The Bonnet Plancherel formula for monomial representations for classes of completely solvable Lie groups

Amira Ghorbel

Abstract

We compute the Bonnet Plancherel formula associated to a monomial representation of a nilpotent Lie group. We give also the corresponding formula for finite multiplicity monomial representation for a class of completely solvable Lie groups.

0. Introduction

Let G be a connected Lie group having a smooth dual. Given a unitary representation π of G acting in a Hilbert space H_π, we denote by H^∞_π the Fréchet space of smooth vectors for π, and $H^{-\infty}_\pi$ the space of continuous anti-linear functionals on H^∞_π. Let α be any positive distribution on G of finite order. Bonnet’s Plancherel formula ([Bon.]) tells us that for $\varphi \in D(G)$

$$\alpha(\varphi) = \int_G \operatorname{tr}(\pi(\varphi) U_\pi) d\nu(\pi)$$

where for ν almost everywhere, $U_\pi : H^\infty_\pi \to H^{-\infty}_\pi$, $\pi \in \hat{G}$, is a certain uniquely determined nuclear operator (see [Bon.] Theorem 4-1).

We recall that Penney’s and Bonnet’s Plancherel formulas have been described for nilpotent groups and exponential groups in ([Pen], [Fu.1,3,4], [F.Y.], [Gr,1,2], [Li.2,3], [B.L.2]). Furthermore, Fujiwara has given an explicit expression by duality of Bonnet’s operators in the case of monomial representations of nilpotent Lie groups.

In the first part of this paper we take a closed connected subgroup $H = \exp(\mathfrak{h})$ of a nilpotent connected simply connected Lie group $G = \exp(\mathfrak{g})$, a unitary character
\[\chi = \chi_f \text{ of } H \text{ (where } f \in \mathfrak{g}^* \text{ is such that } \langle f, [h, h] \rangle = 0 \text{) and we consider the positive distribution} \]

\[\langle S_{H,f}, \varphi \rangle = \int_{H} \varphi(h)\chi_f(h)dh, \quad \varphi \in \mathcal{D}(G). \]

To describe the measure \(\nu \) given in (1), we use the result of [B.L. 1] where it has been shown that there exists a certain affine subspace \(V \) of \((f + \mathfrak{h}^\perp) \) such that \(\text{Ind}_{G}^{H} \chi_f \simeq \int_{V} \pi_{\phi} d\phi \) (\(d\phi \) denotes the Lebesgue measure on \(V \)). There exists a Borel cross-section \(\Sigma \) of \(G \)-orbits in \(G \cdot V \) and it turns out that the measure \(\nu \) of Bonnet’s formula is supported on \(\Sigma \). We show in (6) that for \(\sigma \in \Sigma \) the operator \(U_{\sigma} \) is an integral of rank one operators:

\[U_{\sigma} = \int_{\Gamma_{\sigma}} Q_{s,\sigma} d\lambda_{\sigma}(s) \]

where \(\Gamma_{\sigma} \) is defined in paragraph (1.1.b), the operators \(Q_{s,\sigma} \) and the measure \(d\lambda_{\sigma} \) in 1.3.

In the exponential case, the determination of Bonnet’s operators \(U_{\sigma} \) is difficult. One of the reasons is that there exists no easy way to determine explicitly the \(C^\infty \) vectors of a representation.

Several authors have studied in the past the disintegration of induced representations for exponential solvable Lie groups. In ([D.R.]) Duflo and Rais computed the Plancherel formula for \(L^2(G) \) of an exponential solvable Lie group. Bonnet’s operators have been explicitly described for a normal monomial representation induced from a normal subgroup of an exponential solvable Lie group in [G.H.L.S.].

In the second part of this paper we take the semi-direct product \(G = NH \); where \(N = \exp(n) \) is nilpotent and normal in \(G \), and \(H = \exp(\mathfrak{h}) \) is abelian and acts semi-simply on \(N \) with real eigenvalues. Let \(\chi = \chi_f \) be a unitary character of \(H \) (where \(f \in \mathfrak{g}^* \)). We consider the representation \(\tau_f = \text{Ind}_{H}^{G} \chi_f \) and we assume that \(\tau_f \) has finite multiplicity. The first precise formulas in this case have been given by Currey in ([Cu.2]). To describe the measure \(\nu \) given in (1) we use the main results of this reference, where it has been shown that the set of generic \(H \)-orbits in the disintegration of \(\tau_f \) admits a natural smooth algebraic cross-section \(\Sigma \). We derive a cross-section \(\Gamma \) of \(G \)-orbits in \(G(\ell + \Sigma) \), and the measure \(\nu \) of Bonnet’s formula will be explicitly described as a measure on \(\Gamma \). We take \(\sigma \in (\ell + \Sigma) \) and for \(l \in G \cdot \sigma \cap (\ell + \Sigma) \) we define an operator \(\beta_{l}^{\sigma} \) on the space of the smooth vectors \(\mathcal{H}_{\sigma}^{\ell} \) of \(\pi_{\sigma} \). We show in (13) that the operators \(U_{\sigma} = U_{\sigma} \) in Bonnet’s formula are determined as a finite sum of rank one operators: \(P_{\beta_{l}^{\sigma}, \beta_{l}^{\sigma}} \).
1. The Bonnet Plancherel formula for nilpotent Lie group

1.1 Notations and definitions

1.1.a Quotient measures

Let G be a connected simply connected nilpotent Lie group with Lie algebra g and let $K = \exp(\mathfrak{k})$ be a closed subgroup of g. We choose a Jordan-Hölder basis $\mathcal{Z} = \{Z_1, \cdots, Z_n\}$ of g. Let $B = \{X_1, \cdots, X_r\}$ be a Malcev-basis relative to \mathfrak{k}, i.e. $g = \bigoplus_{1 \leq i \leq r} \mathbb{R}X_i \oplus \mathfrak{k}$ and for any $j = 1, \cdots, r$, the subspace $g_j = \text{span}\{X_j, \cdots, X_r, \mathfrak{k}\}$ is a subalgebra. The mapping $E_B : \mathbb{R}^r \to G/K : E_B(t_1, \cdots, t_r) = E_B'(t_1, \cdots, t_r)K$, where $E_B'(t_1, \cdots, t_r) = \exp(t_1X_1)\cdots\exp(t_rX_r)$, is then a diffeomorphism. We obtain a G-invariant measure $d\hat{g}$ on the quotient space G/K by setting

$$\int_{G/K} \xi(g)d\hat{g} = \int_{\mathbb{R}^r} \xi(E_B(T))dT, \xi \in C_c(G/K),$$

where $C_c(G/K)$ denotes the space of the continuous functions with compact support on G/K.

It is not difficult to see the following:

1.1.a.1 Proposition Let g be a nilpotent Lie algebra of dimension n. Let \mathfrak{k} be a subalgebra of g, B_1 and B_2 be two Malcev-basis of g relative to \mathfrak{k}. Then $E_B^{-1} \circ E_B'$ is a polynomial mapping from \mathbb{R}^r to \mathbb{R}^r (where r is the codimension of \mathfrak{k} in g) whose total degree is bounded by a constant M which depends only on the dimension of g.

1.1.b Induced representation

Let G be a nilpotent connected simply connected Lie group with Lie algebra g. Let h be a subalgebra of g: $f \in g^*$ such that $\{f, [h, h]\} = 0$ and let χ_f be the unitary character of $H = \exp(h)$ associated to f. Let $\tau = Ind_H^G \chi_f$. It has been shown in [B.L.1] that there exists a certain affine subspace \mathcal{V} of $\Gamma_f = f + h^0 \subset g^*$, such that

$$\tau = Ind_H^G \chi_f \simeq \int_{\mathcal{V}} \pi_\phi d\mu(\phi) \quad (2)$$

where $d\mu$ denotes Lebesgue measure on \mathcal{V} and where π_ϕ is the irreducible representation associated to ϕ ($\phi \in \mathcal{V}$).

One has:
Lemma ([Bour], [Fuj. 3])

\[\mu = \int_{G \cdot V / G} \nu_\Omega d\nu(\Omega) \]

where \(\nu_\Omega \) is a certain measure on \(\Omega \cap V \).

Let \(\Sigma \) be a borel cross-section of the \(G \)-orbits in \(G \cdot V \). We can consider the measure \(\nu \) as a measure on \(\Sigma \) and write \(\mu = \int_\Sigma \nu_{G \sigma} d\nu(\sigma) \).

Hence for a continuous function \(F \) with compact support on \(V \) we get

\[\int_V F(\phi) d\mu(\phi) = \int_\Sigma \int_{G \cdot \sigma \cap V} F(l) d\nu_{G \cdot \sigma}(l) d\nu(\sigma). \]

We identify \(G \cdot \sigma \cap V \) with the space \(G_{\sigma} / G(\sigma) \), where

\[G_{\sigma} = \{ g \in G ; \ g \cdot \sigma \in \mathcal{V} \} \]

and

\[G(\sigma) = \{ g \in G , \ g \cdot \sigma = \sigma \} \]

which corresponds to the measure \(\nu_{G \cdot \sigma} \), we write:

\[\int_V F(\phi) d\mu(\phi) = \int_\Sigma \int_{\Gamma_{\sigma}} F(s \cdot \sigma) d\lambda_{\sigma}(s) d\nu(\sigma). \quad (3) \]

Let now \(S(G/H, f) \) be the space of all \(C^\infty \)-function \(\xi \) on \(G \), such that \(\xi(gh) = \chi_f(h^{-1})\xi(g) \) for all \(g \in G, h \in H \) and such that the function \(T \mapsto \xi(E_B(T)) \) is a Schwartz-function on \(\mathbb{R}^r \). Let \(S(G) \) denote the Schwartz-space of \(G \), i.e. the space of all complex valued functions \(\varphi \) on \(G \), such that \(\varphi \circ \exp \) is an ordinary Schwartz-function on the vector space \(\mathfrak{g} \).

Denote for \(\varphi \in S(G) \) \(P_{H,f}(\varphi)(g) = \int_H \varphi(gh)\chi_f(h)dh \) and let \(S_{H,f} \) be the tempered distribution on \(G \) defined by the projection \(P_{H,f}(\varphi) \) of \(\varphi \) on \(S(G/H, f) \), i.e:

\[\langle S_{H,f}, \varphi \rangle = \int_H \varphi(h)\chi_f(h)dh = P_{H,f}(\varphi). \]

Let for \(\phi \in V \) \(B(\phi) \) denote the Vergne polarization at \(\phi \) for the basis \(Z \). It has been shown in [B.L.1] that there exists for \(\phi \in V \) an invariant measure \(\tilde{d}B \) on \(B(\phi) / B(\phi) \cap H \) such that for the mapping

\[T_\phi : S(G/H, f) \to S(G/B(\phi), \phi) \quad (\phi \in V) \]

given by

\[T_\phi(\xi)(g) = \int_{B(\phi) / B(\phi) \cap H} \xi(bg)\chi_{\phi}(b) \tilde{d}b, \quad \xi \in S(G/H, f), g \in G, \]

and for \(\xi \in S(G/H, f) \) we have:

\[\int_V \langle T_\phi(\xi), T_\phi(\xi) \rangle_{\mathcal{H}_\tau} d\phi = \| \xi \|^2_{\mathcal{H}_\tau}. \quad (4) \]
We recall also that from [B.L.2] $S_{H,f}$ is disintegrated as an integral $\int_V S_\phi d\mu(\phi)$, where S_ϕ denotes the tempered distribution on $S(G)$ defined by:

$$\langle S_\phi, \varphi \rangle = \int_{H/H \cap B(\phi)} T_\phi(P_{H,f}(\varphi))(h)\chi_f(h) dh.$$ \hspace{1cm} (5)

1.2 Main results

This section is based on the paragraph 7.5 in [L.M.].

Let \mathfrak{g} be a nilpotent Lie algebra. Let \mathcal{B} be an algebraic subset of finite dimensional real vector space W, the pair $(\mathfrak{g}, \mathcal{B})$ is a rationally variable nilpotent Lie algebra (or r.v.n.) if the following holds true:

For every $b \in \mathcal{B}$, a Lie bracket $[\cdot, \cdot]_b$ on \mathfrak{g} is given such that $(\mathfrak{g}, [\cdot, \cdot]_b)$ forms a nilpotent Lie algebra. Moreover there exists a fixed basis $Z = \{Z_1, \ldots, Z_n\}$ of \mathfrak{g}, so that the structure constants $(a_{ij}^k(b))$, given by $[Z_i, Z_j]_b = \sum_{k=1}^n a_{ij}^k(b)Z_k$, are rational functions in b, satisfying $a_{ij}^k(b) = 0$ for $i < j, k \leq j$ (so that Z is a Jordan-Hölder-basis for $(\mathfrak{g}, [\cdot, \cdot]_b)$ (see [L.M]).

A mapping on \mathcal{B} is called polynomial if it is the restriction of a polynomial mapping on W to \mathcal{B} and it is called rational if it is the restriction of a rational mapping on W to \mathcal{B}, such that the denominators of the corresponding rational functions do not vanish on \mathcal{B}.

For every $b \in \mathcal{B}$ we choose m elements $V_1(b), \ldots, V_m(b)$, in \mathfrak{g}^* depending rationally on b. Let $V(b) = \text{span}(V_1(b), \ldots, V_m(b))$ and $\phi^b : \mathbb{R}^m \to V(b)$ defined by $\phi^b(X) = \sum_{i=1}^m x_iV_i(b)$, where $X = (x_1, \ldots, x_m) \in \mathbb{R}^m$.

Let us denote for $(X, b) \in \mathbb{R}^m \times \mathcal{B}$ and for a polarization b at $\phi^b(X)$ in \mathfrak{g}_b the induced representation $\pi_{\phi^b(X), b}$ by $\pi_{(X, b), b}$. Given any Malcev basis B of \mathfrak{g}_b relative to b, we can realize the representation in a canonical way on $L^2(\mathbb{R}^r)$ and for every element u in the enveloping $U(\mathfrak{g}_b)$ of \mathfrak{g}_b, the operator $d\pi_{\phi^b(X), b}(u)$ becomes a partial differential operator with polynomial coefficients on \mathbb{R}^r.

In the following theorem we generalize the theorem 7.7 of [L.M] by replacing the generic points in \mathfrak{g}^* by the generic points of the forms $\phi^b(X), \ X \in \mathbb{R}^m$:

1.2.1 Theorem There exists a Zariski-open subset O in $\mathbb{R}^m \times \mathcal{B}$ such that:

i) For every $(X, b) \in O$ there exists a polarization $b(X, b) = b(\phi^b(X))$ at $\phi^b(X)$ and a Malcev basis $B(X, \phi^b(X))$ of \mathfrak{g} relative to $b(\phi^b(X))$ depending rationally on (X, b).

ii) For every partial differential operator D on \mathbb{R}^d with polynomial coefficients there exists a rational mapping

$$A : O \to \mathcal{U}(\mathfrak{g}_b), \quad A(X, b) = \sum_{|I| \leq n_d} a_I(X, b)Z^I$$

such that $\pi_{(X, b), \nu}(A(X, b)) = D$.

Proof. We use the notations and the proof of [L.M.].

Let $b \in \mathcal{B}$ and $X \in \mathbb{R}^m$; we can construct the indices $j_i(X, b) = j_i(\phi^b(X)) = j_i(\phi^b(X), b); k_i(X, b) = k_i(\phi^b(X)) = k_i(\phi^b(X), b)$ as well as $j_1(X, b)$ and $k_1(X, b)$ corresponding to $(\mathfrak{g}, [\cdot, \cdot])$ as in [L.M]. We put

$$j_1 := \max\{j_1(X, b) : X \in \mathbb{R}^m; b \in \mathcal{B}\},$$

$$k_1 := \max\{k_1(X, b) : X \in \mathbb{R}^m; b \in \mathcal{B}\},$$

and put $\mathcal{B}^1 := \{(X, b) \in \mathbb{R}^m \times \mathcal{B} : j_1(\phi^b(X), b) = j_1 \text{ and } k_1(\phi^b(X), b) = k_1\}$. Then

$$\mathcal{B}^1 = \{(X, b) : \phi^b(X)([Z_{j_1}, Z_{k_1}, b]) \neq 0\}$$

is a Zariski-open in $\mathbb{R}^m \times \mathcal{B}$. Next, for $(X, b) \in \mathcal{B}^1$, we put $(\mathfrak{p}_1(\phi^b(X), b), [\cdot, \cdot]) := \{Y \in \mathfrak{g} : \phi^b(X)([Z_{j_1}, Y, b]) = 0\}$, and

$$Z^1_i(X, b) := Z_i - \frac{\phi^b(X)([Z_{j_1}, Z_{k_1}, b])}{\phi^b(X)([Z_{j_1}, Z_{k_1}, b])}Z_{k_1}, \ i \neq k_1.$$

Then $Z^1_i(X, b), i \neq k_1$, form a Jordan-Hölder-basis of $(\mathfrak{p}_1(\phi^b(X), b), [\cdot, \cdot])$.

We identify $(\mathfrak{p}_1(\phi^b(X), b))$ with $\mathfrak{p}_1 := \mathbb{R}^q$, where $q = \dim(\mathfrak{p}_1(\phi^b(X), b))$, we obtain a new r.v.n.$(\mathfrak{p}_1, \mathcal{B}^1)$. Now for $b^1 := (X, b) \in \mathcal{B}^1$, we get m linear forms: $(V_i^1(b^1))_{i=1}^m$ in \mathbb{R}^q given by: $V_i^1(b^1) = V_i^1(X, b) = ((V_i(b), Z_{j_1}^1(X, b)), \ldots, (V_i(b), Z_{k_1}^1(X, b)), (V_i(b), Z_{k_1+1}^1(X, b)), \ldots, (V_i(b), Z_n^1(X, b))).$

We put $V^1(b^1) = \text{span}(V_1^1(b^1), \ldots, V_m^1(b^1))$, and $\phi^{b^1} : \mathbb{R}^m \to V^1(b^1) : \phi^{b^1}(Y) = \sum_{i=1}^m y_iV_i^1(b^1)$.

Applying the same procedure now to $(\mathfrak{p}_1, \mathcal{B}^1)$ instead of $(\mathfrak{g}, \mathcal{B}^1)$, and iterating this process, which stops after a finite number d of steps, we construct indices $j_i(X, b)$ and $k_i(X, b)$ for $i = 1, \ldots, d$, and finally stop at some r.v.n $(\mathfrak{p}_d, \mathcal{B}^d)$ where $\mathcal{B}^d \subset \mathbb{R}^m \times \mathcal{B}^{d-1}$ is Zariski-open. We put $O = \mathcal{B}^d$.

Moreover, it has been shown in [L.M] that for $(X, b^{d-1}) \in O$ the subalgebra $\mathfrak{p}_d(\phi^{b^{d-1}}(X), b^{d-1}) = b(\phi^{b^{d-1}}(X))$ is the Vergne polarization for $\phi^{b^d}(X)$ associated to the basis \mathcal{Z} and there exist rational mappings $Y_i : \mathbb{R}^m \to \mathfrak{g}, \ 1 \leq i \leq d$, such that $\{Y_1(X), \ldots, Y_d(X)\}$ forms a Malcev basis of \mathfrak{g} relative to $b(\phi^{b^{d-1}}(X))$.

One continues as in the proof of theorem 7.7 in [L.M.].

1.2.2 Proposition Let g be a nilpotent Lie algebra. Let h and b be two subalgebras of g. There exists a Malcev-basis U of g relative to b, which contains a Malcev-basis of h relative to $h \cap b$.

Proof. We proceed by induction on $\dim(g)$.

Let g_0 be an ideal of g with codimension one containing b.

i) If $h \subset g_0$, the induction hypothesis gives us a Malcev basis U_0 of g_0 relative to b which contains a Malcev-basis of h relative to $h \cap b$. Hence we put $U = \{U_0, X\}$, where $X \in g \setminus g_0$.

ii) If $h \not\subset g_0$, we can choose $X \in h$ such that $g = g_0 \oplus \mathbb{R}X$. The induction hypothesis gives us a Malcev-basis U_0 of g_0 relative to b, which contains a Malcev-basis of $h \cap g_0$ relative to $h \cap b$. Hence we put $U = \{U_0, X\}$. ■

1.3 The Bonnet Plancherel Formula

The aim of this section is to describe explicitly the Bonnet Plancherel Formula associated to the disintegration (2). Let G, H, f, V, Σ be as in (1.1.b).

For $\sigma \in \Sigma, g \in G_\sigma$ we define the operator: $q_{g,\sigma} : \mathcal{H}_\sigma^\infty \rightarrow \mathbb{C}$ by

$$\langle q_{g,\sigma}, \xi \rangle = \int_{H/B(g_\sigma) \cap H} \xi(hg) \chi_f(h) dh.$$

It has already been shown in [Fuj.1] that the integral on the right is well defined (here it suffices to use that for $g \in G_\sigma, \chi_{g\sigma}(h) = \chi_f(h)$ for all $h \in H$), the operator $q_{g,\sigma}$ is continuous and for all $h \in H$, $\pi_\sigma(h)q_{g,\sigma} = \chi_f(h)q_{g,\sigma}$.

Let φ be in $\mathcal{S}(G)$. For $\sigma \in \mathcal{V}$, the operator $\pi_\sigma(\varphi)$ is a kernel-operator, whose kernel $K_{\pi_\sigma(\varphi)}$ is given by

$$K_{\pi_\sigma(\varphi)}(x, y) = \int_{B(\sigma)} \varphi(xby^{-1}) \chi_\sigma(b) db, \quad x, y \in G.$$

Furthermore, for any Malcev-basis $\mathcal{Y} = \{Y_1, \ldots, Y_d\}$ of g relative to $b(\sigma)$, the function

$$(s, t) \mapsto K_{\pi_\sigma(\varphi)}(\prod_{i=1}^d \exp(s_iY_i), \prod_{i=1}^d \exp(t_iY_i))$$

is a Schwartz-function on $\mathbb{R}^d \times \mathbb{R}^d$ (see [C.G.]).
Let us recall some results from [L.M.].

Let $Z_1, \ldots, Z_n \in \mathfrak{g}$ be a basis of \mathfrak{g}, and put

$$L := \sum_{j=1}^{n} Z_j^2 \in \mathfrak{u}(\mathfrak{g}),$$

where $\mathfrak{u}(\mathfrak{g})$ is the enveloping algebra of \mathfrak{g}. Let $N \in \mathbb{N}$. Since $(1 - L)^N$ is hypoelliptic for every $N \in \mathbb{N}^*$, there exists a local fundamental solution $E_N \in \mathcal{D}'(U)$ of $(1 - L)^N$ on a neighbourhood U of $e \in G$, i.e.

$$(1 - L)^N E_N = \delta_e \text{ in } U.$$

Since $(1 - L)^N$ is hypoelliptic, we have that E_N is $C\infty$ on $G \setminus \{e\}$ and for $d \in \mathbb{N}$, if N is big enough E_N is in $C^d(G)$. Hence E_N is in $L^1(G) \cap L^2(G)$ and is even of class C^d in $L^1(G)$.

We recall that the Nth Sobolev L^1-norm on G is defined by

$$\|f\|_{N,1} = \sum_{|\alpha| \leq N} \|Z_\alpha \ast f\|_1 + \sum_{|\alpha| \leq N} \|f \ast Z_\alpha\|_1,$$

where $Z_\alpha = Z_1^{\alpha_1} \ast \cdots \ast Z_n^{\alpha_n}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$ for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$.

1.3.1 Proposition There exists $N \in \mathbb{N}$ such that for almost all $\sigma \in \Sigma$ and all $g \in G_\sigma$ the distribution $q_{g, \sigma}$ is an element of H_{σ}^N and

$$\int_{G/B(\sigma)} \int_{H/H \cap B(g\sigma)} |K_{\sigma}(\varphi)(u, hg)| \, dh \, du \leq C_{\sigma, g} \|\varphi\|_{N,1} \varphi \in \mathcal{S}(G),$$

for some constant $C_{\sigma, g}$.

Proof. Let $\sigma \in \Sigma$ and $g \in G$, such that $g\sigma \in \mathcal{V}$. Let $B_1 = \langle Y_1, \ldots, Y_d \rangle$ be a Malcev-basis of \mathfrak{g} relative to $\mathfrak{b}(g\sigma)$ such that $B'_1 = \langle Y_{i_1}, \ldots, Y_{i_r} \rangle$ is a Malcev-basis of \mathfrak{h} relative to $\mathfrak{b} \cap \mathfrak{b}(g\sigma)$ (according to 1.2.2). Then we have

$$\langle q_{g, \sigma}, \xi \rangle = \int_{\mathbb{R}^r} \xi(s) \exp(t_1 Y_{i_1}) \cdots \exp(t_r Y_{i_r}) g e^{-i\sum_{j=1}^{r} t_j Y_{i_j}} dt_1 \cdots dt_r$$

$$= \int_{\mathbb{R}^r} (\xi \circ E_{B'_1})(t_1, \ldots, t_r)(\chi_f \circ E_{B'_1})(t_1, \ldots, t_r) dt_1 \cdots dt_r$$

where $\xi(g') = \xi(g'g)$.

Let P_σ be a function on $G/B(\sigma)$ such that $S \mapsto P_\sigma(E'_{B_1}(S))$ is a polynomial on \mathbb{R}^d of degree $\leq 2r$ such that

$$c_{g, \sigma} = \int_{\mathbb{R}^r} \frac{1}{|P_\sigma(E'_{B_1}(T))|} dT < \infty.$$
Then we get
\[|\langle q_{g,\sigma}, \xi \rangle| \leq c_{g,\sigma} \| (P_{\sigma} \cdot \xi)_{g} \|_{\infty}. \]

Let now \(B_2 = B_2(q\sigma) \) be the Malcev-basis of \(g \) relative to \(b(q\sigma) \) obtained by theorem (1.2.1) applied to the affine subspace \(V \) and the one point set \(B \).

Let \(\tilde{Q}_{g}(S) = P_{\sigma}(E_{B_2}^{e}(S)g) = P_{\sigma}(E_{B_1}^{e}(E_{B_1}^{e-1} \circ E_{B_2}^{e})(S)g), \) \(S \in \mathbb{R}^{d} \), whose coefficients depend on \(g, \sigma \) and whose degree is bounded by an integer \(M_{1} \) independent of \(g, \sigma \) (by 1.1.a.1).

Moreover we can see that for some constant \(c'_{g,\sigma} \) big enough the polynomial \(c'_{g,\sigma} F = c'_{g,\sigma}(1 + \|T\|^{2})^{M_{1}}, T \in \mathbb{R}^{d} \), dominates the function \(\tilde{Q}_{g} \) on \(\mathbb{R}^{d} \).

Hence
\[\| \tilde{Q}_{g,\sigma} \|_{\infty} \leq c'_{g,\sigma} \| F_{\xi_{g}} \cdot E_{B_2} \|_{\infty} \leq c'_{g,\sigma} \| D(F_{\xi_{g}} \cdot E_{B_2}) \|^{2} \]

for some fixed partial differential operator with constant coefficients on \(\mathbb{R}^{d} \). Now by theorem (1.2.1) we have that for almost all \(\sigma \in V \) there exists \(a(\sigma) \in \mathcal{U}(g) \) such that : \(d\pi_{\sigma}(a(\sigma)) = D \circ \) multiplication by \(F \). Moreover the degree of \(d\pi_{\sigma}(a(\sigma)) \) is bounded by a constant \(N \) independent of \(\sigma \). Thus for almost all \(\sigma \in \Sigma \) and all \(g \in G \)
\[|\langle q_{g,\sigma}, \xi \rangle| \leq c''_{g,\sigma} \| \xi \|_{N} \]

for some big enough constant \(c''_{g,\sigma} \).

For the second statement, we remark that, since \(K_{\pi_{\sigma}(\varphi)} \) is a Schwartz-function on \(G \times G \) modulo \(B(\sigma) \times B(\sigma) \) by Howe’s result (see [C.G.]), the function
\[G \ni u \mapsto \eta_{v}(u) = K_{\pi_{\sigma}(\varphi)}(u,v), \ v \in G, \]
is in \(\mathcal{S}(G/B(\sigma), \chi_{\sigma}) \) and so by the arguments for the first statement
\[
\int_{G/B(\sigma)} \int_{H/H \cap B(\sigma)} |K_{\pi_{\sigma}(\varphi)}(hg,v)| d\hat{h} dv = \int_{H/H \cap B(\sigma)} \left(\int_{G/B(\sigma)} |K_{\pi_{\sigma}(\varphi)}(hg,v)| dv \right) d\hat{h}
\]
\[\leq \int_{H/H \cap B(\sigma)} \left(\int_{G/B(\sigma)} |\pi_{\sigma}(a'(g\sigma))\eta_{v}(hg)| dv \right) d\hat{h} \]
for some element \(a'(g\sigma) \) in the enveloping algebra of \(g \), whose degree is bounded by a constant \(N \) which does not depend on \(g\sigma \) according to (1.2.1). Since
\[
\int_{G/B(\sigma)} |\pi_{\sigma}(a'(g\sigma))\eta_{v}(hg)| dv = \int_{G/B(\sigma)} a'(g\sigma) * \varphi(hgv^{-1}) \chi_{\sigma}(b) db d\hat{v}
\]
\[\leq \int_{G} |a'(g\sigma) * \varphi(v)| dv = \int_{G} |a'(g\sigma) * \varphi(v)| dv \leq c_{g,\sigma} \| \varphi \|_{N,1}, \]
(for some constant $c_{g\sigma}$ depending on $a'(g\sigma)$) for all $h \in H$, it follows that
\[
\int_{G/B} \int_{H/H \cap B(g\sigma)} |K_{\pi_s(\varphi)}(v, hg)| dq d\hat{v} \leq c_{g\sigma} \|\varphi\|_{N,1} \int_{H/H \cap B(g\sigma)} \frac{1}{P(\varphi)} dh \leq C_{g\sigma} \|\varphi\|_{N,1}
\]
(for some new constant $C_{g\sigma}$).

This gives us the one dimensional operators:
\[
Q_{g,\sigma} = P_{q_{g,\sigma},q_{g,\sigma}} : \mathcal{H}_{\sigma}^N \to \mathcal{H}_{\sigma}^{-N}, \quad Q_{g,\sigma}(\xi) = \langle \xi, q_{g,\sigma}\rangle_{q_{g,\sigma}}, \quad \xi \in \mathcal{H}_{\sigma}^N.
\]

In particular for $\varphi \in S(G)$, $\pi_s(\varphi) \circ Q_{g,\sigma} = P_{\pi_s(\varphi)q_{g,\sigma},q_{g,\sigma}}$ (see [G.H.L.S.]).

For $\sigma \in \Sigma$, we define the operator $U_\sigma : \mathcal{H}_{\sigma}^N \to \mathcal{H}_{\sigma}^{-N}$ as the integral of these operators:
\[
U_\sigma = \int_{\Gamma_\sigma} Q_{g,\sigma} d\lambda_\sigma(g).
\]

We have the following:

1.3.2 Proposition \textit{For almost all $\sigma \in \Sigma$ we have: $U_\sigma : \mathcal{H}_{\sigma}^N \to \mathcal{H}_{\sigma}^{-N}$ is trace class.}

Proof. Let $\sigma \in \Sigma, s \in G_\sigma$. We recall that the rank one operator $Q_{s,\sigma}$ has a trace which is given by:
\[
\text{tr}(Q_{s,\sigma}) = \text{tr}(A_{\sigma}^{-N} \circ Q_{s,\sigma} \circ A_{\sigma}^{-N}) = \langle \pi_s(E_N)q_{s,\sigma}, \pi_s(E_N)q_{s,\sigma}\rangle,
\]
where $A_{\sigma}^{-N} = \pi_s(E_N)$ (see [G.H.L.S.]).

On the other hand for $\psi \in \mathcal{H}_{\sigma}^\infty$ we have:
\[
\langle \pi_s(E_N)q_{s,\sigma}, \psi \rangle = \langle q_{s,\sigma}, \pi_s(E_N)^*\psi \rangle = \int_{H/B(s \cdot \sigma) \cap H} \overline{\pi_s(E_N)^*}\psi(h \chi_f(h)) dh \]
\[
= \int_{H/B(s \cdot \sigma) \cap H} \int_{G/B(\sigma)} K_{\pi_s(E_N)}(hs, u) \psi(u) du \chi_f(h) dh
\]
\[
= \int_{H/B(s \cdot \sigma) \cap H} \int_{G/B(\sigma)} K_{\pi_s(E_N)}(u, hs) \psi(u) du \chi_f(h) dh.
\]
As N is increasing, the function E_N becomes smoother and smoother and the kernel function

$$(u, h) \mapsto K_{π_σ(E_N)}(u, hs)$$

is decreasing more and more rapidly at infinity, and so for N big enough, this function is in $L^1(G/B(σ), σ) \otimes L^1(H/B(s \cdot σ) \cap H, f)$ for almost all $σ ∈ V$ (see 1.3.1). Hence, using Fubini, we can deduce that

$$\langle π_σ(E_N)q_{s,σ}, ψ \rangle = \int_{G/B(σ)} \int_{H/B(s \cdot σ) \cap H} K_{π_σ(E_N)}(u, hs) d\nu(u) d\sigma $$

$$= \langle \eta_{s,σ}, ψ \rangle$$

where $η_{s,σ}(u) = \int_{H/B(s \cdot σ) \cap H} K_{π_σ(E_N)}(u, hs) \chi_f(h^{-1}) d\sigma$ is in $L^2(G/B(s \cdot σ), s \cdot σ)$.

Hence

$$\text{tr}(Q_{s,σ}) = \langle \eta_{s,σ}, \eta_{s,σ} \rangle$$

$$= \int_{G/B(σ)} \int_{H/B(s \cdot σ) \cap H} K_{π_σ(E_N)}(g, h′s) \chi_f(h^{-1}) d\sigma d\sigma'$$

$$= \int_{G/B(σ)} \int_{H/B(s \cdot σ) \cap H} K_{π_σ(E_N)}(g, h's) \chi_f(h^{-1}) d\sigma d\sigma'$$

$$= \int_{G/B(σ)} \int_{H/B(s \cdot σ) \cap H} \int_{B(s \cdot σ)} E_N(gbs^{-1}h^{-1}) \chi_σ(b) d\chi_f(h^{-1}) d\sigma' d\sigma d\sigma'$$

Now for $q ∈ C_0(G)$, it has been shown in [B.L.2] that

$$\int_{H/B(s \cdot σ) \cap H} \int_{B(s \cdot σ)} q(hb^{-1}) \chi_σ(b) d\chi_f(h^{-1}) d\sigma'$$

$$= \int_{B(s \cdot σ)/B(s \cdot σ) \cap H} \int_{H} q(hb^{-1}) \chi_σ(b) d\chi_f(h^{-1}) dσ' d\sigma ddb$$

We obtain:

$$\text{tr}(Q_{s,σ}) = \langle T_{s,σ}(P_{H,f}(E_N)), T_{s,σ}(P_{H,f}(E_N)) \rangle_{H_σ,σ} = \|T_{s,σ}(P_{H,f}(E_N))\|^2_{H_σ,σ}$$

On the other hand one has by (3)

$$\int_{G/B(σ)} \int_{H/B(s \cdot σ) \cap H} \|T_{s,σ}(P_{H,f}(E_N))\|^2_{H_σ,σ} dσ = \int_V \langle T_φ(P_{H,f}(E_N)), T_φ(P_{H,f}(E_N)) \rangle_{H_σ,σ} dφ = \|P_{H,f}(E_N)\|^2_{H_σ,σ} \text{ by (4)}. $$
Hence for almost all $\sigma \in \Sigma$

$$\|U_\sigma\|_1 = \int_{\Gamma_\sigma} \text{tr}(Q_{\sigma}) d\lambda_\sigma(\dot{g}) < \infty$$

and the integral

$$U_\sigma = \int_{\Gamma_\sigma} Q_{\sigma} d\lambda_\sigma(\dot{g})$$

converges in the space of the trace-class operators.

\[\blacksquare\]

1.3.4. **Theorem** There exists $N \in \mathbb{N}$, such that for every $\varphi \in \mathcal{S}(G)$ and for almost all $\sigma \in \Sigma$, we have that the operator $\pi_\sigma(\varphi) \circ U_\sigma : \mathcal{H}_\sigma^N \to \mathcal{H}_\sigma^N$ is trace class and

$$< S_{H,f}, \varphi > = \int_{\Sigma} \text{tr}(\pi_\sigma(\varphi) \circ U_\sigma) d\nu(\sigma).$$

Proof. Let $\sigma \in \Sigma, s \in G_\sigma$ and $\varphi \in \mathcal{S}(G)$. An argument similar to (*) permits us to write $\pi_\sigma(\varphi)q_{s,\sigma}(u) = \varphi_{s,\sigma}(u) = \int_{H/B(s,\sigma) \cap H} K_{\pi_\sigma(\varphi)}(u,h)^{\chi_f(h)} dh$, for all $u \in G$.

Then

$$\langle \pi_\sigma(\varphi)q_{s,\sigma}, q_{s,\sigma} \rangle = \int_{H/B(s,\sigma) \cap H} \varphi_{s,\sigma}(hs)^{\chi_f(h)} dh$$

$$= \int_{H/B(s,\sigma) \cap H} K_{\pi_\sigma(\varphi)}(hs,h')^{\chi_f(h')^{-1}} dh' \chi_f(h) dh$$

$$= \int_{H/B(s,\sigma) \cap H} K_{\pi_\sigma(\varphi)}(h,h')^{\chi_f(h'h')^{-1}} dh' dh.$$

We recall that $\pi_\sigma(\varphi) \circ U_\sigma = \pi_\sigma(\varphi) \circ \int_{H/B(s,\sigma) \cap H} P_{\pi_\sigma(\varphi)q_{s,\sigma}, q_{s,\sigma}} d\lambda_\sigma(\dot{s}) = \int_{\Gamma_\sigma} P_{\pi_\sigma(\varphi)q_{s,\sigma}, q_{s,\sigma}} d\lambda_\sigma(\dot{s}).$

Hence we deduce that

$$\text{tr}(\pi_\sigma(\varphi) \circ U_\sigma) = \int_{\Gamma_\sigma} \int_{H/B(s,\sigma) \cap H} \int_{H/B(s,\sigma) \cap H} K_{\pi_\sigma(\varphi)}(h,h')^{\chi_f(h'h')^{-1}} dh' dh d\lambda_\sigma(\dot{s}).$$

(*)

Now we recall that, from [B.L.2] one has

$$\langle S_{H,f}, \varphi \rangle = \int_V \langle S_\phi, \varphi \rangle d\mu(\phi)$$

$$= \int_{\Sigma} \int_{\Gamma_\sigma} \int_{H/B(s,\sigma)} T_{s,\sigma}(P_{H,f}(\varphi))(h)^{\chi_f(h)} dhd\lambda_\sigma(\dot{s}) d\nu(\sigma)$$

(by (3) and (5)).
On the other hand
\[
\int_{\Gamma} \int_{H/H \cap B(s, \sigma)} T_{s, \sigma}(P_{H, f}(\varphi))(h) \chi_f(h) dh d\lambda_\sigma(s)
\]
\[
= \int_{\Gamma} \int_{H/H \cap B(s, \sigma)} \int_{B(s, \sigma)/B(s, \sigma) \cap H} P_{H, f}(\varphi)(b) \chi_f(b) db \chi_f(h) dh d\lambda_\sigma(s)
\]
\[
= \int_{\Gamma} \int_{H/H \cap B(s, \sigma)} \int_{B(s, \sigma)/B(s, \sigma) \cap H} \varphi(h b h') \chi_f(h') dh' \chi_f(b) db \chi_f(h) dh d\lambda_\sigma(s)
\]
\[
= \int_{\Gamma} \int_{H/H \cap B(s, \sigma)} \int_{B(s, \sigma)/B(s, \sigma) \cap H} \varphi(h b b h') \chi_f(h') dh' \chi_f(b) db \chi_f(h) dh d\lambda_\sigma(s).
\]
Then by (**) *(***)
\[
\int_{\Gamma} \int_{H/H \cap B(s, \sigma)} T_{s, \sigma}(P_{H, f}(\varphi))(h) \chi_f(h) dh d\lambda_\sigma(s)
\]
\[
= \int_{\Gamma} \int_{H/H \cap B(s, \sigma)} \int_{H/H \cap B(s, \sigma) \cap H} \int_{B(s, \sigma)} \varphi(h b b h') \chi_f(h) dh' dh d\lambda_\sigma(s)
\]
\[
= \int_{\Gamma} \int_{H/H \cap B(s, \sigma)} \int_{H/H \cap B(s, \sigma) \cap H} \int_{B(s, \sigma)} K_{\pi_\sigma(\varphi)}(h, h') \chi_f(h) dh' dh d\lambda_\sigma(s)
\]
\[
= \text{tr}(\pi_\sigma(\varphi) \circ U_\sigma).
\]
Whence
\[
\langle S_{H, f}, \varphi \rangle = \int \text{tr}(\pi_\sigma(\varphi) \circ U_\sigma) d\nu(\sigma).
\]

2. The Bonnet Plancherel formula for a class of completely solvable Lie group

In this part we take, as mentioned in the introduction, the semi-direct product
\[G = N H;\] where \(N = \exp(\mathfrak{n})\) is nilpotent and normal in \(G\), and \(H = \exp(\mathfrak{h})\) is
abelian and acts semi-simply on \(N\) with real eigenvalues. Let \(\chi = \chi_f\) be a unitary character of \(H\) (where \(f \in \mathfrak{g}^*\)). We consider the representation \(\tau_f = \text{Ind}_{H}^{G} \chi_f\) and
we assume that \(\tau_f\) has finite multiplicity.

Let us recall some results given in the paper [Cu.2].

2.1 Generalities and main results

2.1.1 \(C^\infty\) vectors

Let \(G\) be an exponential solvable Lie group and \(K\) a closed subgroup of \(G\). Fix a
choice of right Haar measures \(dg, dk\) on \(G\) and \(K\). We write \(\Delta_G, \Delta_K\) for the modular
functions of \(G, K \) (respectively). If \(\chi \) is a unitary character of \(K \), the induced representation \(\pi_{\chi} = Ind_{K}^{G} \chi \) acts in the space \(C_{K}(G, K, \chi) = \{ f \in C_{K}(G) : f(kg) = \chi(k)f(g) \ \forall k \in K, g \in G; f \ \text{compactly supported mod} \ K \} \), by the formula

\[
\pi_{\chi}(g)f(x) = f(xg)q(g)^{1/2}.
\]

Here \(q = q_{K,G} : G \to \mathbb{R}_{+}^{*} \) is a smooth function on \(G \) satisfying \(q(e) = 1, q(kg) = \Delta_{K,G}(k)q(g) \).

The space \(K \setminus G \) carries a relatively invariant measure \(d\gamma \) with modulus \(q^{-1} \) which satisfies:

\[
\int_{K \setminus G} f(\gamma g) d\gamma = \int_{K \setminus G} f(\gamma) q(\gamma^{-1}) d\gamma
\]

where \(f \in C_c(K \setminus G) \).

The Hilbert space \(H_{\pi_{\chi}} = L^{2}(G, K, \chi) \) is the completion of \(C_{K}^{\infty}(G, K, \chi) \) under the norm \(\|f\| = (\int_{K \setminus G} |f(\gamma)|^{2} d\gamma)^{1/2} \).

Now let \(\pi \) be a unitary representation of \(G \) on a Hilbert space \(H_{\pi} \), we denote by \(H_{\pi}^{\infty} \) the Fréchet space of smooth vectors of \(\pi \). Its anti-dual space is denoted by \(H_{\pi}^{\infty} \). It is well known that \(\pi(D(G))H_{\pi}^{\infty} \subset H_{\pi}^{\infty} \) where \(D(G) = C_{c}^{\infty}(G) \).

2.1.2 Algebraic structure

Let \(\mathfrak{g} = \mathfrak{n} + \mathfrak{h} \) where \(\mathfrak{n} \) is nilpotent, \([\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{n} \) and where \(\mathfrak{h} \) is an abelian subalgebra of \(\mathfrak{g} \) such that \(ad(\mathfrak{h}) \) consists of semi-simple endomorphisms with real eigenvalues.

In [Cu.2] it has been shown that if \(\tau_{f} \) is of finite multiplicity then the Lie algebra \(\mathfrak{g} \) has a basis \(\mathcal{B} = \{ C_{1}, \cdots, C_{a}, V_{1}, \cdots, V_{\nu}, X_{1}, \cdots, X_{u}, Y_{1}, \cdots, Y_{u}, A_{1}, \cdots, A_{u}, B_{1}, \cdots, B_{\nu} \} \) such that

\[\mathfrak{n} = \text{vect} < C_{1}, \cdots, C_{a}, V_{1}, \cdots, V_{\nu}, X_{1}, \cdots, X_{u}, Y_{1}, \cdots, Y_{u} > \]

and \(\mathfrak{h} = \text{vect} < A_{1}, \cdots, A_{u}, B_{1}, \cdots, B_{\nu} > \). Furthermore we have:

i) \([X_{h}, Y_{h'}] = 0 \) if and only if \(h \neq h' \) and \([X_{h}, Y_{h}] \) is central in \(\mathfrak{n} \) for \(1 \leq h \leq u \).

ii) For every \(h, h' \) \([X_{h}, X_{h'}] = [Y_{h}, Y_{h'}] = 0 \).

iii) \(\text{cent}(\mathfrak{g}) = \text{vect} < C_{1}, \cdots, C_{a} > \), and \(\text{cent}(\mathfrak{n}) = \text{vect} < C_{1}, \cdots, C_{a}, V_{1}, \cdots, V_{\nu} > \).

iv) \([A_{h}, X_{h}] = -X_{h}; [A_{h}, Y_{h}] = Y_{h}; [A_{h}, X_{h'}] = [A_{h}, Y_{h'}] = 0 \) for \(h \neq h' \).

v) \([B_{k}, X_{h}] = \alpha_{k,h}X_{h}, \ \alpha_{k,h} \in \mathbb{R}; [B_{k}, Y_{h}] = 0; [A_{h}, V_{k}] = 0; [B_{k}, V_{k}] = V_{k} \) and \([B_{k}, V_{k'}] = 0 \) for \(k \neq k' \).

(see Theorem 1.8 in [Cu.2]), we have simplified here the notations of Currey).
2.1.3 Plancherel formula

Let τ be the monomial representation: $\tau = \tau_f = \text{Ind}_H^G \chi_f$. To decompose τ means to describe the spectrum of τ, the multiplicities and the equivalence class of the Plancherel measure in terms of the coadjoint orbit picture.

In the case of a completely solvable Lie group, it has been shown in [Li.1] that the spectral decomposition formula is given by $\tau = \int_{(f+\mathfrak{h}^\perp)/H} \pi_\theta d\nu(\theta)$ where ν is a pushforward of a finite measure on $(f+\mathfrak{h}^\perp)$ which is equivalent to Lebesgue measure.

In the case with which we are concerned where $G = NH$ and τ_f has finite multiplicity, it has been shown in [Cu.2] that the set of generic H–orbits in the decomposition of τ_f admits a natural algebraic cross-section Σ and the measure ν is given as an explicit measure on Σ.

Furthermore we can choose $f|n = 0$.

The cross-section in $f + \mathfrak{h}^\perp$ is $f + \Sigma$ and is given as follows:

Fixing a choice of signs $\theta = (\epsilon, \delta) = (\epsilon_1, \ldots, \epsilon_u, \delta_1, \ldots, \delta_v) \in \{1, -1\}^d$; $d = u + v$, one has $\Sigma = \bigcup_{\theta \in \{1, -1\}^d} \Sigma_\theta$ where $\Sigma_\theta = \{ l \in \Omega \cap \mathfrak{h}^\perp; \ l(Y_k) = \epsilon_k, \ 1 \leq k \leq u \text{ and } l(V_i) = \delta_i, \ 1 \leq i \leq v \}$. Here $\Omega = \Omega_0 \cap \Omega_1$, where Ω_0 is the set of G–orbits having maximal dimension in \mathfrak{g}^* and Ω_1 consists with H–orbits of maximal dimension. The irreducible representations which correspond to G–orbits $G \cdot l$, $l \in \Omega \cap (f+\mathfrak{h}^\perp)$, are sufficient to decompose τ_f.

There exists a dense open subset D_θ of $\mathbb{R}^a \times \mathbb{R}^u$ such that

$$\Sigma_\theta = \{ \sum_{h=1}^a \xi_h C_h^* + \sum_{i=1}^\nu \delta_i V_i^* + \sum_{k=1}^u \epsilon_k Y_k^* + \sum_{k=1}^u \mu_k X_k^*; \ (\xi, \mu) \in D_\theta \} \quad (7)$$

(see [Cu.2], we have made a small change of notations).

Let F be a function on $f + \mathfrak{h}^\perp$. One has

$$\int_{f+\Sigma} F(l) dl = \sum_{\theta \in \{1, -1\}^d} \int_{\mathbb{R}^a \times \mathbb{R}^u} F(f + a \sum_{h=1}^a \xi_h C_h^* + \sum_{i=1}^\nu \delta_i V_i^* + \sum_{k=1}^u \epsilon_k Y_k^* + \sum_{k=1}^u \mu_k X_k^*) \ d\xi d\mu.$$

Now for $l \in \Sigma$, an H–covariant generalized vector for π_l is defined formally by; for $\psi \in \mathcal{H}_l^{\infty}$

$$\beta_l(\psi) = \int_H \overline{\psi(h)q_{B,G}^{1/2}q_{H,G}^{-1/2} \chi_f(h)} dh,$$

(see 2.1 in [Cu.2]).

2.1.3.1. Theorem [Cu.2] The integral (8) is absolutely convergent for every $\psi \in \mathcal{H}_l^{\infty}$ and β_l is continuous on \mathcal{H}_l^{N} for a certain integer N (see [Cu.2] proof of theorem 2.2).
The distribution-theoretic Plancherel formula which is equivalent to the disintegration of τ_f is

$$\langle \tau_f(\omega)\alpha_\tau, \alpha_\tau \rangle = \int_{f+\Sigma} \langle \pi(\omega)\beta, \beta \rangle |R(l)| dl$$

where $R(l) = ((2\pi)^n l([X_1, Y_1])l([X_2, Y_2])\cdots l([X_n, Y_n]))^{-1}$ with $n = \dim(\mathfrak{n})$ and α_τ is the generalized cyclic vector for τ: $\alpha_\tau(\xi) = \xi(1)$ for $\xi \in \mathcal{H}_\infty^\pi$ (cf. [Cu.2] Theorem 3.2).

Of course the reference [Cu.2] contains more information than is conveyed here.

2.2 The Bonnet Plancherel formula

The aim of this section is to describe explicitly the Bonnet Plancherel Formula associated to the disintegration of τ_f. Let G, H, f (and so on) be as above. We recall that the distribution S_{H,X_l}, defined on $D(G)$ by: $\langle S_{H,X_l}, \varphi \rangle = \int_H \varphi(h)\chi_f(h)\Delta^{1/2}_{G,H}(h) dh$, is positive.

By the theorem of P. Bonnet [Bon.], there exist positive nuclear operators $U_{\varphi} : \mathcal{H}_\pi^\infty \to \mathcal{H}_\pi^\infty$, such that

$$\langle S_{H,X_l}, \varphi \rangle = \int_G \text{tr}(\pi(\varphi)U_{\varphi}(\pi))d\mu(\pi), \quad \varphi \in D(G).$$

We shall show that the operators U_{φ} are finite sum of rank one operators. The first step is a determination of a cross-section for G-orbits in $G.(f + \Sigma)$.

Let $l = f + l_0 \in f + \Sigma$. By (2.1.3) there exists $\theta = (\epsilon, \delta) = (\epsilon_1, \cdots, \epsilon_u, \delta_1, \cdots, \delta_v) \in \{-1, 1\}^d$ such that $l_0 \in \Sigma_\theta$: $l_0 = \sum_{h=1}^u \xi_h C_h^* + \sum_{i=1}^v \delta_i V_i^* + \sum_{k=1}^u \epsilon_k Y_k^* + \sum_{k=1}^u \mu_k X_k^*$; the G-orbit of l consists of elements l' of the form:

$$l' = \sum_{h=1}^u \xi_h C_h^* + \sum_{i=1}^v \delta_i w_i V_i^* + \sum_{k=1}^u y_k Y_k^* + \sum_{k=1}^v x_k X_k^* + \sum_{k=1}^u P_k(w_i, x_k, y_k)A_k^* + \sum_{i=1}^v b_i B_i^*$$

where $w_i \in [0, +\infty]$ \quad $1 \leq i \leq \nu$, \quad $x_k, y_k, b_i \in \mathbb{R}$ and P_k are polynomials in x_k, y_k and rationals in w_i, \quad $1 \leq k \leq u$.

It has been shown in [Cu.2] that

$$O_l = G.l \cap (f + \Sigma) = \bigcup_{\epsilon' \in \{-1, 1\}^u} \{ \sum_{h=1}^u \xi_h C_h^* + \sum_{i=1}^v \delta_i V_i^* + \sum_{k=1}^u \epsilon_k Y_k^* + \sum_{k=1}^u \epsilon_k \epsilon'_k \mu_k X_k^* \}\{ \sum_{i=1}^v \delta_i \epsilon_i w_i V_i^* \}.$$ (9)
We give a cross-section for G- orbits in $G.(f + \Sigma)$ as the set

$$
\Gamma = \left\{ f + \sum_{h=1}^{a} \xi_h G_h^* + \sum_{i=1}^{\nu} \delta_i V_i^* + \sum_{k=1}^{u} Y_k^* + \sum_{k=1}^{u} \mu_k X_k^*, \quad (\xi_h, \mu_k) \in \mathbb{R}^a \times \mathbb{R}^u, \right. \\
\text{and} \quad \delta = (\delta_1, \cdots, \delta_\nu) \in \{-1, 1\}^\nu \right\} \\
= \bigcup_{\delta \in \{-1, 1\}^\nu} \Gamma_\delta.
$$

We see that our cross-section Γ for G- orbits in $G.(f + \Sigma)$ is contained in $f + \Sigma$.

Furthermore we decompose the Lebesgue measure on $f + \Sigma$ into integral of measures on $\Omega, l \in \Gamma$: Given a function F on $(f + \Sigma)$ we write:

$$
\int_{f+\Sigma} F(l) dl = \int_{f+\Sigma} F(\phi) d\mu_\sigma(\phi) d\nu(\sigma) \quad (10)
$$

$$
= \sum_{\delta \in \{-1, 1\}^\nu} \int_{\mathbb{R}^a \times \mathbb{R}^u} \sum_{\epsilon \in \{-1, 1\}^u} F(f + \sum_{h=1}^{a} \xi_h G_h^* + \sum_{i=1}^{\nu} \delta_i V_i^* + \sum_{k=1}^{u} \epsilon_k Y_k^* + \sum_{k=1}^{u} \epsilon_k \mu_k X_k^*) \, d\xi. \\
$$

On the other hand recall that for all $\omega \in D(G)$ we have by (Cu.2):

$$
\langle \tau_f(\omega) \alpha_\tau, \alpha_\tau \rangle = \int_{f+\Sigma} \langle \tau_i(\omega) \beta_i, \beta_i \rangle |R(l)| dl,
$$

where $R(l) = ((2\pi)^u \prod_{k=1}^{u} l([X_k,Y_k]))^{-1}$.

Remarks

i) From the construction of vectors X_k, Y_k one can verify that $l([X_k,Y_k]) \neq 0$ for all $l \in \Omega$.

ii) Since for all $1 \leq k \leq u, \quad [X_k,Y_k] \in cent(n)$ then for every $\sigma \in \Gamma$ by (9) we have $R(\sigma) = R(l) \quad \forall l \in G \cdot \sigma \cap (f + \Sigma)$. Thus we can write $R(l) = R(f, \delta, \xi)$ as a function uniquely depending on $f, \delta = (\delta_1, \cdots, \delta_\nu)$ and $\xi = (\xi_1, \cdots, \xi_a)$.

Let us write $\pi(\xi,\delta,\epsilon,\mu)$ for the irreducible representation associated to the element

$$
l = l(\xi, \delta, \epsilon, \mu) = f + \sum_{h=1}^{a} \xi_h G_h^* + \sum_{i=1}^{\nu} \delta_i V_i^* + \sum_{k=1}^{u} \epsilon_k Y_k^* + \sum_{k=1}^{u} \mu_k X_k^* \quad \text{in} \quad g^*.
$$

We deduce that:

$$
\langle \tau_f(\omega) \alpha_\tau, \alpha_\tau \rangle = \sum_{\delta \in \{-1, 1\}^\nu} \int_{\mathbb{R}^a \times \mathbb{R}^u} \sum_{\epsilon \in \{-1, 1\}^u} \langle \pi(\xi,\delta,\epsilon,\mu)(\omega) \beta_{(\xi,\delta,\epsilon,\mu)}, \beta_{(\xi,\delta,\epsilon,\mu)} \rangle |R(f, \delta, \xi)| d\xi. \\
$$

(11)

Let now $\sigma = f + \sum_{h=1}^{a} \xi_h G_h^* + \sum_{i=1}^{\nu} \delta_i V_i^* + \sum_{k=1}^{u} Y_k^* + \sum_{k=1}^{u} \mu_k X_k^* \in \Gamma \subset (f + \Sigma)$.
For every $l \in G \cdot \sigma \cap (f + \Sigma)$ there exists by (9) an $\epsilon \in \{-1, 1\}^u$ such that:

$$l = f + \sum_{h=1}^{a} \xi_h C_h^* + \sum_{i=1}^{\nu'} \delta_i V_i^* + \sum_{k=1}^{u} \epsilon_k Y_k^* + \sum_{k=1}^{u} \epsilon_k \mu_k Y_k^*.$$

Put for $1 \leq k \leq u$:

$$a_k(\sigma) = \langle \sigma, [X_k, Y_k] \rangle.$$

Since $[X_k, Y_k] \in \text{cent}(n)$, we have that $a_k(\sigma) = a_k(l)$. Then by the obvious remark (i) one has $a_k(\sigma) \neq 0$.

Let $g_l = \prod_{k=1}^{u} \exp(y_k Y_k) \prod_{k=1}^{u} \exp(x_k X_k) \prod_{h=1}^{\nu'} \exp(v_h V_h) \in N$, where $x_k = \frac{1 - \epsilon_k}{\alpha_k(l)}$, $y_k = \frac{\epsilon_k - 1}{\alpha_k(l)} \mu_k$, and $v_h = -\delta_h \sum_{k=1}^{u} \frac{1 - \epsilon_k}{\alpha_k(l)} \alpha_{h,k} \mu_k$.

2.2.1 Lemma. We have that:

$$l = g_l \cdot \sigma$$

Proof. We recall that

$$g = \text{vect} < C_1, \cdots, C_u, V_1, \cdots, V_\nu, X_1, \cdots, X_u, Y_1, \cdots, Y_\nu, A_1, \cdots, A_u, B_1, \cdots, B_\nu > .$$

According to the expressions of σ, l and since the vectors C_h and V_i are central in n we have $g_l \cdot \sigma(C_h) = l(C_h), \ 1 \leq h \leq u$, and $g_l \cdot \sigma(V_i) = l(V_i), \ 1 \leq i \leq \nu$.

Fix $s \in \{1, \cdots, \nu\}$, we have by (2.1.2.v) and the fact that $f_{\alpha} = 0$

$$g_l \cdot \sigma(B_s) = \sigma(Ad(\prod_{h=1}^{\nu'} \exp(-v_h V_h) \prod_{k=1}^{u} \exp(-x_k X_k))(B_s))$$

$$= \sigma(Ad(\prod_{h=1}^{\nu'} \exp(-v_h V_h))(B_s + \sum_{k=1}^{u} x_k \alpha_{s,k} X_k))$$

$$= \sigma(B_s + v_s V_s + \sum_{k=1}^{u} x_k \alpha_{s,k} X_k)$$

$$= \sigma(B_s) + \delta_s v_s + \sum_{k=1}^{u} x_k \alpha_{s,k} \mu_k$$

$$= \sigma(B_s) - \sum_{k=1}^{u} x_k \alpha_{s,k} \mu_k + \sum_{k=1}^{u} x_k \alpha_{s,k} \mu_k$$

$$= \sigma(B_s) = l(B_s) = f(B_s).$$
For $1 \leq i \leq u$, we have by (2.1.2.v), (2.1.2.iv), (2.1.2.ii) and by the fact that $f_{ij} = 0$:

$$g_l \cdot \sigma(A_i) = \sigma(Ad(\prod_{k=1}^{u} \exp(-x_k X_k))(A_i + y_i Y_i))$$
$$= \sigma(A_i + y_i Y_i - x_i X_i - x_i y_i [X_i, Y_i])$$
$$= \sigma(A_i) + y_i - x_i \mu_i - x_i y_i \sigma(a)$$
$$= \sigma(A_i) + \frac{\epsilon_i - 1}{a_i(\sigma)} \mu_i + \frac{\epsilon_i - 1}{a_i(\sigma)} \mu_i + \frac{(\epsilon_i - 1)^2}{a_i(\sigma)} \mu_i$$
$$= \sigma(A_i) + \frac{\mu_i}{a_i(\sigma)} (2\epsilon_i - 2 + (\epsilon_i)^2 - 2\epsilon_i)$$
$$= \sigma(A_i) + \epsilon_i \mu_i$$
$$= l(A_i),$$

and

$$g_l \cdot \sigma(X_i) = \sigma(Ad(\prod_{k=1}^{u} \exp(-x_k X_k))(X_i - y_i [X_i, X_i]))$$
$$= \sigma(X_i + y_i [X_i, Y_i])$$
$$= \sigma(X_i) + (\epsilon_i) \mu_i$$
$$= \epsilon_i \mu_i$$
$$= l(X_i)$$

Thus $g_l \cdot \sigma = l$.

We turn now to Bonnet’s operators. First we define for every $l \in G \cdot \sigma \cap (f + \Sigma)$ an operator $\beta_l' : \mathcal{H}_l^\infty \to \mathbb{C}$ by

$$\beta_l'(\psi) = \int_{H} \frac{\psi(g_l^{-1} h)}{q_{H, G}^{1/2} q_{H, G}^{-1/2} \chi_f(h)} dh$$

and a function ψ_{g_l} by $\psi_{g_l}(g') = \psi(g_l^{-1} g')$, $g' \in G$. We can see that ψ_{g_l} is an element of \mathcal{H}_l^∞. Indeed, the covariance condition is satisfied.

Let $B(l)$ be the Vergne polarization associated to l and to our Jordan-Hölder basis of g. For $g' \in G, b \in B(l)$ we have $\psi_{g_l}(bg') = \psi(g_l^{-1} bg') = \psi(g_l^{-1} bg_l g_l^{-1} g').$ Since
$l = g_l \cdot \sigma$, we have that then $B(l) = g_l B(\sigma) g_l^{-1}$ and $b' = g_l^{-1} b g_l \in B(\sigma)$. Hence

$$
\psi_{g_l}(b') = \psi(b' g_l^{-1}) \\
= \chi_{\sigma}(b') \psi(g_l^{-1}) \quad (\psi \in H^\infty_{\sigma}) \\
= \chi_{\sigma}(b') \psi_{g_l}(g').
$$

Evidently ψ_{g_l} is C^∞ function. We obtain $\beta'_l(\psi) = \beta_l(\psi_{g_l})$ where β_l is as in (8).

Then using (2.1.3.1) we have that (12) converges for all $\psi \in H^\infty_{\sigma}$ and $\beta'_l \in H^\infty_{\sigma}$.

Let $\sigma \in \Gamma, l \in G \cdot \sigma \cap (f + \Sigma)$ and $\epsilon = (\epsilon_1, \cdots, \epsilon_u) \in \{-1, 1\}^u$ such that $\epsilon_k = l(Y_k)$. Since l depends only on ϵ we put $\beta'_l = \beta'_\epsilon$ and we define the operator $U_{\sigma} : H^\infty_{\sigma} \rightarrow H^\infty_{\sigma}$ by:

$$
U_{\sigma} = \sum_{\epsilon \in \{-1, 1\}^u} P_{\beta'_\epsilon, \beta'_l}.
$$

Here $P_{\beta'_\epsilon, \beta'_l} : H^\infty_{\sigma} \rightarrow H^-_{\sigma}$ is a rank one operator defined by $P_{\beta'_\epsilon, \beta'_l}(\psi) = \langle \psi, \beta'_\epsilon \rangle \beta'_l$.

We have the following:

2.2.2 Theorem Let $G = \exp(g)$ be the semi direct product; where $N = \exp(n)$ is nilpotent and normal in G, and $H = \exp(h)$ is abelian and acts semi-simply on N with real eigenvalues. Let f be a linear functional of g such that $f([h, h]) = \{0\}$ and χ_f the corresponding unitary character of H. Let $\tau_f = Ind^G_H \chi_f$ and assume that τ_f has finite multiplicity. Let $\Sigma \subset g^*$ be the cross-section for the H-orbit in $\Omega \cap h^\perp$ given in [Cu.2]. Then there exists a cross-section Γ for the G-orbit in $G \cdot (f + \Sigma)$, a measure ν on Γ, such that for every $\omega \in D(G)$ we have:

$$
\langle \tau_f(\omega) \rho_\tau, \rho_\tau \rangle = \int_{\Gamma} \text{tr}(\pi_{\sigma}(\omega) \circ U_{\sigma}) d\nu(\sigma)
$$

where $U_{\sigma}, \sigma \in \Gamma$, is defined in (13).

Proof. Let $\omega \in D(G)$. We have $\pi_{\sigma}(\omega) \circ U_{\sigma} = \sum_{\epsilon \in \{-1, 1\}^u} P_{\pi_{\sigma}(\omega) \circ \beta'_\epsilon, \beta'_l}$. Hence

$$
\text{tr}(\pi_{\sigma}(\omega) \circ U_{\sigma}) = \sum_{\epsilon \in \{-1, 1\}^u} \langle \pi_{\sigma}(\omega) \beta'_\epsilon, \beta'_l \rangle.
$$

On the other hand, for all $\psi \in H^\infty_{\sigma}$, we have:

$$
\langle \pi_{\sigma}(\omega) \beta'_l, \psi \rangle = \langle \beta'_l, \pi_{\sigma}(\omega^*) \psi \rangle = \beta_l((\pi_{\sigma}(\omega^*) \psi)_{g_l}); \text{ where } l = g_l \cdot \sigma.
$$
Since for all \(x \in G \)

\[
(\pi_\sigma(\omega^*)\psi)_{\eta_1}(x) = \pi_\sigma(\omega^*)\psi(g_1^{-1}x)
\]

\[
= \int_G \omega^*(y)(\pi_\sigma(y)\psi)(g_1^{-1}x)dy
\]

\[
= \int_G \omega^*(y)\psi(g_1^{-1}xy)q(y)^{1/2}dy
\]

\[
= \pi_l(\omega^*)\psi_{\eta_1}(x),
\]

it follows that \((\pi_\sigma(\omega^*)\psi)_{\eta_1} = \pi_l(\omega^*)\psi_{\eta_1}\).

Thus

\[
\langle (\pi_\sigma(\omega^*)\beta')_{\eta_1}, \psi_{\eta_1} \rangle_{\mathcal{H}_t} = \langle \pi_\sigma(\omega^*)\psi \rangle_{\mathcal{H}_t} = \langle \beta', \pi_l(\omega^*)\psi \rangle_{\mathcal{H}_t} = \langle \pi_l(\omega)\beta', \psi_{\eta_1} \rangle_{\mathcal{H}_t}.
\]

Hence \(\pi_l(\omega)\beta_l = (\pi_\sigma(\omega)\beta'_l)_{\eta_1}\) and \((\pi_\sigma(\omega)\beta'_l, \beta'_l) = (\pi_\sigma(\omega)\beta'_l, \beta_l) = (\pi_\epsilon(\omega)\beta_\epsilon, \beta_\epsilon)\).

We deduce that

\[
\text{tr}(\pi_\sigma(\omega)U_\sigma) = \sum_{\epsilon \in \{-1, 1\}^n} \langle \pi_\epsilon(\omega)\beta_\epsilon, \beta_\epsilon \rangle.
\]

The formulas (10) and (11) permit us to conclude, the measure \(\nu\) is given on each \(\Gamma_\delta\) by: \(|R(f, \delta, \xi)|d\xi d\mu\). ■

2.3 Exemple ([Cu.2])

Let \(g = \text{vect} < B, A, X, Y, Z >\) with non vanishing brackets

\[
\]

Here \(\mathfrak{h} = \text{vect} < A, B >\) and \(\mathfrak{n} = \text{vect} < X, Y, Z >\).

For \(l \in \mathfrak{g}^*\) we write \(l = (\lambda, \gamma, \mu, \alpha, \theta)\) where \(\lambda = l(Z); \gamma = l(Y); \mu = l(X); \alpha = l(A); \theta = l(B); \Omega_0 = \{l \in \mathfrak{g}^*; \lambda \neq 0\}\) and \(\Omega_1 = \{l \in \mathfrak{g}^*; \gamma \neq 0\}\) and the set \(\Omega\) of generic linear functionals is \(\Omega = \Omega_0 \cap \Omega_1\).

The cross-section for \(H\)-orbits in \(\mathfrak{h}^\perp \cap \Omega\) is given in [Cu.2] as:

\[
\Sigma = \{(\delta, \epsilon, \mu, 0, 0); \ \mu \in \mathbb{R}; \ (\epsilon, \delta) \in \{-1, 1\}^2\} = \cup \Sigma_\theta.
\]

Now the cross-section for \(G\)-orbits in \(G \cdot \Sigma\) is: \(\Gamma = \cup_{\delta \in \{-1, 1\}} \Gamma_\delta\) where
\[\Gamma = \{ (\delta, 1, \mu, 0, 0) ; \mu \in \mathbb{R}, \delta \in \{-1, 1\} \}. \]

Let \(\sigma \in \Gamma \); there exits \(\delta \in \{-1, 1\} \) such that \(\sigma = (\delta, 1, \mu, 0, 0) \). The theorem (2.2.2) says that the Bonnet Plancherel measure is given on each \(\Gamma_\delta \) by \((2\pi)^{-3}d\mu\).

For \(l \in G \cdot \sigma \) \(\exists \epsilon = l(Y) \) such that \(l = g_l \cdot \sigma \), here we have: \(V = Z \); and since \([B, X] = X\) then for \(\epsilon = -1 \)
\[g_l = \exp(-2\mu Y)\exp(\frac{2}{\delta}X)\exp(-2\mu \frac{\delta}{\delta^2}Z). \]

The operator \(\beta_l \) is given in [Cu.2]:
\[\beta_l(\psi) = \int_{\mathbb{R}^2} \psi(\exp(sB)\exp(tA))e^{s}e^{(t-s)\frac{\epsilon}{2}} dsdt. \]

Thus the formula for the operator \(\beta'_l \) is:
\[\beta'_l(\psi) = \beta'_1(\psi) = \int_{\mathbb{R}^2} \psi(g_l^{-1}\exp(sB)\exp(tA))e^{s}e^{(t-s)\frac{\epsilon}{2}} dsdt = \beta_1(\psi_{g_l}). \]

Then Bonnet’s operator \(U_\sigma \) is given by
\[U_\sigma = \sum_{\epsilon_1 \in \{-1, 1\}} P_{\beta'_1, \beta'_1} \] where \(P_{\beta'_1, \beta'_1}(\psi) = \langle \psi, \beta'_1 \rangle \beta'_1 \).

Furthermore for \(\epsilon = 1, \beta'_1 = \beta_\sigma \), then
\[U_\sigma = P_{\beta'_1, \beta'_1} + P_{\beta_1, \beta_1}. \]

Now for \(\omega \in D(G) \) we have: \(\pi_\sigma(\omega) \circ U_\sigma = P_{\pi(\delta, 1, \mu)(\omega)\beta'_1, \beta'_1} + P_{\pi(\delta, 1, \mu)(\omega)\beta_1, \beta_1}. \)

Then:
\[\operatorname{tr}(\pi_\sigma(\omega) \circ U_\sigma) = \langle \pi(\delta, 1, \mu)(\omega)\beta'_1, \beta'_1 \rangle + \langle \pi(\delta, 1, \mu)(\omega) \circ \beta_1, \beta_1 \rangle \]
By theorem (2.2.2) we have the Bonnet Plancherel formula:
\[\langle \tau_f(\omega)\alpha_\tau, \alpha_\tau \rangle = (2\pi)^{-3} \sum_{\delta \in \{-1, 1\}} \int_{\mathbb{R}} \operatorname{tr}(\pi(\delta, 1, \mu)(\omega)U(\delta, 1, \mu))d\mu. \]

References

The Bonnet Plancherel formula for monomial representations . . .

Amira Ghorbel

Département de Mathématiques
Faculté des Sciences de Sfax
Route de Soukra 3018 Sfax
Tunisie
e-mail: Amira.Ghorbel @fss.rnu.tn