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The stochastic calculus of variations or Malliavin calculus is a differential cal-
culus on a Gaussian space, introduced by Malliavin in [6] in order to provide a
probabilistic proof of Hörmander’s hypoellipticity theorem. The basic ideas and re-
sults of Malliavin calculus can be presented in the framework of a Gaussian measure
on a finite dimensional space as follows.

Suppose that γn is the standard normal distribution on R
n with density

p(x) = (2π)−
n
2 exp

(
−|x|2

2

)
.

Denote by Ck
b (Rn) the space of k-times continuously differentiable functions on

R
n which are bounded together with all their first k partial derivatives. Given

F ∈ C1
b (Rn) we denote its gradient by ∇F = (∂1F, . . . , ∂nF ), where ∂i = ∂

∂xi
. The

adjoint of ∇ with respect to the measure γn has the following expression:

δ(u) =
n∑

i=1

(uixi − ∂iui) = 〈u, x〉 − divu,

where u ∈ C1
b (Rn; Rn). That is, the following duality formula holds:

(0.1)
∫

Rn

〈∇F (x), u(x)〉dγn(x) =
∫

Rn

F (x)δ(u)(x)dγn(x).

For any p ≥ 1 we can define a seminorm on Ck
b (Rn) by

‖F‖p
k,p =

∫
Rd

⎛
⎝|F (x)|p +

k∑
j=1

∑
αi∈{1,...,n}

|∂α1 · · · ∂αj
F (x)|p

⎞
⎠ dγn(x).

Then, the completion of Ck
b (Rn) with respect to the seminorm ‖ · ‖k,p, denoted by

D
k,p(Rn), is the Banach space of functions on R

n for which all derivatives up to
order k in the distribution sense belong to Lp(γn). The following result is a basic
tool in the development of Malliavin calculus.

Theorem 0.1. For any p > 1 and any integer k ≥ 1, the operator δ is continuous
from D

k,p(Rn; Rn) into D
k−1,p(Rn), and there exists a constant ck,p, not depending

on the dimension n, such that

‖δ(u)‖k,p ≤ ck,p ‖u‖k−1,p .

This theorem was first proved by P. A. Meyer using the Littlewood-Paley in-
equality, and Pisier gave in [10] an analytic proof based on the boundedness in Lp

of the Hilbert transform.
These notions and results can be extended to infinite dimensional Gaussian

spaces, and the most interesting example is the Wiener space. Denote by W the
space of continuous functions ω : [0, 1] → R vanishing at t = 0. Let F be the

2000 Mathematics Subject Classification. Primary 60H07, 60H30; Secondary 91B24.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

487



488 BOOK REVIEWS

Borel σ-field on W , and let γ be the Wiener measure on (W ,F). This measure
is characterized by its values on cylindrical sets: For all 0 ≤ t1 < · · · < tm, and
ai < bi, 1 ≤ i ≤ m,

γ (ω : ai ≤ ω(ti) ≤ bi, 1 ≤ i ≤ m)

=
∫ bm

am

· · ·
∫ b1

a1

m∏
i=1

1√
2π(ti − ti−1)

e
− (xi−xi−1)2

2(ti−ti−1) dx1 · · · dxm,

with the convention x0 = 0. This is equivalent to saying that the canonical stochas-
tic process W = {Wt, t ∈ [0, 1]} on the probability space (W ,F , γ) defined by the
evaluations Wt(ω) = ω(t) is a Brownian motion; that is, it satisfies the following
properties:

(1) W0 = 0.
(2) For all s < t, Wt − Ws has the normal distribution N(0, t − s).
(3) W has independent increments.

It turns out that the Wiener measure γ on W is carried by the Hölder continuous
functions with exponent α < 1/2.

Consider a random variable F : W → R. The derivative DF of F is introduced
as a random element in the Hilbert space H := L2([0, 1]) such that, for any h ∈
L2([0, 1]), the scalar product 〈DF, h〉H equals the directional derivative of F along∫ ·
0
hsds: ∫ 1

0

DthtFdt =
d

dε
F

(
ω + ε

∫ ·

0

hsds

)
|ε=0.

This definition leads to the following formula for any f ∈ C1
b (Rm):

Dt(f(Wt1 , . . . , Wtm
)) =

m∑
i=1

∂if(Wt1 , . . . , Wtm
)1[0,ti](t).

Roughly speaking, the coordinates i = 1, . . . , d are replaced here by a continuous
parameter t ∈ [0, 1] representing time.

The adjoint of the derivative, called the divergence, acts on H-valued random
variables, that is, stochastic processes u = {ut, t ∈ [0, 1]}, and the duality relation-
ship (0.1) between D and δ reads

(0.2) E(Fδ(u)) = E(〈DF, u〉H),

where E denotes the mathematical expectation with respect to the Wiener measure.
The divergence operator coincides with the Itô stochastic integral; that is,

δ(u) =
∫ 1

0

utdWt

if u is an adapted and square integrable stochastic process. This property has been
the starting point for the development of anticipating stochastic calculus by Nualart
and Pardoux (see [8]).

On the other hand, the stochastic calculus of variations provides an explicit
formula for the integral stochastic representation of a random variable F ∈ D

1,2,
by means of the so-called Clark-Ocone formula:

F = E(F ) +
∫ 1

0

E(DtF |Ft)dWt,

where Ft is the σ-field generated by the random variables {Ws, 0 ≤ s ≤ t}.
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The duality formula (0.2) leads to integration-by-parts formulas which constitute
the main ingredient in the applications of Malliavin calculus. For example, consider
the case of a one-dimensional random variable F ∈ D

1,p, p > 1. Using formula (0.2),
we obtain, for any test function ϕ ∈ C∞

b (R) and random variable G,

(0.3) E(ϕ′(F )G) = E

(〈
D(ϕ(F )),

GDF

‖DF‖2
H

〉
H

)
= E

(
ϕ(F )δ

(
GDF

‖DF‖2
H

))
,

provided δ(GDF/ ‖DF‖2
H) exists. In particular, this implies that if DF

‖DF‖2
H

belongs
to D

1,q(H) for some q > 1, then F has a continuous density given by

p(x) = E

(
1{F>x}δ

(
DF

‖DF‖2
H

))
.

Consider the case of a d-dimensional random vector F : Ω → R
d such that

F i ∈ D
1,2 for i = 1, . . . , d. The Malliavin covariance matrix of F is the symmetric

nonnegative definite matrix defined by

σij
F = 〈DF i, DF j〉H .

If the Malliavin matrix is nonsingular a.s., then the probability law of F (that is,
the image measure γ ◦ F−1 on R

d) is absolutely continuous with respect to the
Lebesgue measure on R

d. This result was proved by Bouleau and Hirsch using the
theory of Dirichlet forms (see [2]).

Under additional stronger conditions one can obtain the regularity of the density.
Set D

∞ = ∩k,pD
k,p. Then F is said to be nondegenerate if F i ∈ D

∞ for i = 1, . . . , d
and E[(det(σF ))−p] < ∞ for all p ≥ 1. The main result on the regularity of the
density is the following.

Theorem 0.2. Let F be a nondegenerate map. Then, the law of F has a density
with respect to the Lebesgue measure, which is infinitely differentiable and belongs
to the Schwartz space S(Rd).

This theorem can be viewed as a consequence of Watanabe’s theory of Wiener
distributions (see [11]). Denote by D

−∞ the space of continuous linear forms on
D

∞. Then, the composition T (F ) of a tempered distribution T ∈ S ′(Rd) with a
nondegenerate random variable F is well defined as an element of D

−∞, and the
mapping T → T (F ) is continuous. In particular, the density of F can be expressed
as p(x) = δx(F ).

Consider the particular case F = St, where St is the diffusion process on R
d:

(0.4) dSt = A0(St)dt +
n∑

k=1

Ak(St)dW k
t .

The functions Ak : R
d → R

d, k = 0, . . . , n, are infinitely differentiable with bounded
derivatives, and W k are independent Brownian motions. From Itô’s formula it
follows that the density of St satisfies the Fokker-Planck equation

(
− ∂

∂t + L∗) pt =
0, where

L =
1
2

n∑
i,j=1

(
AAT

)i,j
(x)

∂2

∂xi∂xj
+

n∑
i=1

Ai
0(x)

∂

∂xi

is the infinitesimal generator of the diffusion process. In this case, pt ∈ C∞ means
that the operator ∂

∂t − L∗ is hypoelliptic and Theorem 0.2 implies Hörmander’s
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hypoellipticity theorem. That is, if the Lie algebra generated by the vector fields
A1, . . . , An at the initial condition x0 has full rank, then E((detσSt

)−p) < ∞ for
all p ≥ 1 and t > 0.

The Malliavin calculus has recently been applied to different problems in mathe-
matical finance. Consider first the pricing and hedging of derivatives in a diffusion-
type model. Suppose that the diffusion process St defined in (0.4) represents the
price of a d-dimensional asset in a stock market under the risk-neutral probability
measure. This implies that A0 = rSt, where r is the interest rate.

Consider a European option with payoff φ(ST ) at the expiration time T . A
formula for the fair price of this option at time t0 < T is given by

(0.5) Φ(t, x) = e−rtE (φ(ST )|St0 = x) ,

where t = T − t0. From Feynman-Kac’s formula, it follows that the price function
satisfies the following backward heat equation:(

∂
∂t + L− r

)
Φ = 0

Φ(T, x) = φ(x)

}
.

There are then two complementary approaches to handle the pricing problem: one
uses PDE, and another one, more probabilistic, is based on formula (0.5) together
with a Monte-Carlo simulation.

The Greeks are infinitesimal first or second order variations of the price func-
tional of an option with respect to the corresponding infinitesimal variations of
econometric data such as the actual price of the asset x. A methodology based on
the integration by parts of Malliavin calculus has been developed from the papers
by Fournié et al. [3, 4] in order to provide formulas for the Greeks better adapted
to Monte-Carlo simulations.

For example, suppose d = 1 and consider the Black-Scholes model for the stock
price St, dSt = σStdWt, under the risk neutral probability, where σ is the volatility.
That is, St is the geometric Brownian motion

St = S0e
σWt+(r−σ2

2 )t.

Consider the price Φ(T, x) of a European option at time 0 given by (0.5). Then,
using the integration by parts formula (0.3), we can derive the following formula
for the Delta defined as ∆ = dΦ

dx :

∆(T, x) = e−rT E

(
φ(ST )

WT

xσT

)
.

In fact, ∆ = e−rT

x E(φ′(ST )ST ), and it suffices to apply (0.3) with G = ST .
This analysis can be extended to other Greeks like the Vega, which is the deriv-

ative of the price function with respect to the volatility.
On the other hand, Itô’s stochastic representation theorem implies that the

Black-Scholes model is complete in the sense that any square integrable payoff
H can be replicated, and Clark-Ocone’s formula can be used to compute the repli-
cating portfolio:

e−rT H − e−rT E(H) =
∫ T

0

utdWt =
∫ T

0

βtdSt,

where

βt =
ut

σSt
=

e−r(T−t)

σSt
E(DtH|Ft).
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In the particular case H = φ(ST ) we get βt = ∆(t, St); see Karatzas and Ocone [9]
for the application of Malliavin calculus in hedging derivatives in a more general
setting.

This monograph is devoted to an updated presentation, in a rigorous mathe-
matical framework, of the applications of the stochastic calculus of variations in
mathematical finance. There is an emphasis on the geometric point of view, and
the authors are able to describe the economic meaning of the different notions in
Malliavin calculus.

The first two chapters contain the basic material on the Malliavin calculus and
its applications in finance. These chapters are prerequisites for the remaining parts
of the book which deal with specific topics.

Chapter 1 presents the basic elements of the Malliavin calculus. The Wiener
space is approximated by a dyadic discretization scheme in time. This approxima-
tion is motivated by the finite dimensionality of any financial data and for the need
of fast numerical Monte-Carlo simulations.

Chapter 2 deals with the applications of Malliavin calculus in hedging and pricing
of derivatives. The authors make use of the complementary PDE and probability
approaches to handle these problems. For instance, the computation of Greeks can
be carried over using PDE weights or pathwise weights. As an example, the Delta
and Vega are evaluated, and the particular case of barrier options is discussed.

Chaper 3 is based on the paper [1]. Suppose that the one-dimensional price
process with respect to the risk-free measure is given by the stochastic differential
equation

dSt = σ(St)dWt − µ(St)dt.

Consider the variation of the price during a short period of the order of a few days.
The price-volatility feedback rate λ(t) is introduced as the logarithmic derivative of
the rescaled variation 1

σ(St)
dSt

dx . Different formulas for λ(t) are given. This quantity
is supposed to describe the facility for the market to absorb small variations.

In Chapter 4 the authors develop the applications of the Malliavin calculus to
the regularity of probability laws to obtain continuous versions of conditional ex-
pectations. New formulas for the densities are established using Riesz transforms
instead of the Heaviside function.

Hypoelliptic models are motivated by the high dimensionality of the state space
in interest rate models or by the low dimensionality of the variance. In Chapter 5
these types of models are analyzed. The regularity of the transition densities of
hypoelliptic diffusions plays an important role here.

Chapter 6 reviews the results by Imkeller [5] on the application of the anticipative
stochastic calculus to the modelization of insider traders.

In Chapter 7 the authors explain the results by Watanabe [12] on the method-
ology of projecting asymptotic expansions through nondegenetare maps in order
to get asymptotic expansions of densities. The last two sections deal with specific
problems of convergence related to the Euler scheme obtained by the authors in [7].

The last chapter reviews some approaches to the stochastic calculus of variations
for processes with jumps, based on pathwise instantaneous derivatives.

In conclusion, this book aims to explain the role played by the stochastic calculus
of variations in mathematical finance, and it will be useful for researchers working
in these fields.



492 BOOK REVIEWS

References

1. Emilio Barucci, Paul Malliavin, Maria Elvira Mancino, Roberto Renò, and Anton Thalmaier,
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