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Abstract
Let G be a p-adic group. After a short survey on the representation

theory of G, I outline my proof of a conjecture of A. Silberger on the in-
finitesimal character of discrete series representations of G. The conjecture
says the following: a cuspidal representation τ of a Levi subgroup L of G
corresponds to the infinitesimal character of a discrete series representation
of G, if and only if τ is a pole of Harish-Chandra’s µ-function of order equal
to the parabolic rank of L. The proof uses a spectral decomposition based on
a Fourier inversion formula analog to the Plancherel formula. To illustrate
the method, the case of the unramified principal series of a semi-simple split
group of type B2 is worked out at the end.

1. Notations: Let F be a non-Archimedean local field. This is a topological
field equipped with a discrete valuation |.|F . It will be supposed to be normalized
such that the Haar measure on F satisfies the transformation formula dF (xy) =
|y|F dF x. The topology of F is then defined by the ultrametric distance dF (x, y) :=
|x − y|F and F is complete with respect to this metric. There exists a unique
generator of the image of |.|F which is > 1. It will be denoted by q.

Let G be a connected reductive group defined over F and G the group of its
F -rational points. So G is a locally compact and totally disconnected group.

The set of equivalence classes of irreducible representations of G will be denoted
E(G). As usual, a representation will often be identified with its equivalence
class. The subset of classes of square-integrable representations (i.e. whose matrix
coefficients are square integrable functions on G modulo its center) will be denoted
E2(G). To any representation π in E2(G) one can associate the formal degree
deg(π), which is defined up to the choice of a Haar measure on G. Sometimes it
is necessary to consider the bigger set A(G) of equivalence classes of admissible
representations of G, which contains the above. (These are no more irreducible but
the space of vectors invariant by an open compact subgroup is finite dimensional.)

A subgroup P of G will be called a parabolic subgroup, if it is the group
of F -rational points of a parabolic subgroup P of G defined over F . I will fix
a maximal split torus in G and let T be the group of its F -rational points. A
parabolic subgroup of G will be called semi-standard, if it contains T . There is
then a unique Levi factor L of P which is defined over F and such that the group
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L of its F -rational points contains T . The expression "P = LU is a semi-standard
parabolic subgroup of G" will then mean that P is a semi-standard parabolic sub-
group, U its unipotent radical and L the group of F -rational points of its unique
Levi factor which contains T . The functor iGP of parabolic induction sends A(L)
to A(G) and will be supposed to be normalized such that it takes unitary repre-
sentations to unitary representations. (So a representation parabolically induced
from an irreducible representation is admissible.)

Let Rat(G) be the group of rational characters of G defined over F and G1 the
intersection of the kernels of the characters of G of the form |χ|F , χ ∈ Rat(G).
An unramified character of G is a homomorphism from the group quotient G/G1

to C×. The group formed by these characters will be designed by Xur(G) and the
subgroup formed by the unitary characters by Xur

0 (G). The group Xur(G) is an
algebraic tori isomorphic to (C×)d with d equal to the rank of G, Xur

0 (G) being
isomorphic to (S1)d. The first group acts on the set E(G) and the second group
on the subset E2(G). An orbit with respect to this action will be denoted by O
in the first and O2 in the second case. So O is an algebraic variety. The space
O (resp. O2) is, through the choice of a Haar measure on Xur(G), equipped with
a unique measure, such that the action of Xur(G) on O (resp. of Xur

0 (G) on O2)
preserves locally the measures.

2. Plancherel formula: The Plancherel formula for p-adic groups (due to
Harish-Chandra (cf. [21])) expresses a smooth, compactly supported and complex
valued function f on G by its Fourier transforms. More precisely, for f in C∞

c (G)
and π ∈ E(G) one defines an endomorphism π(f) of the representation space Vπ

of π by
π(f) :=

∫

G
f(g)π(g)dg.

Let Θ2(G) be the set of pairs (P = LU,O2) with P = LU a semi-standard Levi
subgroup of G and O2 an orbit in E2(L). Two paires are called equivalent ∼, if
they are conjugated by an element of G.

Let ρ be the action of G on C∞
c (G) by right translations. Harish-Chandra

defined for every pair (P = LU,O2) ∈ Θ2(G) a constant γ(G/L) and a function µ
on O2, which extends to a rational function on the Xur(G)-orbit O which contains
O2. He showed that for f in C∞

c (G) one has (with a suitable normalization of the
measures)

f(g) =
∑

(P=LU,O2)∈Θ2/∼
γ(G/L) |W (L,O2)|−1

∫

O2

tr((iGP π)(ρ(g)f)) deg(π)µ(π)dπ.

(Here W (L,O2) denotes a subset of the Weyl group of G relative to T formed by
elements which stabilize O2 and L.)
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3. Representation theory of G: (cf. [4]) The functor iGP admits a left
adjoint functor rG

P which is called the Jacquet functor. A representation π ∈ E(G)
is then called cuspidal, when rG

P π = 0 for all proper parabolic subgroups P of G.
The subset of cuspidal representations will be denoted Ec(G). Note that to any
cuspidal representation π a formal degree deg(π) can be attached.

The classification of cuspidal representations is a deep arithmetical prob-
lem which is entirely solved only for GLN (including SLN) and the multiplica-
tive group of a central division algebra over F respectively by C. Bushnell and
P. Kutzko ([2] and subsequent work treating SLN) and E.-W. Zink [22]. A conjec-
tural parametrization of this set by N -dimensional irreducible representations of
the Weil group of F (which is some distinguished subgroup of the absolut Galois
group of F ) is the aim of the local Langlands conjectures. For GLN , they have
been proved recently by M. Harris and R. Taylor [5] and, by a more elementary
approach, by G. Henniart [9].

Given π ∈ E(G) there exist a semi-standard parabolic subgroup P = LU and
a cuspidal representation σ ∈ Ec(L) such that π is a subquotient of iGP σ. The G-
conjugation class of L and σ is uniquely determined by π. It is called the cuspidal
support of π.

Remark that any unitary cuspidal representation is square integrable and that
any orbit O of a cuspidal representation is formed by cuspidal representations and
contains a cuspidal representation that is unitary. On the other hand there exist
square integrable representations which are not cuspidal. These are called special
representations.

Example: Identify χ = |.|F with a character of the diagonal subgroup L of SL2

by the embedding x 7→ (x, x−1). Let B be the Borel subgroup formed by upper
triangular matrices. Then the induced representation iGBχ is of length 2 and has a
unique subrepresentation which is called the Steinberg representation. It is square
integrable, but not cuspidal. (Remark that the other subquotient of iGBχ is the
unit representation of G.)

Classification scheme: The Langlands classification (cf. [17]) gives a descrip-
tion of the set E(G) up to the knowledge of the tempered representations of its Levi
subgroups. Tempered representations can be constructed by parabolic induction
from square integrable representations. For GLN a representation parabolically
induced from a square integrable representation is irreducible, but for other groups
this may fail and it is not known yet how to describe the different components.
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The next step below is to construct all square integrable representations from the
cuspidal ones. This is known for GLN by the work of Bernstein and Zelevinsky
[22], for unramified principal series representations by Kazhdan and Lusztig [10]
and for split classical groups (under some assumption on the reducibility points)
by the results of C. Moeglin and Moeglin-Tadic ([12] and [13]). There are also
several results of A. Silberger in [18] and [19].

4. A conjecture of Silberger: A. Silberger conjectured also the following
result:

Theorem: (cf. [8] corollaire 8.7) Let P = LU be a parabolic subgroup of G
and τ an irreducible cuspidal representation of L. Then iGP τ has a subquotient in
E2(G) precisely when the following two conditions hold:

i) the restriction of τ to the center of G is a unitary representation;

ii) τ is a pole of µ of order rkss(G) − rkss(L). (Here µ denotes Harish-
Chandra’s µ-function as defined in 2.).

Let us make the second condition more precise. For this, I will first explain the
notion of an affine rootal hyperplane. Fix a maximal split torus TL in the center of
L and let Σ(P ) be the set of roots of TL in Lie(U). Define aL = Hom(Rat(L),R)
and let a∗L be the dual space. It contains Σ(P ). There is a natural map HL : L →
aL. One defines a surjection from the complexified vector space a∗L,C to Xur(L), by
sending λ to the character χλ with χλ(l) := q−〈HL(l),λ〉 (recall that q is the unique
generator > 1 of the image of |.|F ). The restriction of this map to a∗L is injective
and so <(χλ) := <(λ) is well defined. An affine rootal hyperplane in a∗L,C is then
by definition an affine hyperplane defined by a coroot α∨, α ∈ Σ(P ).

Let O be the orbit of τ . An affine rootal hyperplane in O is then by definition
the image of an affine rootal hyperplane in a∗L,C by the composed map a∗L,C →
Xur(L) → O, the second arrow being given by the action of Xur(L) on O.

It is known since Harish-Chandra that the poles and zeroes of µ lie on finitely
many affine rootal hyperplanes in O. Let S0 be the set of affine zero hyperplanes
of µ and S1 the set of affine polar hyperplanes. The affine zero hyperplanes are
of order 2 and the polar ones are of order 1. So the order of the pole of µ in τ is
|{S ∈ S1 |τ ∈ S}| − 2|{S ∈ S0 |τ ∈ S}|.
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Remark: By a conjecture of Langlands [11], which has been proved by
F. Shahidi [16] in the case of G quasi-split and τ generic, the function µ on O
can be expressed as product and quotient of L-functions attached to τ .

5. Strategy of proof: Let O be the orbit of τ in Ec(L). All its elements
can be realized as representations in a same vector space which will be denoted
E. For σ in an open set of O and P ′ = LU ′ a second parabolic subgroup with
Levi factor L, one has an operator JP |P ′(σ) : iGP ′E → iGP E which intertwines the
representations iGP ′τ and iGP τ . In an open cone of O it is defined by the converging
integral

(JP |P ′(σ)v)(g) :=
∫

U∩U ′\U
v(ug)du,

where v is considered as an element of the space iGP ′E equipped with the representa-
tion iGP ′σ. It is a rational function in σ and the composed operator JP |P (σ)JP |P (σ)
is scalar and equals the inverse of the µ-function. For w in the Weyl group W of
G with respect to T one defines an operator λ(w) which induces an isomorphism
between the representations iGP σ and iGwP wσ.

The following lemma was crucial for the proof of a matrix Paley-Wiener the-
orem in [7]:

Lemma: (cf. [7] 0.2) Let f be in C∞
c (G). Identify (iGP σ)(f) to an element of

iGP E ⊗ iGP E∨. There exists a polynomial map ξf : O→ iG
P
E ⊗ iGP E∨ with image in

a finite dimensional space such that

(iGP σ)(f) =
∑

w∈W (L,O)

(JP |wP (σ)λ(w)⊗ JP |wP (σ)λ(w))ξf (w
−1σ).

as rational funtions in σ. (Here W (L,O) has the same meaning than in 2..)

Remark that the poles of JP |P are on the affine rootal hyperplanes in S0 and
that the poles of µJP |P are on the affine rootal hyperplanes in S1.

Let C∞
c (G)O be the subspace of C∞

c (G) formed by the functions f such that
(iGP ′σ

′)(f) = 0 for all σ′ ∈ O′ with (P ′,O′) 6∼ (P,O).

Proposition: Let f be in C∞
c (G)O. Identify ξf (σ) with an element in Hom(iG

P
E,

iGP E). For g ∈ G one has

(*) f(g) =
∫

<(σ)=rÀP 0
γ(G/L) deg(σ) tr((iGP σ)(g−1)JP |P (σ)ξf (σ))µ(σ)d=(σ).

(The symbol
∫
<(σ)=rÀP 0 means that one fixes r in a∗L such that 〈r, α∨〉 À 0 for all

α ∈ Σ(P ) and that one integrates on the compact set χr O2. Here O2 is the subset
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formed by the unitary representations in O and the integral is taken with respect
to the fixed measure on O2.)

The strategy of proof of the theorem in 4. is then to compare the expression
(*) in the above proposition with the one given by the Plancherel formula in 2..
This is done after a contour shift to the unitary axis.

Example: Suppose G semi-simple and L maximal. Then Xur(L) ' C× and the
theory of complex functions in one variable applies: the integral (*) is a sum of
residues and an integral over the unitary orbit O2. The residues correspond by
the remark after the above lemma to the poles of µ.

In the Plancherel formula for f ∈ C∞
c (G)O, there appear only terms corre-

sponding to the equivalence class of pairs (P ′ = L′U ′,O2) with either P ′ = P
or with P ′ = G and O2 equal to the set formed by a single square integrable
representation of G. The cuspidal support of this representations is necessarily
contained in the G-orbit of O. The first term is an integral over O2 and the other
terms are discrete.

It is then rather easy to show that the two integrals and the discrete terms in
both formulas correspond to each other, proving the theorem in this simple case.
(Remark that the theorem 4. was already known in this case.)

Unfortunately, in the case of a Levi subgroup with corank bigger than one,
poles of the intertwining operators do appear and it is not evident at all, that and
how they cancel. The proof of the theorem 4. follows then the following steps:

i) Formulation of a convenient multi-dimensional residue theorem: this is
achieved by a generalization of the residue theory for root systems due to E.
P. van den Ban and H. Schlichtkrull [3] to our situation (see also the paper [6] of
G. Heckman and E. Opdam). Let S be the union of the sets S0 and S1. Define
A(S) as the set of affine subspaces of O which are connected components of finite
intersections of elements in S. The subset of spaces in A(S), where µ can have a
non trivial residue will be denoted Aµ(S). I also fix a set [A(S)] of representatives
of conjugation classes in A(S). To an affine hyperplane A in A(S) one attaches a
semi-standard Levi subgroup LA of G. The origine of A will be denoted r(A) and
εA will be an element in some positive Weyl chamber of a∗LA

.

With ∆O some set of positive roots associated to O, W∆O , WLA(L,O) and
W+

LA
(L,O) some sets of Weyl group elements and PS(LA) some set of generalized

parabolic subgroups with Levi component LA, the residue formula applied to the
integral (*) gives then
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∑

Ω⊆∆O

∑

A∈[A(S)],LA=LΩ

|W∆O,LA
|−1 |PS(LA)|−1γ(G/L)

∫

<(σ)=r(A)+εA

deg(σ)| Stab(A)|−1

∑

w′∈W LA(L,O)

∑

w∈W+
LA

(L,O)

ResPw′A(tr((iGP σ)(g−1)J−1
P |P (ww′σ)ξf (ww′σ)))dA=(σ).

Here ResPA is an operator from the space of rational functions on O, which are
regular outside the hyperplanes in S, to some space of rational functions on A. It
turns out to be uniquely determined by r and P . It is a sum of composed residue
operators relative to affine hyperplanes in S containing A.

ii) Identification of the continuous part: This is done with help of an induction
hypothesis. One sees then that one can replace εA by zero in the above formula.

iii) Elimination of the undesirable poles with help of test functions. These
already appeared in [7] at a crucial step, although they played a different role
there.

With this one gets the following result:

The induced representation iGP τ has a subquotient in E2(G) if and only if the
restriction of τ to the center of G is unitary, A ∈ Aµ(S), LA = G, and

(**)
∑

w∈W (L,O)

(ReswA µ)(wσ) 6= 0.

But a theorem of E. Opdam (cf. [15] theorem 3.29) shows, that the condition (**)
is always satisfied, finishing the proof of the theorem in 4.. Remark that Opdam
proved in [15] a spectral decomposition for affine Hecke algebras, which applies in
particular to Iwahori-Hecke algebras and through it for example to the unramified
principal series of a p-adic group.

The identities with the terms in the Plancherel formula contain also informa-
tions on the formal degree and on the position of the discrete series representations
in the induced representation. Opdam was for example able to deduce from his
identities some invariance properties of the formal degree on L-packets of discrete
series representations in his context.

The method employed here may be considered as a local analog of the spectral
decomposition and the theory of the residual spectrum due to Langlands [11] in
the field of automorphic forms.
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Appendix: The case of B2

Let now G be a semi-simple split group of type B2 defined over F . Fix a
minimal semi-standard parabolic subgroup P = TU of G. Then a∗0 := a∗T ' R2.
The set Σ(P ) of roots of T in Lie(U) can be written in the form {α, β, α+2β, α+β},
where β is the short root. Let Σ∨(P ) be the set of roots dual to the roots in Σ(P ).
One has Σ∨(P ) = {α∨, β∨, α∨ + β∨, 2α∨ + β∨}. The set {α∨, β∨} is a base of a0

and the dual bases of a∗0 will be denoted {ωα, ωβ}. Observe that 〈α∨, β〉 = −1
and 〈β∨, α〉 = −2.

Let τ be the trivial representation of T . The orbit O of τ with respect to
Xur(T ) is isomorphic to (C×)2. Define τλ := τ ⊗ χλ. The µ-function on O is given
by

µ(τxωα+yωβ
) = C

(1− qx)(1− q−x)(1− qy)(1− q−y)(1− qx+y)(1− q−x−y)

(1− q1+x)(1− q1−x)(1− q1+y)(1− q1−y)(1− q1+x+y)(1− q1−x−y)

× (1− q2x+y)(1− q−2x−y)

(1− q1+2x+y)(1− q1−2x−y)
,

where C is a constant > 0.

The affine hyperplanes of O which are polar for µ are the images of the affine
hyperplanes in a∗0 of the form 〈γ∨, λ〉 = c with c = −1 or c = 1, γ ∈ Σ(P ). The
zero affine hyperplanes are the images of the affine hyperplanes 〈γ∨, λ〉 = 0 in a∗0,
γ ∈ Σ(P ). So they correspond to the lines generated respectively by the vectors−−→
0ωα,

−−→
0ωβ,

−→
0α and

−→
0β.

Fix r = rαωα + rβωβ ∈ a∗0 with rα À 0 and rβ À 0. To calculate for f ∈
C∞

c (G)O the integral

(#)
∫

<(σ)=r
tr((iGP σ)(g−1)JP |P (σ)ξf (σ))µ(σ)d=(σ),

one first moves r to 0 following the circuit below. Each intersection of this circuit
with a polar hyperplane H gives a residue, which is a rational function in σ with
<(σ) ∈ H. For each intersection point rH , one has to move rH on H near to the
origine r(H) of this affine hyperplane (which is the point with minimal distance to
the origine of a∗0). Each intersection point with an affine polar or zero hyperplane
H ′ 6= H of this segment on H can give rise to another non trivial residue. It
turns out that there is only one case where a zero affine hyperplane gives a non
trivial residue: this happens for the intersection of the polar affine hyperplane
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〈β∨, λ〉 = 1 with the zero affine hyperplane 〈α∨, λ〉 = 0. The intersection point is
ωβ.

Remark that the point rH can be moved to the origine of the hyperplan H, if
the origine is a regular point. (One verifies that only the affine polar hyperplane
〈α∨ + β∨, λ〉 = 1 has an origine, which is not regular.)

To simplify the notations let g = 1. (For g 6= 1 one gets the analog result.)
Then one sees that (#) is with ε > 0 equal to

tr(JP |P (τβ
2
+ 3

2
ωα

)ξf (τβ
2
+ 3

2
ωα

))Resx= 3
2
Resy=1(µ(τxωα+y β

2
))(1)

+ tr(JP |P (τβ
2
+(1+ πi

log q
)ωα

)ξf (τβ
2
+(1+ πi

log q
)ωα

))Resx=1+ πi
log q

Resy=1(µ(τxωα+y β
2
))(2)

+Resx= 1
2
(tr(JP |P (τβ

2
+xωα

)ξf (τβ
2
+xωα

))Resy=1(µ(τy β
2
+xωα

))|x= 1
2

(3)

+
log q

2π

∫ 2π
log q

x=0
tr(JP |P (τβ

2
+ixωα

)ξf (τβ
2
+ixωα

))Resy=1(µ(τixωα+y β
2
))dx(4)

+
log q

2π

∫ 2π
log q

y=0
tr(JP |P (τα

2
+iyωβ

)ξf (τα
2
+iyωβ

))Resx=1(µ(τx α
2
+iyωβ

))dy(5)

+
log q

2π

∫ 2π
log q

z=0
tr(JP |P (τ(iz+ε)α

2
+ωβ

)ξf (τ(iz+ε)α
2
+ωβ

))Resx=1(µ(τ(iz+ε)α
2
+xωβ

))dz(6)ε

+
log q

2π

∫ 2π
log q

t=0
tr(JP |P (τitβ+ωα

2
)ξf (τitβ+ωα

2
))Resy=1(µ(τy ωα

2
+itβ))dt(7)

+
∫

<(σ)=0
tr(JP |P (σ)ξf (σ))µ(σ)dσ.(8)
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One observes that

(6)ε − (6)−ε = Resz=0(tr(JP |P (τz α
2
+ωβ

)ξf (τz α
2
+ωβ

)))Resx=1(µ(τz α
2
+xωβ

))|z=0

and verfies that

0 = (3) +
1

2
Resz=0(tr(JP |P (τz α

2
+ωβ

)ξf (τz α
2
+ωβ

)))Resx=1(µ(τz α
2
+xωβ

))|z=0.

So (3) cancels after replacing (6)ε by (6′)ε = 1
2
((6)ε + (6)−ε). According to our

general results (cf. step ii) in 5.), one verifies directly that the integrant in ((6)ε +
(6)−ε) is a regular function for ε = 0, i.e. (6′)ε = (6′)0 =: (6′).

With this one sees easily, that (8) corresponds to the term in the Plancherel
formula coming from the unitary orbit of the unit representation of L = T , that
(6′) + (5) corresponds to the term coming from the orbit of the Steinberg rep-
resentation of the Levi subgroup Lα and that (4) + (7) corresponds to the term
coming from the Steinberg representation of the Levi subgroup Lβ. The term
(1) corresponds to the one in the Plancherel formula coming from the square-
integrable representation of G which is the unique subrepresentation of iGP τωα+ωβ

.
The term (2) comes from the unique square-integrable representation of G, which
is a subrepresentation of iGP τωβ+( 1

2
+ πi

log q
)ωα

.

Remark that these results on the discrete series of G of type B2 were already
known to P. Sally and M. Tadic [20] (see also [1] for a complete Plancherel formula
in this setting). However, in general it is much more difficult to find explicitly
the subquotients of an induced representation which are square-integrable (see for
example the case of a group of type G2 studied in the appendix A. to [8] which
is the local analog to the case studied in the appendix III to [14]).

The material of this article together with all the proofs will appear in the Journal de l’Institut de Mathématiques de Jussieu.
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