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Abstract

The principal part of the error in the Euler scheme for an SDE with smooth coefficients can be expressed as a generalizec
Watanabe distribution on Wiener spade. cite this article: P. Malliavin, A. Thalmaier, C. R. Acad. Sci. Paris, Ser. | 336
(2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé
Erreur du schéma d’Euler pour une EDS et hyperdistribution. La partie principale de I'erreur dans I'intégration par
le schéma d’Euler d’'une EDS avec des coefficients réguliers est une distribution de Watanabe gériéoafisgter cet
article: P. Malliavin, A. Thalmaier, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Algebraic computation of theerror

Asymptotic expansion depends upon the choice of a topology for measuring the size of the remainder term;
either a norm topology, or on the opposite side, some weak topology may be chosen. The “weakest” among weak
topologies are topologies on spaces of distributions: this will be the point of view of this Note. Our main concern
is to establish asymptotic expansions “upstairs”, that is on the probability space itself. We shall deal with the
R?-valued SDE

dew (1) =Y Ac(6w () dWF + Ao(6w (1)) dr:  &w (°) = &o. (1)

k=1

whereW denotes:i-dimensional Brownian motion on Wiener spad# andAg, A1, ..., A, are smooth bounded
vector fields orR? with bounded derivatives of all orders.

E-mail addressessli@ccr.jussieu.fr (P. Malliavin), anton.thalmaier@maths.univ-evry.fr (A. Thalmaier).

1631-073X/03/$ — see front mattél 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00189-4



852 P. Malliavin, A. Thalmaier / C. R. Acad. Sci. Paris, Ser. | 336 (2003) 851-856

Givene > 0, theEuler schemef meshe is defined by the following recursion formula:

Ew, (qe) — Ew, ((g — De) = > Ar(Ew. ((q — De))[W(ge) — W ((g — De)]
k=1
+ Ao(Ew, ((g — De))e, Ew, (1)=& forre [to to]
where fort > 0 we use the notation = [¢/¢]e with [a] the largest integex a. The Euler scheme for all times is
then defined as solution of tlielayedSDE

déw, (1) = Y _ Ax(&w, () dW* (1) + Ao(Ew, (1)) dr - fore >0, &w,[[12,1°] = &. )
k=1

The remainder terré. (¢) := &w, (t) — &w (¢) satisfies the SDE

n

do; =Y [Ar(Ew (1) +0:(D) — Ax (8w (1) | dWE (1) + [Ao(§w (1) + 0:() — Ao(§w (1)) ] dr +dx (1), (3)

k=1
wheref, (1% =0 and

n

dx () := Z “Ri() dW () + *Ro() dt,  “Ri(t) = Ar(&w, () — A (Ew, (D).
k=1
Let A, be thed x d matrix defined by differentiating the components of the vector figldvith respect to the

coordinate vector fields; then almost surely the derivative of the solgtio(r) of (2) with respect to the initial
data&gp defines a random flow of diffeomorphisms; its Jacobian is given by the matrix-valued delayed SDE

ds o= ,HO<ZA1{ (Ew (te)) AW + Ao(Ew (1)) d ) t>1°

k=1

whereJ S0= =idfort e [to 19]. The derivatives of R (1) may be computed in terms of the Jacobian matrix:

De ¢ “Ri(1) = Lp <oy (Ak (Ew, (1)) ,H(Az) — Ax(&w, (D) ;H(Ae)) (4)
the derivatived, (0. () =: u(t) are computed by differentiating (3). We get

du — > ArEw + 0)u dWr — AgEw + Ooude =:dI = " I dW + Iodr, (5)
k=1 k=1

wherely, I, ..., I, may be computed using (4) and standard computations of derivatives along the stochastic
flow to SDE (1). Then, by Itd’s formula, the following version of the Lagrange formula (variation of constants) is
established: in terms of tlmpensation vector field := Y "} _; Ax I, we have

t
u(t) = J,<_to|:/ 0 (Al () — Z(7) dr):|, (6)
10
where the Itd stochastic integral inside the brackets has to be computed first. We introduce a pararf@te}
and defineé'd as the solution of the SDE

n

d0(t) = Y [Ac(Ew®) +0(0)) — A (Ew ()] dW* (1)

k=1
+ [Ao(Ew (1) +0(1)) — Ao(Ew ()] dr + 2dx (1), *6(:°) =0; @)
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as% () =0 forall 7, denotingd%ke ="*u, we have, = folku dx. By differentiating (7) with respect td, we get
the following linear SDE fofu:

d*u =d®Q - *u +dy, (8)
where ¢Q = 37 _; AcEw +0) dWF + Ag(Ew +70) dt.

2. Diagonal-regular functions and diagonal-distributionson Wiener space

We consider the diagonal & which is the 1-dimensional subspage- {t1 =--- =1, }; let ®" be the quotient
mapR’ — R’ /y. A functionU € L2(R") is said to baliagonal-continuoug E®" [U?] is a continuous function,
whereE®" denotes the conditional expectation undér the spac&D/ is the subspace @b/ such that derivatives
up to the order are diagonal-continuous. We define a diagonal Sobolev norm

r .
||f||5Drp:E[|f|p+2”E¢J|Dn ..... r,-fleiﬁf(Rf/y)}
j=1

We remark that solutions of SDE with infinitely bounded differentiable coefficients give rise to functionals
belonging to’ D/ . A diagonal-distribution(see [8]) is a linear form ohD;” such that(f, S)| < ¢ [l £l -

3. Estimation of theerror in Sobolev norm of positive order

We get the following estimates of the remainder term intenorm, resp? DY -Sobolev norm; see [2,6,7] for
related results.

Proposition 3.1. For any p €]1, oo[ and any integer > 0, we have

(]E[ sup |98(t)|ﬂ’§d])l/p=0(\/5); sup [6:(0)]»,r =O(Ve). 9

te[r0,T] 1€[19,T]

Proof. Denote by’J)"__ the solution to the linear equation (8) with initial conditioh’._. = id; as its coefficients
Ay are bounded, we have uniformly with respectto

2
E[ sup [}, | p] <c¢p < 00;
t,7€[9,T]

by the same reason the compensation vector f#elslbounded inL?; we getE[|8Rk|§§,] = O(e?). Using (6), we
have

! n
“u(r) =£J,WHO[ / > e CRe() dWH (1) + T 5 (FRo(t) — Z(r))dt:|.
0 k=1

ConsequenthyD, ;6 satisfies an SDE of the same nature as (3); the second part of (9) is verified along the same
lines. O

Corollary 3.1 (cf. [4]). The Euler scheme converges quasi-surely.
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4. Asymptotic expansion in termsof a diagonal-distribution

We localize the method of Section 3 by using a Taylor expansian=a0; denoting the second derivatives by
*v:= (d/dr) *u we have by means of (9)

1
0="u+ EOU —+ 0(s).
The question of asymptotic expansiorvads de) is therefore reduced to the asymptotic expansidtxof v which

we abbreviate ag, v. We compute: from (8) for A = 0 which realizes a computation along the path of the original
diffusion. In the same way differentiating equation (8) with respeétamd lettings = 0, the terms

d 2 n
0°A
R(t) = §jlw(sw(r))u‘(r>uf’(r), zY) :=§l(Ak-R,})(sw(r>) (10)
Z,pz k=

appear, and we get

vy =J" [/drz ((Ri@)dwk() + J %, (R(lJ(r)—Zl(r)):|. (11)
10

Theorem 4.1 (Rate of weak convergencd)here exisiR?-valued functionsy, by, c onR¢, computable in terms
of the coefficients dfL) and its first fourth derivatives, such that for agiye VDgO-O,

1 t
lim ZE[6: (1) /] / [Zake (Ew (D) meZbk Ew (D)) fkf+c(sw(r>)f} (12)

Remark 1. This result should be compared with [5,1,3].

Proof. Assuming that diagonal distributions, . .., S¢ of third order are given, we consider the formal expression
§1=3, (1" )i k. As the coefficients of the matrixy_ belong to”D$°° and as the space of third order

diagonal distributions is a module over the algebl@o‘0 we deduce tha$ is a diagonal distribution of third

order. Definingi(z) := u(t) andv(r) := v(z), we are reduced to find a diagonal distributiauch that

tot tot

I ~ 1
lim “E[a)f]=(1.5).  lim “E[5()f]=0

To short-hand the notation, we write(-) := (+); thenu () = u1(t) + u2(r) where

t0<—r
t n t

(1) ::/ZW(SRk(t))de(t), ia(t) :Z/W(SRo(‘E)—Z(‘E))d‘E
k=1 10

Using the fact that an It6 integral is a divergence we get

E[fi1(n)] /|:Z(Drkf) Rk(f)):|d7«'
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by It6 formula applied to the delayed SDE (2) we have

T

Ree) == [ 3 Aulew,00) - Aslew, (2) W 00— [ (240w, 00) . (13)

Te

where

(CLAK) (Ew, (V) : Z AL (Ew, (1) AT (Bw, (o)) 70—

s l,p
We want to eliminate the first term in (13). To this end we remark

E[(Dz, /)™ (R ()] = E[EN* (Do, )V (R, (1)];

E[ENfe (De.r f) / 3 Ac(Ew, () - As(w, (7o) dW? (A)] =0.

924

P9t NGAD) +ZA‘ (6w, (z0)) 22

7, (éwy (1)).

By the Ocone—Karatzas formula, we get
BN [D,, f]1— ENw[D, , f] = Z/EN (D2, ) dWER)

and with" () analogously as above,
[falm]
—E[ / dr / dx< DZ,5 . F) Y (A (Ew, ) - Ac(Ew, (1)) + Y _(Drx ) (CLAL) (Ew, (A)))}
rk= l k=1
which ase — 0 gives rise to the equivalence

E[ fiia(r)] ~ gE[ / dr( > (D2, k) V(A A (Ew (D)) + Y (Deicf) W(OﬁAk)@W(T))>i|-

/ rk=1 k=1

E[ fiiz(r)] = [/f ("Ro-"2)d }

may be computed as before. There appear integrals along the pathg ¢f f, and we get existence &f b, ¢
such that

Finally

1 t
I|m E[u(t)f / [Zau (Ew(D))D tkt(f‘i‘zbk Ew (1)) rkf+5(§w(f))f:| dr. (14)
tO

It remains to take care af. combining (9) and (11) gives immediataly= O(e). To get the sharper estimatésp
we use that (10) giveR,} as a bilinear expression in A typical term is

t t
WaZAk W32 k
E[h/ 5E73E7 u‘uﬁdwk] =/E[B(r)up(r)]dr, Bi= (Deih) grzzeyu u';
0

0
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applying formula (14) and taking = B, we get
t
W82Ak ‘ '
E hfiaélagpu uP AW || < cellBllvpg < celllly pa el ..

10

and using (9), witl, (-) replaced by, we obtain the wanted order(®. O
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