still arbitrage-free. Then the so-called “call-put parity” holds:

Cn − Pn = S`n −
K

(1 + r)
N−n , ∀ n = 0, . . . , N. (∗)
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Proof. The market carries now d + 3 assets numbered 0, 1, . . . , d, c, p. We
write

S̄n = (Sn, Cn, Pn) , n = 0, 1, . . . , N.

By assumption, this augmented market is still arbitrage-free. We have to show the
following claim: If (∗) fails, then there exists an arbitrage strategy.

For simplicity, let us assume that (∗) already fails for n = 0.

1. Suppose that

C0 − P0 > S`0 −
K

(1 + r)
N

(∗∗)

Let

ϕ = (ϕn)0≤n≤N =
(
ϕkn : k ∈ {1, 2, . . . , d, c, p}

)
0≤n≤N

be the predictable sequence taking values in Rd+2 which is defined as follows:

ϕ`n = 1, ϕcn = −1, ϕpn = 1,

ϕkn = 0, if k /∈ {`, c, p}

}
for n = 0, 1, . . . , N .

There exists a unique self-financing strategy φ which coincides with ϕ for the
risky assets such that V0(φ) = 0.

Then, for each n ≤ N ,

Vn(φ) = S`n − Cn + Pn + φ0
nS

0
n, (1)

and in particular,

S`0 − C0 + P0 + φ0
0 = 0.

Recall that φ self-financing means that

〈φn, S̄n〉 = 〈φn+1, S̄n〉, n ≤ N − 1,

where S̄n = (Sn, Cn, Pn). Hence, for each n ≤ N − 1,

Vn(φ) =
〈
φn+1, S̄n

〉
= S`n − Cn + Pn + φ0

n+1S
0
n. (2)

Combining equations (1) and (2) we conclude that φ0
n is independent of n, i.e.

φ0
n = φ0

0 = C0 − P0 − S`0. (3)

Finally, by substituting (3) into (1), we obtain:

Vn(φ) = S`n − Cn + Pn +
(
C0 − P0 − S`0

)
(1 + r)

n
,

and hence

VN (φ) = K +
(
C0 − P0 − S`0

)
(1 + r)

N
> 0, by hypothesis (**).

Thus φ is an arbitrage strategy, in contradiction to arbitrage-freeness of the
market.

2. If

C0 − P0 < S`0 −
K

(1 + r)N
,

then a similar strategy (buy a call, sell a put and borrow the stock) allows
arbitrage. �
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Remark 4.7 (Practical interpretation of the strategy above).

• At time 0: Buy one stock, one put and sell one call. This gives in total
the balance:

∆ := C0 − P0 − S`0.
If ∆ > 0, put the sum in the cash account (at interest rate r),
if ∆ < 0, a loan is taken (at the same interest rate r).

• Nothing is touched until maturity N . The actual balance of the cash
account at maturity is then(

C0 − P0 − S`0
)

(1 + r)
N
.

Two scenarios are possible:

a) S`N > K: The buyer of the call will exercise the option; we hand him over
the stock (we own) at the price K; the put is worthless.
Then the value of the portfolio is

K +
(
C0 − P0 − S`0

)
(1 + r)

N
> 0.

b) S`N ≤ K: The buyer of the call lost his money (the call is worthless), we
sell the stock at the price K (possible by exercising the put).
Then, the value of the portfolio is

K +
(
C0 − P0 − S`0

)
(1 + r)

N
> 0.

4.3. Pricing in complete markets

Definition 4.8 (Attainability, replicating potfolios). Assume an arbitrage-free
market be given. A European option h (or contingent claim h) is called attainable
if there exists a self-financing strategy φ such that

h = VN (φ)

(i.e. the value of the portfolio VN (φ) = 〈φN , SN 〉 at maturity N matches exactly
that of the option). In this case we also say that the option h can be replicated ;
the strategy φ is called a replicating portfolio or hedging portfolio.

Remark 4.9. Note that for a replicating portfolio we have

h = V0(φ) +

N∑
k=1

〈φk,∆Sk〉

h̃ = V0(φ) +

N∑
k=1

〈φk,∆S̃k〉


since φ is self-financing.

Definition 4.10 (Complete market). A financial market is called complete if
every European option can be replicated.

Notation 4.11. Let P be the set of probability measures of full support on Ω
under which (S̃n)n=0,...,N is a (vector-valued) martingale.

Recall that P 6= Ø since by assumption the market is arbitrage-free.

Proposition 4.12. Let h be a European option, φ a replicating portfolio and
let P∗ ∈P. Then

Ṽn(φ) = E∗
[
h̃|Fn

]
, for all n ≤ N,
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i.e.

Vn(φ) =
1

(1 + r)
N−n E

∗ [h|Fn] , n ≤ N.

Proof. Under P∗, the price process (S̃n) is a martingale, and
(
Ṽn(φ)

)
is the

martingale transform of (S̃n) by (φn). Thus, Ṽn(φ) is a martingale under P∗ with

terminal value ṼN (φ) = h̃. Hence,

Ṽn(φ) = E
[
ṼN (φ)|Fn

]
= E∗

[
h̃|Fn

]
. �

Remark 4.13. In an arbitrage-free market any self-financing strategy replicat-
ing h is admissible. Indeed, we have VN (φ) = h ≥ 0. For P∗ ∈P,

Ṽn(φ) = E∗
[
h̃|Fn

]
= βN E∗[h|Fn] ≥ 0, ∀ n ≤ N.

Thus Vn(φ) ≥ 0 for each n ≤ N .

Conclusion. We found that

Ṽn(φ) = E∗[h̃|Fn],

or equivalently,

Vn(φ) =
1

(1 + r)
N−n E

∗ [h|Fn] .

We make the following observations: A priori, neither the measure P∗ ∈ P is
unique, nor is the replicating portfolio φ. On the other hand, Vn(φ) does not
depend on P∗, and the right-hand side

1

(1 + r)
N−n E

∗[h|Fn]

does not depend on φ. Hence,

πn(h) := Vn(φ) =
1

(1 + r)
N−n E

∗[h|Fn],

depends only on h and n (“price of the option h at time n”). In particular,

π (h) := π0 (h) = V0 (φ) =
1

(1 + r)
N
E∗[h].

Proposition 4.14. Let h be a European option (in an arbitrage-free market)
which can be replicated. Then, π(h) is the only price of h excluding arbitrage.

Proof. We have to show that π(h) is a price excluding arbitrage (p.e.a.) and
that it is the only price excluding arbitrage.

1) Existence: π(h) is a p.e.a. Indeed, let φ be a portfolio replicating h and π(h) =
V0(φ). Then, in particular h = VN (φ). Define Hn := Vn(φ) and choose P∗ ∈P.

Then, both (S̃n) and (H̃n) are P∗-martingales. In other words, (S̃n, H̃n) is a
P∗-martingale, which means that the augmented market(

Ω, (Fn) ,P; S̄n = (Sn, Hn)
)

is arbitrage-free. In particular, H0 is a p.e.a.
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2) Uniqueness: Let (hn) be an adapted sequence of non-negative random variables
satisfying hN = h and let π := h0. We must show: If π 6= π (h), then there
exists an arbitrage strategy in the market

(
Ω, (Fn) ,P; S̄n = (Sn, hn)

)
.

Note that now we have S̄n =
(
S0
n, S

1
n, . . . , S

d
n, hn

)
where S1

n, . . . , S
d
n are the risky

assets and hn is the supplementary risky asset of price hn at time n.

A. Suppose, for instance, π > π (h).
Let φ be a strategy replicating h. Consider ϕ̄n :=

(
φ1
n, . . . , φ

d
n,−1

)
and let

φ̄n be the self-financing portfolio which coincides with ϕ̄ on the d + 1 risky
assets such that V0

(
φ̄
)

= 0.
Then

Vn
(
φ̄
)

= φ̄0
nS

0
n + φ̄1

nS
1
n + . . .+ φ̄dnS

d
n + φ̄d+1

n hn

= φ̄0
nS

0
n + φ1

nS
1
n + . . .+ φdnS

d
n − hn,

and hence

Vn
(
φ̄
)

=
(
φ̄0
n − φ0

n

)
S0
n + Vn(φ)− hn. (1)

For n = 0, we have V0(φ̄) = 0, and thus φ̄0
0 − φ0

0 = h0 − V0(φ) = π − π(h).

Since φ̄ is self-financing, we have 〈φ̄n, S̄n〉Rd+2 = 〈φ̄n+1, S̄n〉Rd+2 , and thus

Vn
(
φ̄
)

= φ̄0
n+1S

0
n + φ1

n+1S
1
n + . . .+ φdn+1S

d
n − hn

=
(
φ̄0
n+1 − φ0

n+1

)
S0
n + 〈φn+1, Sn〉Rd+1 − hn.

This shows

Vn(φ̄) = (φ̄0
n+1 − φ0

n+1)S0
n + Vn(φ)− hn. (2)

Combining (1) and (2) we find that

φ̄0
n+1 − φ0

n+1 = φ̄0
n − φ0

n = . . . = φ̄0
0 − φ0

0 = π − π(h).

Hence,

Vn
(
φ̄
)

= (π − π (h)) (1 + r)
n

+ Vn(φ)− hn,

and thus

VN
(
φ̄
)

= (π − π (h)) (1 + r)
N
> 0,

i.e. φ̄ is an arbitrage strategy.

B. The case π < π(h) is treated analogously.

We thus conclude that indeed π = π(h). �

Remark 4.15 (Interpretation of the strategy in case A). The speculator, at-
tracted by the over-evaluation of the option h, borrows the option at time zero,
and sells it immediately at the market for the price π. From this sum, he takes out
the quantity π(h) which allows him to buy a portfolio replicating h. The remaining
sum π − π(h) he puts in the riskless money account.

Example 4.16 (Call-Put Parity; revisited). In an arbitrage-free complete mar-
ket consider the options

C := (S`N −K)+ European call
P := (K − S`N )+ European put

}
with same strike price and same maturity.
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Let Cn be a p.e.a. of C at time n and Pn be a p.e.a. of P at time n. Then

Cn =
1

(1 + r)N−n
E∗ [C|Fn] and

Pn =
1

(1 + r)N−n
E∗ [P |Fn].

Hence,

Cn − Pn =
1

(1 + r)N−n
E∗ [C − P |Fn]

=
1

(1 + r)N−n
E∗ [S`N |Fn]− 1

(1 + r)N−n
E∗ [K|Fn]

=
1

(1 + r)N−n
1

βn
E∗ [S̃`N |Fn]− K

(1 + r)N−n

= (1 + r)nS̃`n −
K

(1 + r)N−n

= S`n −
K

(1 + r)N−n
, n = 0, 1, . . . , N.

We conclude this section by summarizing the obtained results.

Summary. Given a European option h in a complete and arbitrage-free market

(Ω, (Fn),P; (Sn))

where Sn =
(
S0
n, S

1
n, . . . , S

d
n

)
, n = 0, 1, . . . , N . By definition, h is a non-negative

FN -measurable random variable.
By completeness of the market there exists a replicating portfolio φ for h, this

is a self-financing portfolio φ = (φn) such that h = VN (φ).
By arbitrage-freeness of the market there is P∗ ∈ Prob(Ω) of full support such

that (S̃n) is a P∗-martingale. Then

(Ṽn(φ))n, n = 0, 1, . . . , N

is a P∗-martingale as well, as martingale transform of (S̃n) by (φn). Thus, in
particular,

Ṽn(φ) = E∗[ṼN |Fn] = E∗[h̃|Fn], where h̃ =
h

S0
N

=
h

(1 + r)N
,

i.e.

Vn(φ) =
1

(1 + r)
N−n E

∗ [h|Fn] , and

V0(φ) =
1

(1 + r)
N
E [h] .

Note that πn (h) = Vn (φ) is the only sequence of p.e.a. Indeed, let (hn) be another
sequence of p.e.a. Then

(Ω, (Fn) ,P; (Sn) , (hn))

is arbitrage-free, and hence there exists P′ ∈ Prob(Ω) with suppP′ = Ω such that

(S̃n) and (h̃n) are P′-martingales. Thus (Ṽn(φ)) is a P′-martingale as well. Hence

h̃n = E′[h̃N |Fn] = E′[ṼN (φ)|Fn] = Ṽn(φ),

and thus hn = Vn(φ) for each n.
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We call

πn (h) =
1

(1 + r)
N−nE

∗ [h|Fn] “price of the option h at time n”,

and

π0 (h) =
1

(1 + r)
N
E∗ [h] “price of the option h”.

4.4. Pricing in incomplete markets

Proposition 4.17 (Prices excluding arbitrage of European options in not nec-
essarily complete markets). Given an arbitrage-free market. Let h be a European
option which is not necessarily replicable. Denote by Π (h) ⊂ R+ the set of prices
of h which exclude arbitrage. Then

Π(h) =
{
E∗[h̃] : P∗ ∈P

}
where P =̂ probability measures on Ω of full support under which (S̃n) is a mar-
tingale.

Notation. The set P is also called set of “equivalent martingale measures” or
“risk-neutral measures”

Proof.

1. Let π ∈ Π(h). Then, by definition, there is an adapted sequence (hn) such that

hN = h, h0 = π,

and such that

(Ω, (Fn),P; (Sn, hn))

is arbitrage-free. Hence, there exists P∗ ∈ Prob(Ω) with suppP∗ = Ω such that

(S̃n) and (h̃n) are P∗-martingales. In particular, P∗ ∈ P and π = h0 = E∗[h̃],
i.e.,

π ∈
{
E∗[h̃] : P∗ ∈ P

}
.

2. Conversely, let π = E∗[h̃] where P∗ ∈P. We have to show that π is a p.e.a. for

the option h. Let h̃n := E∗[h̃|Fn] and hn = h̃n (1 + r)n. Then (S̃n) and (h̃n)
are both P∗-martingales, and thus (Ω, (Fn) ,P; (Sn, hn)) is still arbitrage-free.
In addition, h0 = π and hN = h, hence π ∈ Π(h). �

Remark 4.18. Let h be a European option in an arbitrage-free market,

Π(h) =
{
E∗[h̃] : P∗ ∈P

}
.

• If h can be replicated, then |Π(h)| = 1.
• If h cannot be replicated, then Π(h) ⊂ R+ is an open interval (see Föllmer-

Schied Stochastic Finance for a proof).
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Theorem 4.19. An arbitrage-free market is complete if and only if there exists
a unique probability measure P∗ equivalent to P under which discounted prices are
martingales.

Proof. “⇒”: Assume that the market is arbitrage-free and complete. Thus
any European option h (i.e. non-negative FN -measurable random variable h) can be
replicated in the sense that there is an admissible strategy φ such that h = VN (Φ).
Since φ is self-financing, we have

ṼN (φ) = V0(φ) +

N∑
n=1

〈φn,∆S̃n〉.

Suppose that P1 and P2 are two probability measures equivalent to P such that
(S̃n)n=0,1,...,N is a martingale both under P1 and P2. Then also (Ṽn(φ))n=0,1,...,N

is a martingale both under P1 and P2. Thus

E1[βNh] = E1[V0(φ)] = V0(φ),

E2[βNh] = E2[V0(φ)] = V0(φ).

This implies βNE1[h] = βNE2[h], and thus E1[h] = E2[h] for any FN -measurable
h ≥ 0. With h = 1A where A ∈ FN , we get

P1(A) = P2(A), for all A ∈ FN = F .

In other words, we have P1 = P2.

“⇐”: Suppose that the market is arbitrage-free and incomplete. Let P∗ ∈P.
There exists an FN -measurable random variable h ≤ 0 without replicating port-
folio. Let

V :=
{
ṼN (φ) | φ is self-financing

}
=

{
c+

N∑
n=1

〈ϕn,∆S̃n〉

∣∣∣∣∣ c ∈ R and ϕn = (ϕ1
n, . . . , ϕ

d
n)n=1,...,N

a predictable sequence taking values in Rd

}
.

Then V ⊂ E = {X |X random variable on Ω} = R|Ω|. We consider on E the scalar
product

〈X,Y 〉 := E∗ [XY ] .

Note that V $ E, since h̃ ∈ E \ V .

Thus ∃ 0 6= X ∈ E such that X⊥V (in particular, E∗ [X] = 0). Let

P∗∗ :=
k +X

k
P∗ =

(
1 +

X

k

)
P∗

where k ∈ R+ sufficiently large such that k + X > 0. Then P∗∗ is a probability
measure since

P∗∗(Ω) =

∫
Ω

(
1 +

X

k

)
dP∗ = P∗(Ω) +

1

k
E∗[X] = P∗(Ω) = 1.

Thus P∗∗ ∈ Prob(Ω) and P∗∗ ∼ P∗, but P∗∗ 6= P∗.
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Let (ϕn) be an arbitrary predictable sequence taking values in Rd. Then

E∗∗
[
N∑
n=1

〈
ϕn,∆S̃n

〉]
= E∗

[(
1 +

X

k

) N∑
n=1

〈
ϕn,∆S̃n

〉]

= E∗
[
N∑
n=1

〈
ϕn,∆S̃n

〉]
+

1

k
E∗
[
X

N∑
n=1

〈
ϕn,∆S̃n

〉]
= 0.

(Note that the first term of the right-hand side vanishes since (S̃n) is a martingale

under P∗; the second vanishes since X ⊥ V ). Thus (S̃n) is also a martingale under
P∗∗. Hence, both P∗ and P∗∗ are probability measures in P, but P∗ 6= P∗∗. �





CHAPTER 5

The Cox-Ross-Rubinstein model

The Cox-Ross-Rubinstein (CRR) model is a discrete-time version of the Black-
Scholes model. Only one risky asset (Sn)06n6N is given in addition to the riskless

asset (S0
n)06n6N . More precisely, we have

S0
n = (1 + r)n, r > 0,

Sn+1 =

{
Sn(1 + a), or

Sn(1 + b)

}
where − 1 < a < b.

In other words, the quotients (
Sn+1

Sn

)
n=0,1,...,N−1

form a sequence of random variables taking values in {1 + a, 1 + b}.

5.1. Modeling of the Cox-Ross-Rubinstein model

Consider

Ω := {1 + a, 1 + b}N =
{
ω = (ω1, . . . , ωN ) | ωi ∈ {1 + a, 1 + b}

}
.

Let P be a probability measure on Ω such that P({ω}) > 0 for all ω ∈ Ω, and
consider the following random variables on (Ω,F ,P):

ξn : Ω→ {1 + a, 1 + b}, ξn(ω) = ωn.

Then {
S0 = s0 (with s0 > 0), and

Sn+1 = Sn ξn+1, n = 0, 1, . . . , N − 1;

i.e.

S0 = s0,

S1 = s0 ξ1,

...

Sn = Sn−1 ξn = Sn−2 ξn−1 ξn = . . . = s0 ξ1 ξ2 · . . . · ξn.

The filtration is given by

Fn = σ {X0, . . . , Xn} = σ {ξ1, . . . , ξn}

where F0 = {Ø,Ω}.

33
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Proposition 5.1. In the CRR model, the sequence of discounted prices

(S̃n)n=0,1,...N

is a martingale under P if and only if

E
[
ξn+1 |Fn

]
= 1 + r, 0 6 n 6 N − 1.

Proof. We have the following equivalences:

E
[
S̃n+1 |Fn

]
= S̃n

⇐⇒ 1

S̃n
E
[
S̃n+1 |Fn

]
= 1

⇐⇒ E

[
S̃n+1

S̃n
|Fn

]
= 1

⇐⇒ E
[
βn+1Sn+1

βnSn
|Fn

]
= 1

⇐⇒ E
[

1

1 + r
ξn+1 |Fn

]
= 1, as

βn+1

βn
=

(1 + r)n

(1 + r)n+1
=

1

1 + r
,

⇐⇒ E [ξn+1 |Fn ] = 1 + r. �

Corollary 5.2. If the market is arbitrage-free, then r ∈ ]a, b[.

Proof. Arbitrage-freeness implies existence of a measure P∗ ∈ Prob(Ω) such

that P∗ ∼ P (i.e. suppP∗ = Ω) under which (S̃n) is a martingale. By Proposi-
tion 5.1, we then have for each n,

E∗ [ξn+1 |Fn] = 1 + r, and hence E [ξn+1] = 1 + r.

On the other hand, ξn+1 takes values in {1+a, 1+b} and takes each of these values
with probability > 0. This implies 1 + r ∈ ]1 + a, 1 + b[ and hence r ∈ ]a, b[. �

Remark 5.3. In the case r /∈ ]a, b[ it is easy to construct arbitrage. Indeed,
suppose that

r ≤ a: Borrow the amount S0 at time 0 to buy one unit of the risky asset. At
time N , sell the risky asset and pay back the loan.

Realized profit = SN − S0(1 + r)N

> SN − S0(1 + a)N (since S0 (1 + r)N 6 S0(1 + a)N )

> 0 (and > 0 with probability > 0).

r ≥ b: Analoguous argument: Short-sell the risky asset at time 0.

Proposition 5.4. Consider a CRR model with r ∈ ]a, b[. A probability mea-
sure P on Ω is a martingale measure (in the sense that the sequence of discounted

prices (S̃n) is a P-martingale) if and only if the random variables ξ1, . . . , ξN are
i.i.d. such that

P {ξn = 1 + a} = p, where p =
b− r
b− a

.
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Proof.

“⇐”: Let p = b−r
b−a so that

r = ap+ b(1− p).
Assume that the ξn are independent and that

P {ξn = 1 + a} = p = 1− P {ξn = 1 + b} .
Then, for 0 ≤ n ≤ N − 1,

E [ξn+1 |Fn] = E [ξn+1] , since ξn+1 ⊥⊥ Fn,

= (1 + a) p+ (1 + b) (1− p)
= ap+ b (1− p) + p+ (1− p)
= 1 + r.

Hence S̃n is a P-martingale.

“⇒”: Let S̃n be a martingale under P, thus

E [ξn+1 |Fn] = 1 + r, ∀n 6 N − 1.

Since

ξn+1 = (1 + a)1{ξn+1=1+a} + (1 + b)1{ξn+1=1+b},

this implies, for each n 6 N − 1,

(1 + a)E
[
1{ξn+1=1+a} |Fn

]︸ ︷︷ ︸
=: A

+(1 + b)E
[
1{ξn+1=1+b} |Fn

]︸ ︷︷ ︸
=: B

= 1 + r.

In other words, we have {
aA+ bB = r,

A+B = 1,

from where we obtain 
A =

b− r
b− a

= p,

B =
r − a
b− a

= 1− p.

On the other hand,

E
[
1{ξn+1=1+a} |Fn

]
= p =⇒ P {ξn+1 = 1 + a} = p,

E
[
1{ξn+1=1+b} |Fn

]
= 1− p =⇒ P {ξn+1 = 1 + b} = 1− p.

This implies in particular,

ξn+1 ⊥⊥ Fn.

(Indeed, for F ∈ Fn, we have

P
(
{ξn+1 = 1 + a)} ∩ F

)
= E[1{ξn+1=1+a)} 1F ]

= E
[
E[1{ξn+1=1+a)}1F |Fn]

]
= E

[
E[1{ξn+1=1+a)}|Fn]1F

]
= E[p1F ] = pP(F )

= P
(
{ξn+1 = 1 + a)}

)
P(F );

same argument applies for the event {ξn+1 = 1 + b)}).
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By induction, we obtain, ∀xi ∈ {1 + a, 1 + b},

P {ξ1 = x1, . . . , ξn = xn} =

n∏
i=1

pi

where

pi =

{
p if xi = 1 + a,

1− p if xi = 1 + b.

In other words, the random variables ξ1, . . . , ξN are i.i.d. and

P {ξn = 1 + a} = p = 1− P {ξn = 1 + b} . �

Corollary 5.5. Given a CRR market with r ∈ ]a, b[. Let p := b−r
b−a ∈ ]0, 1[

and denote by µ the probability measure on {1 + a, 1 + b} with

µ ({1 + a}) = p and µ ({1 + b}) = 1− p.

Then

P∗ := µ⊗ . . .⊗ µ︸ ︷︷ ︸
N times

is the only martingale measure on Ω = {1 + a, 1 + b}N . Moreover P∗ has full
support on Ω. The market is hence arbitrage-free and complete.

5.2. Pricing of puts and calls in the CRR model

Let C = (SN −K)+ and P = (K − SN )+ where K is the strike price. Denote
by Cn, resp Pn, the p.e.a. at time n. Then

Cn =
1

(1 + r)N−n
E∗
[
(SN −K)+ |Fn

]
,

Pn =
1

(1 + r)N−n
E∗
[
(K − SN )+ |Fn

]
, 0 6 n 6 N.

In particular,

Cn − Pn = Sn −
K

(1 + r)
N−n , 0 6 n 6 N. (Call-put parity)

Goal: We want to write Cn = c (n, Sn) for some explicit function c. Note that

Cn =
1

(1 + r)N−n
E∗
[(

Sn
N∏

i=n+1

ξi −K
)

+

∣∣∣∣∣Fn

]
,

since SN = Sn
N∏

i=n+1

ξi.

Lemma 5.6. Let X,Y be random variables on some probability space (Ω,F ,P)
and A ⊂ F be a sub-σ-algebra. Suppose that X is A -measurable and Y⊥⊥A .
Then, for any measurable φ : R× R→ R+,

E [φ (X,Y ) |A ] = ϕ (X) a.s.

where ϕ (x) = E [φ (x, Y )].
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Remark 5.7. We have Cn = c(n, Sn) where

c(n, s) :=
1

(1 + r)N−n
E∗
(s N∏

i=n+1

ξi −K

)
+

 .
Lemma 5.8. Let ξ1, . . . , ξ` be i.i.d. random variables of common law µ (where

µ {1 + a} = p ∈ ]0, 1[ and µ {1 + b} = 1 − p) and let ψ : R` → R+ be measurable
and symmetric, i.e. ψ(s1, . . . , s`) = ψ(sπ(1), . . . , sπ(`)) for any permutation π of

(1, . . . , `) and (s1, . . . , s`) ∈ R`. Denote

s(j) = (s, s, . . . , s)︸ ︷︷ ︸
j times

∈ Rj , s ∈ R.

Then, the following formula holds:

E
[
ψ(ξ1, . . . , ξ`)

]
=
∑̀
j=0

(
`

j

)
pj(1− p)`−j ψ

(
(1 + a)(j), (1 + b)(`−j)).

Proof. Let I (ω) := #
{
i ∈ {1, . . . , `} | ξi (ω) = 1 + a

}
.

i) The random variable I follows a binomial law B(`; p) with parameters ` and p.

Indeed, we may write I =
∑̀
i=1

Ui where Ui = 1{ξi=1+a}. It suffices to observe

that (Ui)16i6` are independent Bernoulli variables with

P {Ui = 1} = p = 1− P {Ui = 0} .

ii) Since ψ is symmetric, the random variable ψ (ξ1, . . . , ξ`) is a function of I alone,

ψ
(
ξ1, . . . , ξ`

)
= ψ

(
(1 + a)(I), (1 + b)(`−I)).

Thus,

E [ψ (ξ1, . . . , ξ`)] =
∑̀
j=0

ψ
(
(1 + a)(j), (1 + b)(`−j))P {I = j}

=
∑̀
j=0

(
`

j

)
pj (1− p)`−j ψ

(
(1 + a)(j), (1 + b)(`−j)). �

Corollary 5.9. Applying Lemma 5.8 to the function

ψs (tn+1, tn+2, . . . , tN ) = (s tn+1 tn+2 · . . . · tN −K)+

gives the explicit formula:

Cn = c (n, Sn)

with

c(n, s) =
1

(1 + r)N−n

N−n∑
j=0

(
N − n
j

)
pj(1− p)N−n−j

(
s(1 + a)j(1 + b)N−n−j −K

)
+
.
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5.3. Replicating portfolio for a European call

Let φn =
(
ϕ0
n, ϕn

)
be a replicating portfolio for C. Then

Cn = c(n, Sn) = Vn(φ) = ϕ0
n(1 + r)n + ϕnSn,

and hence

c(n, ξn Sn−1) = ϕ0
n(1 + r)n + ϕn ξn Sn−1.

Note that ξn takes as possible values only 1+a and 1+b. This leads to the following
two equations{

c(n, (1 + a)Sn−1)1{ξn=1+a} =
(
ϕ0
n(1 + r)n + (1 + a)ϕnSn−1

)
1{ξn=1+a}

c (n, (1 + b)Sn−1) 1{ξn=1+b} =
(
ϕ0
n (1 + r)

n
+ (1 + b)ϕnSn−1

)
1{ξn=1+b}.

Under the unique martingale measure P∗, we take conditional expectations
E∗[. . . |Fn−1] (note that φn =

(
ϕ0
n, ϕn

)
is Fn−1-measurable, and that ξn ⊥⊥ Fn−1).

This gives

(∗)

{
c (n, (1 + a)Sn−1) p =

(
ϕ0
n (1 + r)

n
+ (1 + a)ϕnSn−1

)
p,

c (n, (1 + b)Sn−1) (1− p) =
(
ϕ0
n (1 + r)

n
+ (1 + b)ϕnSn−1

)
(1− p) ,

where p = P∗ {ξn = 1 + a} = 1− P∗ {ξn = 1 + b} ∈ ]0, 1[.

It is hence enough to solve system (∗) for the two unknowns ϕ0
n, ϕn. One

obtains
ϕ0
n =

(1 + b) c(n, (1 + a)Sn−1)− (1 + a) c(n, (1 + b)Sn−1)

(b− a)(1 + r)n
=: ∆0(n, Sn−1)

ϕn =
c(n, (1 + b)Sn−1)− c(n, (1 + a)Sn−1)

(b− a)Sn−1
=: ∆(n, Sn−1).

Conclusion: The hedging portfolio φn = (ϕ0
n, ϕn) is unique and given by{

ϕ0
n = ∆0(n, Sn−1),

ϕn = ∆(n, Sn−1).

Remark 5.10. The function s 7→ (S −K)+ is increasing, hence c(n, ·) is in-
creasing for each n, and thus ϕn > 0 for each n. This shows that the hedging
strategy does not require short-selling of the risky asset at any instant.

Remark 5.11. The calculations above immediately extend to European options
of the type

h = H(SN ).

The unique price (excluding arbitrage) of h at time n then writes as

Pn(h) = c(n, Sn)

where

c(n, s) =
1

(1 + r)N−n

N−n∑
j=0

(
N − n
j

)
pj(1− p)N−n−jH(s(1 + a)j(1 + b)N−n−j

)
.

As above, in case the function s 7→ H(s) is monotonically increasing, the unique
hedging portfolio for h doesn’t require short-selling at any time.
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5.4. From CRR to Black-Scholes

The idea is the following: We construct a sequence of CRR markets. To this
end, we fix three (strictly positive) constants: T , R, σ, and ssume that, for each
N ∈ {1, 2, 3, . . .}, a CRR market is given by the following data:

(1) The assets are quoted at the instants

0,
T

N
, 2

T

N
, . . . , N

T

N
= T (N + 1 instants).

(2) The interest rate rN on each interval from n TN to (n+ 1) T
N is

rN = R
T

N
.

(3) Let aN and bN be given by

1 + aN = (1 + rN ) e−σ/
√
N , and

1 + bN = (1 + rN ) eσ/
√
N .

(4) Let
(
ξN1 , . . . , ξ

N
N

)
beN i.i.d. random variables, taking values in {1 + aN , 1 + bN},

such that for each n,

E∗N
[
ξNn
]

= 1 + rN .

Note that this condition determines the law of ξNn . Indeed:

E∗N
[
ξNn
]

= (1 + aN )P∗N
{
ξNn = 1 + aN

}
+ (1 + bN )P∗N

{
ξNn = 1 + bN

}
,

hence

pN := P∗N
{
ξNn = 1 + aN

}
=
bN − rN
bN − aN

.

(5) The price of the risky asset is given by

SNn = SNn−1ξ
N
n = . . . = ξN1 · . . . · ξNn (we assume that SN0 = 1).

Thus for each N ∈ {1, 2, 3, . . .} a CRR market is specified. This leads to the
following questions:

(i) Is there convergence as N →∞ to a “market in continuous time” with hori-
zon T?

(ii) We observe that

lim
N→∞

(1 + rN )
N

= lim
N→∞

(
1 +

RT

N

)N
= eRT

(iii) What is the interpretation of σ?

Lemma 5.12. For each N ≥ 1, let (XN
n )16n6N be a finite sequence of N i.i.d.

random variables, each taking values in{
− σ/

√
N, σ/

√
N
}
.

Let µN = E[XN
n ] and suppose that NµN → µ, as N →∞. Then the sequence

YN = XN
1 + . . .+XN

N

converges in distribution to N(µ, σ2) (normal distribution of mean µ and vari-
ance σ2).
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Proof. Let ϕN be the characteristic function of YN , i.e.

ϕN (t) = E
[
eitYN

]
=
(
E
[
eitX

N
1
])N

.

Recall the Theorem of Paul Lévy :

Xn → X in distribution (i.e. E [f (Xn)]→ E [f(X)] for any f ∈ Cb(R))

⇐⇒ E
[
eitXN

]
→ E

[
eitX

]
, ∀t ∈ R.

Hence, it suffices to show

lim
N→∞

ϕN (t) = eitµ−t
2σ2/2, ∀t ∈ R.

Note that

eitx = 1 + itx− (tx)2

2
+Rt(x),

where |Rt(x)| 6 |t|
3|x|3
6 . Hence,

eitX
N
1 = 1 + itXN

1 −
(tXN

1 )2

2
+Rt(X

N
1 ),

where |Rt(XN
1 )| 6 |tσ|3

6N
√
N

. We obtain

E
[
eitX

N
1
]

= 1 + itµN −
t2

2

σ2

N
+ E

[
Rt(X

N
1 )
]
.

Now let t be fixed. Then∣∣E[Rt(X
N
1 )]
∣∣ 6 E ∣∣Rt(XN

1 )
∣∣ 6 |t|3σ3

6N
√
N

= o

(
1

N

)
.

Recall that

µN =
µ

N
+ o

(
1

N

)
,

hence

E[eitX
N
1 ] = 1 + it

µ

N
− t2

2

σ2

N
+ o

(
1

N

)
.

This shows that, as wanted,

ϕN (t) =
(
E[eitX

N
1 ]
)N

=

(
1 +

itµ− t2σ2/2

N
+ o

(
1

N

))N
→ eitµ−t

2σ2/2,

as N →∞. �

Proposition 5.13. Let YN = log S̃NN , where SNN = ξN1 · . . . · ξNN . Then YN
converges in distribution to N(−σ2/2, σ2), i.e. a Gaussian variable of mean −σ2/2
and variance σ2.

Proof. We have

log S̃NN = log
ξN1 · . . . · ξNN
(1 + rN )N

= XN
1 + . . .+XN

N ,

where

XN
n = log

ξNn
1 + rN

.

We make the following observations:
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(1) Each XN
n takes its values in the 2-points set{

log
1 + aN
1 + rN

, log
1 + bN
1 + rN

}
=

{
−σ√
N
,
σ√
N

}
.

(2) The variables
(
XN

1 , . . . , X
N
N

)
are i.i.d.

(3) Let µN = E∗N [XN
1 ]. Then it suffices to show that

NµN → µ, as N →∞,

where µ = −σ
2

2 . Indeed we have:

µN = E∗N
[
log

ξN1
1 + rN

]
= log

(
1 + aN
1 + rN

)
P∗N
{
ξN1 = 1 + aN

}
+ log

(
1 + bN
1 + rN

)
P∗N
{
ξN1 = 1 + bN

}
=
−σ√
N

bN − rN
bN − aN

+
σ√
N

rN − aN
bN − aN

=
σ (rN − bN ) + σ (rN − aN )√

N (bN − aN )

=
σ (2rN − (bN + aN ))√

N (bN − aN )
.

Now note that

1 + aN = (1 + rN ) exp

(
−σ√
N

)
= (1 + rN )

[
1− σ√

N
+
σ2

2N
+ o

(
1

N

)]
1 + bN = (1 + rN ) exp

(
σ√
N

)
= (1 + rN )

[
1 +

σ√
N

+
σ2

2N
+ o

(
1

N

)]
.

Hence we have

bN − aN =
2σ√
N

+ o

(
1

N

)
,

and

2rN − (aN + bN ) = 2rN − ((1 + aN ) + (1 + bN )− 2)

= 2rN − (1 + rN )

[
2 +

σ2

N
+ o

(
1

N

)]
+ 2

= −σ
2

N
+ o

(
1

N

)
.

Thus,

lim
N→∞

NµN = lim
N→∞

N
σ
(
−σ

2

N + o
(

1
N

))
√
N
(

2σ√
N

+ o
(

1
N

)) = −σ
2

2
.

The claim now follows from the lemma. �

We want to calculate the price of a call and a put in “continuous time” by
passing to the limit of the corresponding formulas in the CRR model.



42 5. THE COX-ROSS-RUBINSTEIN MODEL

Let P∗N be the probability measure under which

(ξN1 , . . . , ξ
N
N ) is i.i.d. and P∗N {ξn = 1 + aN} =

bN − rN
bN − aN

.

Let

P (N) = (K − SNN )+

the put with strike price K > 0 and P
(N)
0 its p.e.a. at time 0. We know that

P
(N)
0 =

1

(1 + rN )N
E∗N

[(
K − SNN

)
+

]
= E∗N

[(
K

(1 + rN )
N
− S̃NN

)
+

]

= E∗N

[(
K

(1 + rN )N
− eYN

)
+

]
.

Let ψ(y) = (Ke−RT − ey)+. Then we have∣∣∣P (N)
0 − E∗N [ψ (YN )]

∣∣∣ =

∣∣∣∣∣E∗N
[(

K

(1 + rN )
N
− eYN

)
+

−
(
Ke−RT − eYN

)
+

]∣∣∣∣∣
6 E∗N

∣∣∣∣∣
(

K

(1 + rN )
N
− eYN

)
+

−
(
Ke−RT − eYN

)
+

∣∣∣∣∣
6

|a+−b+|6|a−b|
K

∣∣∣∣∣ 1

(1 + rN )
N
− e−RT

∣∣∣∣∣→ 0, as N →∞.

Hence, denoting

gµ,σ2(t) dt =
1

σ
√

2π
e−(t−µ)2/2σ2

dt =̂ N(µ, σ2),

we obtain as limiting price:

lim
N→∞

P
(N)
0 = lim

N→∞
E∗N [ψ(YN )]

=

∫
R
ψ(t) g−σ2/2, σ2(t) dt

=
1

σ
√

2π

∫
R

(
Ke−RT − et

)
+

exp

(
− (t+ σ2/2)2

2σ2

)
dt

=
t=−σ22 +σy

1√
2π

∫
R

(
Ke−RT − e−σ

2

2 +σy
)

+
e−y

2/2dy.

Next we drop the condition SN0 = 1. We assume that SN0 = s0 > 0 is a constant

independent of N . Note that this just means replacing SNN by s0S
N
N = SN,new

N . Thus

P
(N)
0 =

1

(1 + rN )N
E∗N

[(
K − s0S

N
N

)
+

]
=

s0

(1 + rN )N
E∗N

[(
K

s0
− SNN

)
+

]
,
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and hence

P0 = lim
N→∞

P
(N)
0 =

s0√
2π

∫
R

(
K

s0
e−RT − e−σ

2/2+σy

)
+

e−y
2/2 dy

=
1√
2π

∫
R

(
K e−RT − s0 e

−σ2/2+σy
)

+
e−y

2/2 dy.

Now let

N(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy,

d1 =
1

σ

(
log

s0

K
+RT

)
+
σ

2
,

d2 =
1

σ

(
log

s0

K
+RT

)
− σ

2
= d1 − σ.

Then,

Ke−RT − s0e
−σ22 +σy > 0⇐⇒ e−

σ2

2 +σy 6
K

s0
e−RT

⇐⇒ σy 6 log
K

s0
−RT +

σ2

2
⇐⇒ y 6 −d2,

and hence

P0 =
1√
2π

∫ −d2
−∞

(
Ke−RT − s0e

−σ22 +σy
)
e−y

2/2dy

= Ke−RTN(−d2)− s0
1√
2π

∫ −d2
−∞

e−
(y−σ)2

2 dy.

In other words,
P0 = Ke−RTN(−d2)− s0N(−d1).

To calculate the limiting price

C0 = lim
N→∞

C
(N)
0

of the corresponding call (same strike price K and same maturity T ), we use the
Call-Put parity:

C
(N)
0 − P (N)

0 = S0 −
K

(1 + rN )N
.

Passing to the limit, we obtain

C0 − P0 = S0 −Ke−RT ,
and hence

C0 = Ke−RTN(−d2)− S0N(−d1) + S0 −Ke−RT

= S0

(
1−N(−d1)

)
−Ke−RT

(
1−N(−d2)

)
= S0N(d1)−Ke−RTN(d2).

Remark 5.14. The formulas{
C0 = S0N(d1)−Ke−RTN(d2)

P0 = −S0N(−d1) +Ke−RTN(−d2)

are the famous “Black-Scholes formulas” for a European call, resp. European put.
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Remark 5.15. The only parameter not directly observable on the market is σ:
for large N we have

σ2 ≈ var
(

log S̃NN
)
.

The parameter σ has the interpretation of a price volatility.


