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Abstract
In the present paper we start to build a bridge from the algebraic theory

of root graded Lie algebras to the global Lie theory of infinite-dimensional
Lie groups by showing how root graded Lie algebras can be defined and
analyzed in the context of locally convex Lie algebras. Our main results
concern the description of locally convex root graded Lie algebras in terms of
a locally convex coordinate algebra and its universal covering algebra, which
has to be defined appropriately in the topological context. Although the
structure of the isogeny classes is much more complicated in the topological
context, we give an explicit description of the universal covering Lie algebra
which implies in particular that in most cases (called regular) it depends
only on the root system and the coordinate algebra. Not every root graded
locally convex Lie algebra is integrable in the sense that it is the Lie algebra
of a Lie group. In a forthcoming paper we will discuss criteria for the
integrability of root graded Lie algebras.

Introduction
Let K be a field of characteristic zero and ∆ a finite reduced irreducible root
system. We write g∆ for the corresponding finite-dimensional split simple K-Lie
algebra and fix a splitting Cartan subalgebra h of g∆. In the algebraic context, a
Lie algebra g is said to be ∆-graded if it contains g∆ and g decomposes as follows
as a direct sum of simultaneous ad h-eigenspaces

g = g0 ⊕
⊕

α∈∆

gα, and g0 =
∑

α∈∆

[gα, g−α].

It is easy to see that the latter requirement is equivalent to g being generated by
the root spaces gα, α ∈ ∆, and that it implies in particular that g = [g, g], i.e.,
that g is a perfect Lie algebra. Recall that two perfect Lie algebras g1 and g2 are
called (centrally) isogenous if g1/z(g1) ∼= g2/z(g2). A perfect Lie algebra g has a
unique universal central extension g̃, called its universal covering algebra ([We95,
Th. 7.9.2]). Two isogenous perfect Lie algebras have isomorphic universal central
extensions, so that the isogeny class of g consists of all quotients of g̃ by central
subspaces.

The systematic study of root graded Lie algebras was initiated by S. Berman
and R. Moody in [BM92], where they studied Lie algebras graded by simply laced
root systems, i.e., types A, D and E. The classification of ∆-graded Lie algebras
proceeds in two steps. First one considers isogeny classes of ∆-graded Lie algebras
and then describes the elements of a fixed isogeny class as quotients of the corres-
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ponding universal covering Lie algebra. Berman and Moody show that for a
fixed simply laced root system of type ∆ the isogeny classes are in one-to-one
correspondence with certain classes of unital coordinate algebras which are
(1) commutative associate algebras for types Dr, r ≥ 4, E6, E7 and E8,
(2) associative algebras for type Ar, r ≥ 3, and
(3) alternative algebras for type A2.

The corresponding result for type A1 is that the coordinate algebra is a Jordan
algebra, which goes back to results of J. Tits ([Ti62]).

Corresponding results for non-simply laced root systems have been obtained
by G. Benkart and E. Zelmanov in [BZ96], where they also deal with the A1-
case. In these cases the isogeny classes are determined by a class of coordinate
algebras, which mostly is endowed with an involution, where the decomposition of
the algebra into eigenspaces of the involution corresponds to the division of roots
into short and long ones. Based on the observation that all root systems except
E8, F4, and G2 are 3-graded, E. Neher obtains in [Neh96] a uniform description
of the coordinate algebras of 3-graded Lie algebras by Jordan theoretic methods.
Neher’s approach is based on the observation that if ∆ is 3-graded, then each
∆-graded Lie algebra can also be considered as an A1-graded Lie algebra, which
leads to a unital Jordan algebra as coordinate algebra. Then one has to identify
the types of Jordan algebras corresponding to the different root systems.

The classification of root graded Lie algebras was completed by B. Allison,
G. Benkart and Y. Gao in [ABG00]. They give a uniform description of the
isogeny classes as quotients of a unique Lie algebra g̃(∆,A), depending only on
the root system ∆ and the coordinate algebra A, by central subspaces. Their
construction implies in particular the existence of a functor A 7→ g̃(∆,A) from
the category of coordinate algebras associated to ∆ to centrally closed ∆-graded
Lie algebras.

Apart from split simple Lie algebras, there are two prominent classes of root
graded Lie algebras, which have been studied in the literature from a different
point of view. The first class are the affine Kac–Moody algebras which can be
described as root graded Lie algebras ([Ka90, Ch. 6] and Examples I.4 and I.11
below). The other large class are the isotropic finite-dimensional simple Lie al-
gebras g over fields of characteristic zero. These Lie algebras have a restricted
root decomposition with respect to a maximal toral subalgebra h1. The corre-
sponding root system ∆ is irreducible, but it may also be non-reduced, i.e., of
type BCr ([Se76]). If it is reduced, then g is ∆-graded in the sense defined above.
In the general case, one needs the notion of BCr-graded Lie algebras which has
been developed by B. Allison, G. Benkart and Y. Gao in [ABG02]. Since three
different root lengths occur in BCr, we call the shortest ones the short roots, the
longest ones the extra-long roots, and the other roots long. The main difference to

1We call a subalgebra t of a Lie algebra g toral if ad t ⊆ der(g) consists of diagonalizable
endomorphisms.
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the reduced case is that there cannot be any grading subalgebra of type BCr, so
that one has to distinguish between different types, where the grading subalgebra
is either of type Br (the short and the long roots), type Cr (the long and the
extra-long roots), or of type Dr (the long roots).

The theory of root graded Lie algebras has a very geometric flavor because
the coordinatization theorems for the different types of root systems are very
similar to certain coordinatization results in synthetic geometry. That the Lie
algebra g under consideration is simple implies that the coordinate algebra is
simple, too. In geometric contexts, in addition, the coordinate algebras are mostly
division algebras or forms of division algebras. For a nice account on the geometry
of groups corresponding to the root systems A2, B2

∼= C2 and G2 we refer to
the memoir [Fa77] of J. R. Faulkner. Here type A2 corresponds to generalized
triangles, type B2 to generalized quadrangles and G2 to generalized hexagons.

An important motivation for the algebraic theory of root graded Lie algebras
was to find a class of Lie algebras containing affine Kac–Moody algebras ([Ka90]),
isotropic finite-dimensional simple Lie algebras ([Se76]), certain ones of Slodowy’s
intersection matrix algebras ([Sl86]), and extended affine Lie algebras (EALAs)
([AABGP97]), which can roughly be considered as those root graded Lie algebras
with a root decomposition. Since a general structure theory of infinite-dimensional
Lie algebras does not exist, it is important to single out large classes with a
uniform structure theory. The class of root graded Lie algebras satisfies all these
requirements in a very natural fashion. It is the main point of the present paper
to show that root graded Lie algebras can also be dealt with in a natural fashion
in a topological context, where it covers many important classes of Lie algebras,
arising in such diverse contexts as mathematical physics, operator theory and
geometry.

With the present paper we start a project which connects the rich theory of
root graded Lie algebras, which has been developed so far on a purely algebraic
level, to the theory of infinite-dimensional Lie groups. A Lie group G is a manifold
modeled on a locally convex space g which carries a group structure for which
the multiplication and the inversion map are smooth ([Mi83], [Gl01a], [Ne02b]).
Identifying elements of the tangent space g := T1(G) of G in the identity 1 with
left invariant vector fields, we obtain on g the structure of a locally convex Lie
algebra, i.e., a Lie algebra which is a locally convex space and whose Lie bracket
is continuous. Therefore the category of locally convex Lie algebras is the natural
setup for the “infinitesimal part” of infinite-dimensional Lie theory. In addition, it
is an important structural feature of locally convex spaces that they have natural
tensor products.

In Section I we explain how the concept of a root graded Lie algebra can be
adapted to the class of locally convex Lie algebras. The main difference to the
algebraic concept is that one replaces the condition that

∑
α∈∆[gα, g−α] coincides

with g0 by the requirement that it is a dense subspace of g0. This turns out
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to make the theory of locally convex root graded Lie algebras somewhat harder
than the algebraic theory, but it is natural, as a closer inspection of the topological
versions of the Lie algebras sln(A) for locally convex associative algebras A shows.
In Section I we also discuss some natural classes of “classical” locally convex root
graded Lie algebras such as symplectic and orthogonal Lie algebras and the Tits–
Kantor–Koecher–Lie algebras associated to Jordan algebras.

In Section II we undertake a detailed analysis of locally convex root graded
Lie algebras. Here the main point is that the action of the grading subalge-
bra g∆ on g is semisimple with at most three isotypical components, into which
g decomposes topologically. The corresponding simple modules are the trivial
module K ∈ {R,C}, the adjoint module g∆ and the simple module Vs whose high-
est weight is the maximal short root with respect to a positive system ∆+ ⊆ ∆.
In the algebraic context, the decomposition of g is a direct consequence of Weyl’s
Theorem, but here we need that the isotypical projections are continuous opera-
tors, a result which can be derived from the fact that they come from the center of
the enveloping algebra U(g∆). The underlying algebraic arguments are provided
in Appendix A. If A, B, resp., D, are the multiplicity spaces with respect to g∆,
Vs, resp., K, then g decomposes topologically as

g = (A⊗ g∆)⊕ (B ⊗ Vs)⊕D.

A central point in our structural analysis is that the direct sum A := A⊕B carries
a natural (not necessarily associative) unital locally convex algebra structure,
that D acts by derivations on A, and that we have a continuous alternating map
δD : A × A → D satisfying a certain cocycle condition. Here the type of the
root system ∆ dictates certain identities for the multiplication on A, which leads
to the coordinatization results mentioned above ([BM92], [BZ96] and [Neh96]).
The main new point here is that A inherits a natural locally convex structure,
that the multiplication is continuous and that all the related maps such as δD are
continuous. We call the triple (A, D, δD) the coordinate structure of g.

In the algebraic context, the coordinate algebra A and the root system ∆ clas-
sify the isogeny classes. The isogeny class of g contains a unique centrally closed
Lie algebra g̃ and a unique center-free Lie algebra g/z(g). In the locally convex
context, the situation is more subtle because we have to work with generalized
central extensions instead of ordinary central extensions: a morphism q : ĝ → g

of locally convex Lie algebras is called a generalized central extension if it has
dense range and there exists a continuous bilinear map b : g × g → ĝ for which
b ◦ (q× q) is the Lie bracket on ĝ. This condition implies that ker q is central, but
the requirement that ker q is central would be too weak for most of our purposes.
The subtlety of generalized central extensions is that q need not be surjective
and if it is surjective, it does not need to be a quotient map. Fortunately these
difficulties are compensated by the nice fact that each topologically perfect Lie
algebra g, meaning that the commutator algebra is dense, has a universal gener-
alized central extension qg : g̃ → g, called the universal covering Lie algebra of g.
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We call two topologically perfect locally convex Lie algebras g1 and g2 (centrally)
isogenous if g̃1

∼= g̃2. We thus obtain a locally convex version of isogeny classes
of locally convex Lie algebras. The basic results on generalized central extensions
are developed in Section III.

In Section IV we apply this concept to locally convex root graded Lie algebras
and give a description of the universal covering Lie algebras of root graded Lie
algebras. It turns out that in the locally convex context, this description is more
complicated than in the algebraic context ([ABG00]). Here a central point is
that for any generalized central extension q : ĝ → g the Lie algebra ĝ is ∆-graded
if and only if g is ∆-graded. An isogeny class contains a ∆-graded element if
and only if it consists entirely of ∆-graded Lie algebras. The universal covering
algebra g̃ of a root graded Lie algebra g has a coordinate structure (A, D̃, δD̃),
where qg | D̃ : D̃ → D is a generalized central extension, but since D need not
be topologically perfect, the Lie algebra D̃ cannot always be interpreted as the
universal covering algebra of D. Moreover, we construct for each root system
∆ and a corresponding coordinate algebra A a ∆-graded Lie algebra g̃(∆,A)
which is functorial in A, and which has the property that for each ∆-graded Lie
algebra g with coordinate algebra A we have a natural morphism q] : g̃(∆,A) → g

with dense range and central kernel, but this map is not always a generalized
central extension. The universal covering Lie algebra qg : g̃ → g also depends, in
addition, on the Lie algebra D, and we characterize those Lie algebras for which
g̃ ∼= g̃(∆,A). They are called regular and many naturally occuring ∆-graded Lie
algebras have this property.

We also show that there are non-isomorphic center-free root graded Lie alge-
bras with the same universal covering and describe an example where g̃(∆,A) is
not the universal covering Lie algebra of g (Example IV.24). All these problems
are due to the fact that the Lie algebras g with coordinate algebra A are obtained
from the centrally closed Lie algebra g̃(∆,A) by a morphism q] : g̃(∆,A) → g

with dense range and central kernel. As q] is not necessarily a quotient map or a
generalized central extension, the topology on g is not determined by the topology
on A, resp., g̃(∆,A) (Proposition III.19, Examples IV.23/24).

A Lie group G is said to be ∆-graded if its Lie algebra L(G) is ∆-graded. It is
a natural question which root graded locally convex Lie algebras g are integrable
in the sense that they are the Lie algebra of a Lie group G. Although this question
always has an affirmative answer if g is finite-dimensional, it turns out to be a dif-
ficult problem to decide integrability for infinite-dimensional Lie algebras. These
global questions will be pursued in another paper ([Ne03b], see also [Ne03a]). In
Section V we give an outline of the global side of the theory and explain how it
is related to K-theory and non-commutative geometry. One of the main points is
that, in view of the results of Section IV, it mainly boils down to showing that at
least one member g of an isogeny class is integrable and then analyze the situation
for its universal covering Lie algebra g̃.
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0.1 Preliminaries and notation

The theory of root graded Lie algebras is a subject with great aesthetic appeal
and rich connections to many other fields of mathematics. We therefore tried to
keep the exposition of the present paper as self-contained as possible to make it
accessible to readers from different mathematical subcultures. In particular we
include proofs for those results on the structure of the coordinate algebras which
can be obtained by short elementary arguments; for the more refined structure
theory related to the exceptional and the low rank algebras we refer to the lit-
erature. On the algebraic level we essentially build on the representation theory
of finite-dimensional semisimple split Lie algebras (cf. [Dix74] or [Hum72]); the
required Jordan theoretic results are elementary and provided in Appendices B
and C. On the functional analytic level we do not need much more than some
elementary facts on locally convex spaces such as the existence of the projective
tensor product.

All locally convex spaces in this paper are vector spaces over K ∈ {R,C}.
If X and Y are locally convex spaces, then we write Lin(X,Y ) for the space of
continuous linear maps X → Y .

A locally convex algebra A is a locally convex topological vector space together
with a continuous bilinear map A × A → A. In particular a locally convex Lie
algebra g is a Lie algebra which is a locally convex space for which the Lie bracket
is a continuous bilinear map g× g → g.

The assumption that the topological Lie algebras we consider are locally con-
vex spaces is motivated by the fact that such Lie algebras arise naturally as Lie
algebras of Lie groups and by the existence of tensor products, which will be used
in Section III to construct the universal covering Lie algebra. Tensor products of
locally convex spaces are defined as follows.

Let E and F be locally convex spaces. On the tensor product E ⊗ F there
exists a natural locally convex topology, called the projective topology. It is defined
by the seminorms

(p⊗ q)(x) = inf





n∑

j=1

p(yj)q(zj) : x =
∑

j

yj ⊗ zj



 ,

where p, resp., q are continuous seminorms on E, resp., F (cf. [Tr67, Prop. 43.4]).
We write E ⊗π F for the locally convex space obtained by endowing E ⊗ F with
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the locally convex topology defined by this family of seminorms. It is called the
projective tensor product of E and F . It has the universal property that for a
locally convex space G the continuous bilinear maps E×F → G are in one-to-one
correspondence with the continuous linear maps E ⊗π F → G. We write E⊗̂πF
for the completion of the projective tensor product of E and F . If E and F are
Fréchet spaces, their topology is defined by a countable family of seminorms, and
this property is inherited by E⊗̂πF . Hence this space is also Fréchet.

If E and F are Fréchet spaces, then every element θ of the completion E⊗̂πF
can be written as θ =

∑∞
n=1 λnxn ⊗ yn, where λ ∈ `1(N,K) and limn→∞ xn =

limn→∞ yn = 0 ([Tr67, Th. 45.1]). If, in addition, E and F are Banach spaces,
then the tensor product of the two norms is a norm defining the topology on E⊗F
and E⊗̂πF also is a Banach space. For ‖θ‖ < 1 we then obtain a representation
with ‖λ‖1 < 1 and ‖xn‖, ‖yn‖ < 1 for all n ∈ N ([Tr67, p.465]).

I Root graded Lie algebras
In this section we introduce locally convex root graded Lie algebras. In the alge-
braic setting it is natural to require that root graded Lie algebras are generated
by their root spaces, but in the topological context this condition would be un-
naturally strong. Therefore it is weakened to the requirement that the root spaces
generate the Lie algebra topologically. As we will see below, this weaker condition
causes several difficulties which are not present in the algebraic setting, but this
defect is compensated by the well behaved theory of generalized central extensions
(see Section IV).

I.1 Basic definitions

Definition I.1. Let ∆ be a finite irreducible reduced root system and g∆ the
corresponding finite-dimensional complex simple Lie algebra.

A locally convex Lie algebra g is said to be ∆-graded if the following conditions
are satisfied:

(R1) g is a direct sum g = g0 ⊕⊕
α∈∆ gα.

(R2) There exist elements xα ∈ gα, α 6= 0, and a subspace h ⊆ g0 with g∆
∼=

h +
∑

α∈∆Kxα.

(R3) For α ∈ ∆ ∪ {0} we have gα = {x ∈ g : (∀h ∈ h) [h, x] = α(h)x}, where we
identify ∆ with a subset of h∗.

(R4)
∑

α∈∆[gα, g−α] is dense in g0.

The subalgebra g∆ of g is called a grading subalgebra. We say that g is root
graded if g is ∆-graded for some ∆.
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A slight variation of the concept of a ∆-graded Lie algebra is obtained by
replacing (R2) by

(R2’) There exist a sub-root system ∆0 ⊆ ∆ and elements xα ∈ gα, α ∈ ∆0, and
a subspace h ⊆ g0 with g∆0

∼= h +
∑

α∈∆0
Kxα.

A Lie algebra satisfying (R1), (R2’), (R3) and (R4) is called (∆, ∆0)-graded.

Remark I.2. (a) Suppose that a locally convex Lie algebra g satisfies (R1)-(R3).
Then the subspace ∑

α∈∆

gα +
∑

α∈∆

[gα, g−α]

is invariant under each root space gα and also under g0, hence an ideal. Therefore
its closure satisfies (R1)-(R4), hence is a ∆-graded Lie algebra.
(b) Sometimes one starts with the subalgebra h ⊆ g and the corresponding weight
space decomposition, so that we have (R1) and (R3). Let Π be a basis of the root
system ∆ ⊆ h∗ and α̌, α ∈ ∆, the coroots. If there exist elements x±α ∈ g±α for
α ∈ Π such that [xα, x−α] = α̌, then we consider the subalgebra g∆ ⊆ g generated
by {x±α : α ∈ Π}. Then the weight decomposition of g with weight set ∆ ∪ {0}
easily implies that the generators x±α, α ∈ Π, satisfy the Serre relations, and
therefore that g∆ is a split simple Lie algebra with root system ∆ satisfying (R2).

Remark I.3. (a) In the algebraic context one replaces (R4) by the requirement
that g0 =

∑
α∈∆[gα, g−α]. This is equivalent to g being generated by the spaces

gα, α ∈ ∆.
(b) The concept of a ∆-graded Lie algebra can be defined over any field of charac-
teristic 0. Here it already occurs in the classification theory of simple Lie algebras
as follows. Let g be a simple Lie algebra which is isotropic in the sense that it
contains non-zero elements x for which ad x is diagonalizable. The latter condition
is equivalent to the existence of a subalgebra isomorphic to sl2(K). Let h ⊆ g be
a maximal toral subalgebra h ⊆ g. Then g has an h-weight decomposition, and
the corresponding set of weights ∆ ⊆ h∗ is a not necessarily reduced irreducible
root system (cf. [Se76, pp.10/11]). If this root system is reduced, then one can use
the method from Remark I.2(b) to show that g is ∆-graded in the sense defined
above. For restricted root systems of type BCr this argument produces grading
subalgebras of type Cr, hence (BCr, Cr)-graded Lie algebras ([Se76]).
(c) (R4) implies in particular that g is topologically perfect, i.e., that g′ := [g, g] =
g.
(d) Suppose that g is ∆-graded and

d ⊆ der∆(g) := {D ∈ der(g) : (∀α ∈ ∆)D.gα ⊆ gα}
is a Lie subalgebra with a locally convex structure for which the action d× g → g

is continuous. Then go d satisfies (R1)–(R3) with (go d)0 = g0 o d.
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I.2 Examples of root graded Lie algebras

Example I.4. Let ∆ be an irreducible reduced finite root system and g∆ be
the corresponding simple split K-Lie algebra. If A is a locally convex associative
commutative algebra with unit 1, then g := A⊗ g∆ is a locally convex ∆-graded
Lie algebra with respect to the bracket

[a⊗ x, a′ ⊗ x′] := aa′ ⊗ [x, x′].

The embedding g∆ ↪→ g is given by x 7→ 1⊗ x.

Example I.5. Now let A be an associative unital locally convex algebra. Then
the (n×n)-matrix algebra Mn(A) ∼= A⊗Mn(K) also is a locally convex associative
algebra. We write gln(A) for this algebra, endowed with the commutator bracket
and

g := [gln(A), gln(A)]

for the closure of the commutator algebra of gln(A). We claim that this is an
An−1-graded Lie algebra with grading subalgebra g∆ = 1⊗sln(K). It is clear that
g∆ is a subalgebra of g. Let

h :=
{

diag(x1, . . . , xn) : x1, . . . , xn ∈ K,
∑

j

xj = 0
}
⊆ g∆

denote the canonical Cartan subalgebra and define linear functionals εj on h by

εj(diag(x1, . . . , xn)) = xj.

Then the weight space decomposition of g satisfies

gεi−εj
= A⊗ Eij, i 6= j,

where Eij is the matrix with one non-zero entry 1 in position (i, j). From

[aEij, bEkl] = abδjkEil − baδliEkj

we derive that

[aEij, bEji] = abEii− baEjj ∈ [a, b]⊗Eii + A⊗ sln(K) =
1

n
[a, b]⊗ 1 + A⊗ sln(K).

In view of A⊗ sln(K) = [g∆, g] ⊆ [g, g], it is now easy to see that

g0 =
{

diag(a1, . . . , an) :
∑

j

aj ∈ [A,A]
}

= (A⊗ h)⊕ ([A,A]⊗ 1).

From the formulas above, we also see that (R4) is satisfied, so that g is an An−1-
graded locally convex Lie algebra.
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We have a natural non-commutative trace map

Tr: gln(A) → A/[A, A], x 7→
[ n∑

j=1

xjj

]
,

where [a] denotes the class of a ∈ A in A/[A,A]. Then the discussion above
implies that

sln(A) := ker Tr = g = (A⊗ sln(K))⊕ ([A,A]⊗ 1).

To prepare the discussion in Example I.9(b) and in Section II below, we describe
the Lie bracket in sln(A) in terms of the above direct sum decomposition. First
we note that in gln(A) we have

[a⊗ x, a′⊗ x′] = aa′⊗ xx′− a′a⊗ x′x =
aa′ + a′a

2
⊗ [x, x′] +

1

2
[a, a′]⊗ (xx′ + x′x).

For x, x′ ∈ sln(K) we have

x ∗ x′ := xx′ + x′x− 2
tr(xx′)

n
1 ∈ sln(K),

so that for a, a′ ∈ A and x, x′ ∈ sln(K) we have

(1.1) [a⊗ x, a′⊗ x′] =
(

aa′ + a′a
2

⊗ [x, x′] +
1

2
[a, a′]⊗ x ∗ x′

)
+ [a, a′]⊗ tr(xx′)

n
1,

according to the direct sum decomposition sln(A) = (A⊗ sln(K))⊕ ([A,A]⊗ 1),
and

[d⊗ 1, a⊗ x] = [d, a]⊗ x, a, d ∈ A, x ∈ sln(K).

Remark I.6. A Lie algebra g can be root graded in several different ways. Let
s ⊆ g be a subalgebra with s = span{h, e, f} ∼= sl2(K) and the relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

If adg h is diagonalizable with Spec(adg h) = {2, 0,−2}, then the eigenspaces of
adg h yield on g the structure of an A1-grading with g∆ := s. This shows in
particular that for any associative algebra A the Lie algebra sln(A), n ≥ 3, has
many different A1-gradings in addition to its natural An−1-grading.

Example I.7. Let A be a locally convex unital associative algebra with a con-
tinuous involution σ : a 7→ aσ, i.e., σ is a continuous involutive linear antiauto-
morphism:

(ab)σ = bσaσ and (aσ)σ = a, a, b ∈ A.



Locally convex root graded Lie algebras 35

If σ = idA, then A is commutative. We write

A±σ := {a ∈ A : aσ = ±a}
and observe that A = Aσ ⊕A−σ.

The involution σ extends in a natural way to an involution of the locally convex
algebra Mn(A) of n× n-matrices with entries in A by (xij)

σ := (xσ
ji). If σ = idA,

then xσ = x> is just the transposed matrix.
(a) Let 1 ∈ Mn(A) be the identity matrix and define

J :=

(
0 −1
1 0

)
∈ M2n(A).

Then J2 = −1, and

sp2n(A, σ) := {x ∈ gl2n(A) : JxσJ−1 = −x}

is a closed Lie subalgebra of gl2n(A). Writing x as a (2 × 2)-matrix
(
a b
c d

)
∈

M2(Mn(A)), this means that

sp2n(A, σ) =
{ (

a b
c −aσ

)
∈ gl2n(A) : bσ = b, cσ = c

}
.

For A = K we have σ = id, and we obtain sp2n(K, idK) = sp2n(K). With the
identity element 1 ∈ A we obtain an embedding K ∼= K1 ↪→ A, and hence an
embedding

sp2n(K) ↪→ sp2n(A, σ).

Let
h := {diag(x1, . . . , xn,−x1, . . . ,−xn) : x1, . . . , xn ∈ K}

denote the canonical Cartan subalgebra of sp2n(K). Then the h-weights with
respect to the adjoint action of h on sp2n(A, σ) coincide with the set

∆ = {±εi ± εj : i, j = 1, . . . , n}
of roots of sp2n(K), where εj(diag(x1, . . . , xn,−x1, . . . ,−xn)) = xj for j = 1, . . . , n.
Typical root spaces are

gεi−εj
= {aEij−aσEj+n,i+n : a ∈ A}, gεi+εj

= {aEi,j+n+aσEj,i+n : a ∈ A}, i 6= j,

g2εj
= AσEj,j+n, and g0 = {diag(a1, . . . , an,−aσ

1 , . . . ,−aσ
n) : a1, . . . , an ∈ A}.

As sp2n(A, σ) is a semisimple module of sp2n(K) (it is a submodule of gl2n(A) =
A⊗ gl2n(K)), the centralizer of the subalgebra sp2n(K) is

zsp2n(A,σ)(sp2n(K)) = A−σ1,
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and therefore
sp2n(A, σ) = [sp2n(K), sp2n(A, σ)]⊕A−σ1.

From Example I.5 we know that a necessary condition for an element a1 to be
contained in the closure of the commutator algebra of gl2n(A) is a ∈ [A,A]. On
the other hand, the embedding

sln(A) ↪→ sp2n(A, σ), x 7→
(
x 0
0 −xσ

)

implies that the elements
(
a1 0
0 −aσ1

)
, a ∈ [A,A],

are contained in the closure sp2n(A, σ)′ of the commutator algebra of sp2n(A, σ).
This proves that

sp2n(A, σ)′ = [sp2n(K), sp2n(A, σ)]⊕ ([A,A]
−σ ⊗ 1).

Using Example I.5 again, we now obtain (R4), and therefore that sp2n(A, σ)′ is
a Cn-graded Lie algebra with grading subalgebra sp2n(K). We refer to Example
II.9 and Definitions II.7 and II.8 for a description of the bracket in sp2n(A, σ) in
the spirit of (1.1) in Example I.5.

The preceding description of the commutator algebra shows that each element

x =

(
a b
c −aσ

)
∈ sp2n(A, σ)′ satisfies

tr(x) = tr(a− aσ) = tr(a)− tr(a)σ ∈ [A,A].

That the latter condition is sufficient for x being contained in sp2n(A, σ)′ follows
from

sp2n(A, σ) = [sp2n(K), sp2n(A, σ)]⊕A−σ ⊗ 1.

The Lie algebra sp2n(A, σ) also has a natural 3-grading

sp2n(A, σ) = sp2n(A, σ)+ ⊕ sp2n(A, σ)0 ⊕ sp2n(A, σ)−

with

sp2n(A, σ)± ∼= Hermn(A, σ) := {x ∈ Mn(A) : xσ = x} and sp2n(A, σ)0
∼= gln(A),

obtained from the (2× 2)-matrix structure.
(b) Now we consider the symmetric matrix

I :=

(
0 1
1 0

)
∈ M2n(A),
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which satisfies I2 = 1. We define the associated closed Lie subalgebra of gl2n(A)
by

on,n(A, σ) := {x ∈ gl2n(A) : IxσI−1 = −x}
=

{ (
a b
c −aσ

)
∈ gl2n(A) : bσ = −b, cσ = −c

}
.

For A = K we have σ = id, and we obtain on,n(K, idK) = on,n(K). With the
identity element 1 ∈ A we obtain an embedding K ∼= K1 ↪→ A, and hence an
embedding

on,n(K) ↪→ on,n(A, σ).

Again,
h := {diag(x1, . . . , xn,−x1, . . . ,−xn) : x1, . . . , xn ∈ K}

is the canonical Cartan subalgebra of on,n(K). The h-weights with respect to the
adjoint action of h on on,n(A, σ) coincide with the set

∆ = {±εi ± εj : i, j = 1, . . . , n}.

Typical root spaces are

gεi−εj
= {aEij−aσEj+n,i+n : a ∈ A}, gεi+εj

= {aEi,j+n−aσEj,i+n : a ∈ A}, i 6= j,

g2εj
= A−σEj,j+n, and g0 = {diag(a1, . . . , an,−aσ

1 , . . . ,−aσ
n) : a1, . . . , an ∈ A}.

The root spaces g2εj
are non-zero if and only if A−σ 6= {0}, which is equivalent to

σ 6= idA.
As in (a), we obtain

zon,n(A)(on,n(K)) = A−σ ⊗ 1, on,n(A) = [on,n(K), on,n(A)]⊕ (A−σ ⊗ 1),

and
on,n(A)′ = [on,n(K), on,n(A)]⊕ ([A,A]

−σ ⊗ 1).

If σA = idA, then ∆ is of type Dn, the root system of on,n(K), and on,n(A) :=
on,n(A, idA) is a Dn-graded Lie algebra. In this case A = Aσ is commutative, and

on,n(A) ∼= A⊗ on,n(K),

so that this case is also covered by Example I.4.
If σA 6= idA, then we obtain a (Cn, Dn)-graded Lie algebra with grading sub-

algebra on,n(K) of type Dn.
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Lemma I.8. Let K be a field with 2 ∈ K×. For x, y, z ∈ sl2(K) we have the
relations

(1.2) xy + yx = tr(xy)1,

and

(1.3) [x, [y, z]] = 2 tr(xy)z − 2 tr(xz)y.

Proof. For x ∈ sl2(K) let

p(t) = det(t1− x) = t2 − tr x · t + det x = t2 + det x

denote the characteristic polynomial of x. Then the Cayley–Hamilton Theorem
implies

0 = p(x) = x2 + (det x)1.

On the other hand −2 det x = tr x2 follows by consideration of eigenvalues
±λ of x in a quadratic extension of K. We therefore obtain 2x2 − tr(x2)1 =
2x2 +2(det x)1 = 0. By polarization (taking derivatives in direction y), we obtain
from 2x2 = tr(x2)1 the relation 2xy+2yx = tr(xy+yx)1 = 2 tr(xy)1, which leads
to

xy + yx = tr(xy)1.

We further get

tr(xy)z − tr(xz)y = (xy + yx)z − y(xz + zx) = xyz − yzx = [x, yz]

=
1

2
[x, [y, z] + (yz + zy)]

=
1

2
[x, [y, z] + tr(yz)1] =

1

2
[x, [y, z]].

Example I.9. (a) Let J be a locally convex Jordan algebra with identity 1
(cf. Appendix B). We endow the space J ⊗ J with the projective tensor product
topology and define

〈J, J〉 := (J ⊗ J)/I,

where I ⊆ J ⊗ J is the closed subspace generated by the elements of the form
a⊗ a and

ab⊗ c + bc⊗ a + ca⊗ b, a, b, c ∈ J.

We write 〈a, b〉 for the image of a⊗ b in 〈J, J〉. Then

〈a, b〉 = −〈b, a〉 and 〈ab, c〉+ 〈bc, a〉+ 〈ca, b〉 = 0, a, b, c ∈ J.
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It follows in particular that 〈1, c〉 + 2〈c,1〉 = 0, which implies 〈1, c〉 = 0 for each
c ∈ J .

Let L(a)b := ab denote the left multiplication in J . From the identity

[L(a), L(bc)] + [L(b), L(ca)] + [L(c), L(ab)] = 0

(Proposition B.2(1)) and the continuity of the maps (a, b, x) 7→ [L(a), L(b)].x we
derive that the map

δJ : J ⊗ J → der(J), (a, b) 7→ 2[L(a), L(b)]

(cf. Corollary B.3 for the fact that it maps into der(J)) factors through a map

δJ : 〈J, J〉 → der(J).

It therefore makes sense to define

(1.4) 〈a, b〉.x := 2[L(a), L(b)].x, a, b, x ∈ J.

We now define a bilinear continuous bracket on

T̃KK(J) := (J ⊗ sl2(K))⊕ 〈J, J〉
by

[a⊗ x, a′ ⊗ x′] := aa′ ⊗ [x, x′] + 〈a, a′〉 tr(xx′), [〈a, b〉, c⊗ x] := 〈a, b〉.c⊗ x

[〈a, b〉, 〈c, d〉] := 〈〈a, b〉.c, d〉+ 〈c, 〈a, b〉.d〉.
The label TKK refers to Tits, Kantor and Koecher who studied the relation be-
tween Jordan algebras and Lie algebras from various viewpoints (see Appendices B
and C). It is clear from the definitions that if we endow T̃KK(J) with the natural
locally convex topology turning it into a topological direct sum of J ⊗ sl2(K) and
〈J, J〉, then T̃KK(J) is a locally convex space with a continuous bracket. That the
bracket is alternating follows for the 〈J, J〉-term from the calculation in Example
III.10(3) below. To see that T̃KK(J) is a Lie algebra, it remains to verify the
Jacobi identity. The trilinear map

J(α, β, γ) := [[α, β], γ] + [[β, γ], α] + [[γ, α], β] =:
∑

cycl.

[[α, β], γ]

is alternating. Therefore we only have to show that it vanishes for entries in
J ⊗ sl2(K) and 〈J, J〉. The essential case is where all elements are in J ⊗ sl2(K).
In the last step of the following calculation we use Lemma I.8:

[[a⊗ x, b⊗ y], c⊗ z] = [ab⊗ [x, y] + tr(xy)〈a, b〉, c⊗ z]

= (ab)c⊗ [[x, y], z] + tr([x, y]z)〈ab, c〉+ 〈a, b〉.c⊗ tr(xy)z

= 2(ab)c⊗ (tr(zy)x− tr(zx)y) + 〈a, b〉.c⊗ tr(xy)z

+ tr([x, y]z)〈ab, c〉.
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Now the vanishing of J(a⊗ x, b⊗ y, c⊗ z) follows from
∑

cycl.

tr([x, y]z)〈ab, c〉 = tr([x, y]z)
∑

cycl.

〈ab, c〉 = 0

and
(〈a, b〉.c− 2(bc)a + 2(ca)b)⊗ tr(xy)z = 0.

Note that this also explains the factor 2 in (1.4).
That the expression J(α, β, γ) vanishes if one entry is in 〈J, J〉 follows easily

from the fact that δJ(a, b) = 2[L(a), L(b)] ∈ der(J). The case where two entries
are in 〈J, J〉 corresponds to the relation

[δ(a, b), δ(c, d)] = δ(〈a, b〉.c, d) + δ(c, 〈a, b〉.d)

in der(J), which in turn follows from the fact that for any D ∈ der(J) we have

[D, δ(c, d)] = 2[D, [L(c), L(d)]] = 2[[D, L(c)], L(d)] + 2[L(c), [D,L(d)]]

= 2[L(D.c), L(d)] + 2[L(c), L(D.d)] = δ(D.c, d) + δ(c,D.d).

The case where all entries of J(α, β, γ) are in 〈J, J〉 follows easily from the fact that
the representation of der(J) on J⊗J factors through a Lie algebra representation
on 〈J, J〉 given by D.〈a, b〉 = 〈D.a, b〉 + 〈a,D.b〉. In this sense the latter three
cases are direct consequences of the derivation property of the δ(a, b)’s.

This proves that the bracket defined above is a Lie bracket on T̃KK(J). The
assignment J 7→ T̃KK(J) is functorial. It is clear that each derivation of J induces
a natural derivation on T̃KK(J) and that each morphism of unital locally convex
Jordan algebras ϕ : J1 → J2 defines a morphism T̃KK(J1) → T̃KK(J2) of locally
convex Lie algebras.

It is interesting to observe that in general tensor products A⊗k of an algebra A
and a Lie algebra k carry only a natural Lie algebra structure if A is commutative
and associative (Example I.4). For more general algebras one has to add an extra
space such as 〈J, J〉 for a Jordan algebra J and k = sl2(K). The Jacobi identity
for T̃KK(J) very much relies on the identity for triple brackets in sl2(K) from
Lemma I.8 and the definition of the action of 〈a, b〉 as 2[L(a), L(b)].

We have a natural embedding of sl2(K) into g = T̃KK(J) as g∆ := 1⊗ sl2(K).
Let h, e, f ∈ sl2(K) be a basis with

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Then h = Kh is a Cartan subalgebra of sl2(K), and the corresponding eigenspace
decomposition of g is given by

g2 = J ⊗ e, g−2 = J ⊗ f and g0 = J ⊗ h⊕ 〈J, J〉.
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In view of [g∆, g] = J ⊗ sl2(K), the formula for the bracket implies that 〈J, J〉 ⊆
[g, g], and hence that g is an A1-graded locally convex Lie algebra.
(b) If A is a locally convex unital associative algebra, then A also carries the
structure of a locally convex unital Jordan algebra AJ with respect to the product

a ◦ b :=
1

2
(ab + ba)

(Lemma B.7). It is interesting to compare T̃KK(AJ) with the locally convex Lie
algebra sl2(A) discussed in Example I.5, where we have seen that with respect to
the decomposition

sl2(A) =
(
A⊗ sl2(K)

)
⊕

(
[A,A]⊗ 1

)
,

the Lie bracket is given by

[a⊗ x, b⊗ y] =
ab + ba

2
⊗ [x, y] +

1

2
[a, b]⊗ x ∗ y + [a, b]⊗ tr(xy)

2
1.

In view of (1.2), we have x ∗ y = 0, so that we obtain the simpler formula

[a⊗ x, b⊗ y] = (a ◦ b)⊗ [x, y] +
1

2
[a, b]⊗ tr(xy)1.

Let La(b) := ab and Ra(b) := ba. Then the left multiplication in the Jordan
algebra is L(a) = 1

2
(La + Ra), and therefore 〈a, b〉 acts on AJ as

2[L(a), L(b)] =
1

2
[La + Ra, Lb + Rb] =

1

2
([La, Lb] + [Ra, Rb])

=
1

2
(L[a,b] −R[a,b]) =

1

2
ad([a, b]).

From this it easily follows that

ϕ : T̃KK(AJ) → sl2(A), a⊗ x 7→ a⊗ x, 〈a, b〉 7→ 1

2
[a, b]⊗ 1

defines a morphism of locally convex Lie algebras.
From the discussion of the examples in Section IV below, we will see that this

homomorphism is in general neither injective nor surjective.
(c) From the continuity of the map

〈J, J〉 × J → J, (〈a, b〉, x) 7→ δJ(a, b).x = 〈a, b〉.x

it follows that ker δJ is a closed subspace of 〈J, J〉. Hence the space ider(J) :=
im(δJ) ∼= 〈J, J〉/ ker(δJ) carries a natural locally convex topology as the quotient
space 〈J, J〉/ ker(δJ).
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The closed subspace ker(δJ) ⊆ 〈J, J〉 also is a closed ideal of T̃KK(J). The
quotient Lie algebra

TKK(J) := T̃KK(J)/ ker(δJ) = (J ⊗ sl2(K))⊕ ider(J)

is called the topological Tits–Kantor–Koecher–Lie algebra associated to the locally
convex unital Jordan algebra J . The bracket of this Lie algebra is given by

[a⊗ x, a′ ⊗ x′] := aa′ ⊗ [x, x′] + 2 tr(x, x′)[L(a), L(a′)], [d, c⊗ c] := d.c⊗ x

[d, d′] := dd′ − d′d.

Mostly TKK(J) is written in a different form, as J × istr(J) × J , where
istr(J) := L(J) + ider(J) is the inner structure Lie algebra of J . The corre-
spondence between the two pictures is given by the map

Φ: TKK(J) → J × istr(J)× J, a⊗ e + b⊗ h + c⊗ f + d 7→ (a, 2L(b) + d, c).

To understand the bracket in the product picture, we observe that

(L(a) + [L(b), L(c)]).1 = a + b(c1)− c(b1) = a

implies
istr(J) = L(J)⊕ [L(J), L(J)] ∼= J ⊕ [L(J), L(J)].

For each derivation d of J we have [d, L(a)] = L(d.a), which implies that

σ(L(x) + [L(y), L(z)]) = −L(x) + [L(y), L(z)]

defines an involutive Lie algebra automorphism on istr(J). Now the bracket on
J × istr(J)× J can be described as

[(a, d, c), (a′, d′, c′)] = (d.a′ − d′.a, 2L(ac′) + 2[L(a), L(c′)]− 2L(a′c)

−2[L(a′), L(c)] + [d, d′], σ(d).c′ − σ(d′).c).

From this formula it is clear that the map τ(a, d, c) := (c, σ(d), a) defines an
involutive automorphism of TKK(J).
(d) Let A be a commutative algebra and

on,n(A) := on,n(A, id) ∼= A⊗ on,n(K)

(Example I.7(b)).
For the quadratic module (Mn, qn) := (A2n, (qA ⊕−qA)n) with

q(a1, . . . , a2n) = a2
1 − a2

2 + a2
3 − a2

4 + . . . + a2
2n−1 − a2

2n

the n-fold direct sum of the hyperbolic A-plane, we consider the associated Jordan
algebra J(Mn) (Lemma B.4). As Mn

∼= A⊗K2n as quadratic modules, it is easy
to see that
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TKK(J(Mn)) ∼= A⊗ TKK(J(K2n)) ∼= A⊗ on,n+1(K),

which is a Lie algebra graded by the root system Bn.
If M is an orthogonal direct sum M = M0 ⊕ Mn, we have an inclusion

TKK(J(Mn)) ↪→ TKK(J(M)) which leads to an embedding

on,n+1(K) ↪→ TKK(J(M)),

and further to a Bn-grading of TKK(J(M)).

I.3 Twisted loop algebras

There are also so-called twisted versions of the Lie algebras A ⊗ g∆ from Exam-
ple I.4. The construction is based on the following observation.

Let k be a split simple K-Lie algebra, hk ⊆ k a splitting Cartan subalgebra,
and Γ a group of automorphisms of k fixing a regular element of k in hk. Typical
groups of this type arise from the outer automorphisms of k, which can be realised
by automorphisms of k preserving the root decomposition and a positive system of
roots (see Example I.10 below). Let kΓ denote the subalgebra of all elements of k

fixed by Γ. Then kΓ contains a regular element x0 of hk, and therefore Γ preserves
zk(x0) = hk. It follows in particular that Γ permutes the hk-root spaces of k.

As hΓ := hk ∩ kΓ = hΓ
k contains a regular element of k, it also is a splitting

Cartan subalgebra of kΓ. If ∆k is the root system of k and ∆0 the root system of
kΓ, then clearly ∆0 ⊆ ∆k |hΓ , but it may happen that the latter set still is a root
system.

Example I.10. Let Γ be a finite group of automorphisms of k preserving the
Cartan subalgebra hk and such that the action on the dual space preserves a
positive system ∆+

k of roots. By averaging over the orbit of an element x ∈ hk

on which all positive roots are positive, we then obtain an element fixed by Γ on
which all positive roots are positive, so that this element is regular in k.

Typical examples for this situation come from cyclic groups of diagram au-
tomorphisms which are discussed below. A diagram automorphism is an auto-
morphism ϕ of g∆ for which there exists a set of simple roots Π = {α1, . . . , αr},
elements x±αi

∈ g∆,±αi
with [xαi

, x−αi
] = α̌i, and a map ϕ : Π → Π such that

ϕ(x±αi
) = x±ϕ(αi).

(a) For type A2r−1 we have

∆k = {±(εi − εj) : i > j ∈ {1, . . . , 2r}}
on hk

∼= K2r. The non-trivial diagram automorphism σ is an involution satisfying

σ(x1, . . . , x2r) = (−x2r, . . . ,−x1) and σ(εi) = −ε2r+1−i.
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We identify
hΓ = {(x1, . . . , xr,−xr, . . . ,−x1) : xi ∈ K}

with Kr by forgetting the last r entries. If R : h∗k → (hΓ)∗ is the restriction map,
then

αj := R(εj − εj+1), j = 1, . . . , r,

is a basis for the root system

R(∆k) = {±εi ± εj,±2εj : 1 ≤ j < i ≤ r, 1 ≤ j ≤ r}

of type Cr.
(b) For type Dr+1, r ≥ 4, we have

∆k = {±(εi ± εj) : i 6= j ∈ {1, . . . , r + 1}}

on hk
∼= Kr+1. A non-trivial diagram automorphism σ is the involution

σ(x1, . . . , xr+1) = (x1, . . . , xr,−xr+1).

We identify hΓ = {(x1, . . . , xr, 0} with Kr by forgetting the last entry. Then

R(∆k) = {±(εi ± εj) : i 6= j ∈ {1, . . . , r}} ∪ {εj : j = 1, . . . , r}

is a root system of type Br.
(c) For the triality automorphism of D4 of order 3, we obtain a root system ∆0 of
type G2.
(d) For the diagram involution of E6 we obtain a root system ∆0 of type F4.

It is not hard to verify that for all cases (a)–(d) above R(∆k) is the root system
of kΓ.

Now let k and Γ be such that R(∆k) is the root system of kΓ and assume,
in addition, that kΓ is simple with root system ∆. We write g∆ := kΓ, h := hΓ

and assume that ∆ coincides with R(∆k), which is the case for all cyclic groups
of diagram automorphisms of type (a)–(d) above. Note that this excludes in
particular the diagram automorphism of A2r for which R(∆k) is not reduced.

Further let A be a locally convex commutative unital associative algebra on
which Γ acts by continuous automorphisms. Then Γ also acts on the Lie algebra
A⊗ k via γ.(a⊗ x) := γ.a⊗ γ.x. We consider the Lie subalgebra

g := (A⊗ k)Γ

of Γ-fixed points in A⊗ k. We clearly have g ⊇ AΓ ⊗ g∆ ⊇ 1⊗ g∆. Moreover, the
action of h = hΓ

k on A ⊗ k commutes with the action of Γ, and our assumption
implies that the h-weights of h on A ⊗ k coincide with the root system ∆. This
implies that g satisfies (R1)–(R3) with respect to the subalgebra g∆, and therefore
that the closure of the subalgebra generated by the root spaces is ∆-graded.
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Example I.11. This construction covers in particular all twisted loop algebras.
In this case A = C∞(T,C), T = {z ∈ C : |z| = 1}, and if Γ = 〈σ〉 is generated by
a diagram automorphism σ of order m, then we define the action of Γ on A by
σ(f)(z) = f(zζ), where ζ is a primitive m-th root of unity.

For ∆k of type A2r−1, Dr+1, E6 and D4, we thus obtain the twisted loop algebras
of type A

(2)
2r−1, D

(2)
r+1, E

(2)
6 and D

(3)
4 , and the corresponding root systems ∆ are of

type Br, Cr, F4 and G2 ([Ka90]).

I.4 (∆, ∆0)-graded Lie algebras

Let ∆ be a reduced irreducible root system and ∆l ⊆ ∆ be the subset of long
roots. Suppose that α, β ∈ ∆l with γ := α + β ∈ ∆. Then γ ∈ ∆l. Since α and
β generate a subsystem of ∆ whose rank is at most two, this can be verified by
direct inspection of the cases A2, B2

∼= C2 and G2. Alternatively, we can observe
that if (·, ·) denote the euclidean scalar product on spanR∆ ⊆ h∗, then

β(α̌) = 2
(α, β)

(α, α)
= 2

(α, β)√
(α, α)

√
(β, β)

equals 2·cos δ, where δ is the angle between α and β. On the other hand β(α̌) ∈ Z,
so that the only possible values are {0,±1,±2}, where ±2 only arises for β = ±α
which is excluded if α + β ∈ ∆. Therefore

(α, α) ≥ (γ, γ) = (α, α) + (β, β) + 2(α, β) = 2(α, α) + 2(α, β) = 2(α, α)± (α, α)

implies (α, α) = (γ, γ), hence that γ is long.
We conclude that ∆l satisfies

(∆l + ∆l) ∩∆ ⊆ ∆l,

and hence that we have an inclusion

g∆l
↪→ g∆.

It follows in particular that each ∆-graded Lie algebra g can also be viewed as
a (∆, ∆l)-graded Lie algebra and that each ∆-graded Lie algebra contains the
∆l-graded Lie algebra

g0 +
∑

α∈∆l

gα.

The following table describes the systems ∆l for the non-simply laced root
systems.

∆ Br Cr F4 G2

∆l Dr (A1)
r D4 A2
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In many cases the subalgebra g∆l
of g∆ also has a description as the fixed

point algebra of an automorphism γ fixing h pointwise. Such an automorphism is
given by a morphism

χ : Z[∆] → K×

of abelian groups via
γ.xα = χ(α)xα, xα ∈ (g∆)α.

For

∆ = Br = {±(εi ± εj) : i 6= j ∈ {1, . . . , r}} ∪ {εj : j = 1, . . . , r}

we define
χ̃ : Z[∆] → Z,

∑

i

niεi 7→
∑

i

ni.

Then
χ̃−1(0) ∼= Ar−1, ∆s = χ̃−1(2Z+ 1) and ∆l = χ̃−1(2Z).

Therefore χ := (−1)χ̃ yields an involution γχ of g∆ whose fixed point set is the
subalgebra g∆l

.
We likewise obtain for ∆ = G2 a homomorphism χ̃ : Z[∆] → Z with

∆l = χ̃−1(3Z).

If 1 6= ζ ∈ K× satisfies ζ3 = 1, we then obtain via χ := ζ χ̃ an automorphism γχ of
order 3 whose fixed point set is g∆l

∼= sl3(K).

Problem I. Determine a systematic theory of (∆, ∆0)-graded Lie algebras for
suitable classes of pairs (∆, ∆0).

II The coordinate algebra of a root graded Lie al-
gebra
After having seen various examples of root graded locally convex Lie algebras in
Section I, we now take a more systematic look at the structure of root graded
Lie algebras. The main point of the present section is to associate to a ∆-graded
Lie algebra g a locally convex algebra A, its coordinate algebra, together with
a locally convex Lie algebra D (the centralizer of g∆ in g), acting continuously
by derivations on A, and a continuous bilinear map δD : A × A → D. The
triple (A, D, δD) is called the coordinate structure of g. The bracket of g is
completely determined by the coordinate structure and the root system ∆. The
type of the coordinate algebra A (associative, alternative, Jordan etc.) and the
map δA : A × A → der(A) determined by δD, is determined by the type of the
root system ∆. These results will be refined in Section IV, where we discuss
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isogeny classes of locally convex root graded Lie algebras and describe the universal
covering Lie algebra of g in terms of the coordinate structure (A, D, δD).

The algebraic results of this section are known; new is only that they still
remain true in the context of locally convex Lie algebras, which requires additional
arguments in several places and a more coordinate free approach, because in the
topological context we can never argue with bases of vector spaces. We also tried
to put an emphasis on those arguments which can be given for general root graded
Lie algebras without any case by case analysis, as f.i. in Theorem II.13. We do
not go into the details of the exceptional and the low-dimensional cases. For the
arguments leading to the coordinate algebra, we essentially follow the expositions
in [ABG00], [BZ96] (see also [Se76] which already contains many of the key ideas
and arguments).

Let g be a locally convex root graded Lie algebra over K ∈ {R,C} and g∆ a
grading subalgebra. We consider the adjoint representation of g∆ on g. From (R3)
we immediately derive that g is a g∆-weight module in the sense that the action
of h is diagonalized by the ∆-grading. Moreover, the set of weights is ∆∪{0} and
therefore finite, so that Proposition A.2 leads to:

Theorem II.1. The Lie algebra g is a semisimple g∆-weight module with
respect to h. All simple submodules are finite-dimensional highest weight modules.
There are only finitely many isotypic components g1, . . . , gn, and for each isotypic
component the projection pi : g → gi can be realized by an element of the center of
U(g∆). In particular, each pi is continuous.

Now we take a closer look at the isotypic components of the Lie algebra g. Let
∆l ⊆ ∆ denote the subset of long roots and ∆s ⊆ ∆ the subset of short roots,
where we put ∆l := ∆ if all roots have the same length. Then the Weyl groupW of
∆ acts transitively on the sets of short and long roots, so that it has at most three
orbits in ∆ ∪ {0}. Hence only three types of simple g∆-modules may contribute
to g. First we have the adjoint module g∆, and each root vector in gα for a long
root α generates a highest weight module isomorphic to g∆. Therefore the weight
set of each other type of non-trivial simple g∆-module occurring in g must be
smaller than ∆∪ {0}, which already implies that it coincides with ∆s ∪ {0}. The
corresponding simple g∆-module is the small adjoint module Vs

∼= L(λs, g∆), i.e.,
the simple module whose highest weight is the highest short root λs with respect
to a positive system ∆+. In view of Theorem II.1, we therefore have a g∆-module
decomposition

(2.1) g ∼= (A⊗ g∆)⊕ (B ⊗ Vs)⊕D,

where

A := Homg∆
(g∆, g), B := Homg∆

(Vs, g), and D := zg(g∆) ∼= Homg∆
(K, g)
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are multiplicity spaces. We have

gα
∼=

{
A for α ∈ ∆l

A⊕B for α ∈ ∆s.

Our next goal is to construct an algebra structure on the topological direct sum
A := A⊕ B. This coordinate algebra will turn out to be an important structural
feature of g.

For each finite-dimensional simple g∆-module M the space Homg∆
(M, g) is a

closed subspace of Hom(M, g) ∼= M∗⊗g ∼= gdim M , hence inherits a natural locally
convex topology from the one on g, and the evaluation map

Homg∆
(M, g)⊗M → g, ϕ⊗m 7→ ϕ(m)

is an embedding of locally convex spaces onto the M -isotypic component of g.
In this sense we think of A ⊗ g∆ and B ⊗ Vs as topological subspaces of g. We
conclude that the addition map

(A⊗ g∆)× (B ⊗ Vs)×D → g, (a⊗ x, b⊗ y, d) 7→ a⊗ x + b⊗ y + d

is a continuous bijection of locally convex spaces. That its inverse is also con-
tinuous follows from Theorem II.1 which ensures that the isotypic projections of
g are continuous linear maps. Therefore the decomposition (2.1) is a direct sum
decomposition of locally convex spaces. If g is a Fréchet space, we do not have to
use Theorem II.1 because we can argue with the Open Mapping Theorem.

It is clear that the subspace D = zg(g∆) is a closed Lie subalgebra. To obtain
an algebra structure on A⊕B. The following lemma is crucial for our analysis.

Lemma II.2. Let Mj, j = 1, 2, 3, be finite-dimensional simple g∆-modules and
Vj, j = 1, 2, 3, locally convex spaces considered as trivial g∆-modules. We consider
the locally convex spaces Vj ⊗ Mj as g∆-modules. Let β1, . . . , βk be a basis of
Homg∆

(M1 ⊗M2,M3) and

α : (V1 ⊗M1)× (V2 ⊗M2) → V3 ⊗M3

a continuous invariant bilinear map. Then there exist continuous bilinear maps

γ1, . . . , γk : V1 × V2 → V3

with

α(v1 ⊗m1, v2 ⊗m2) =
k∑

i=1

γi(v1, v2)⊗ βi(m1,m2).

Proof. Fix v1 ∈ V1 and v2 ∈ V2. Then the map

αv1,v2 : (m1,m2) 7→ α(v1 ⊗m1, v2 ⊗m2)
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is an invariant bilinear map M1 × M2 → V3 ⊗ M3. As the image of αv1,v2 is
finite-dimensional, there exist w1, . . . , wm ∈ V3 such that

αv1,v2 =
m∑

j=1

k∑

i=1

wj ⊗ βi =
k∑

i=1

m∑

j=1

wj ⊗ βi.

This shows that there are bilinear maps γ1, . . . , γk : V1 × V2 → V3 with α =
∑k

i=1

γi ⊗ βi. For each i there exists an element ai :=
∑

` m`
1 ⊗ m`

2 ∈ M1 ⊗ M2 with
βi(ai) 6= 0 and βj(ai) = 0 for i 6= j. Then

∑

`

α(v1 ⊗m`
1, v2 ⊗m`

2) = γi(v1, v2)⊗ βi(ai)

shows that each map γi is continuous.

Remark II.3. If M1 := g∆, M2 := Vs, M3 = K and Vi := Homg∆
(Mi, g), then

the Lie bracket on g induces a family of g∆-equivariant continuous bilinear maps

Vi ⊗Mi × Vj ⊗Mj → Mk ⊗ Vk.

To apply Lemma II.2, we therefore have to analyze the spaces Homg∆
(Mi ⊗Mj,

Mk).
The case 3 ∈ {i, j} is trivial because D = zg(g∆) commutes with the action of

g∆, so that the bracket map induces continuous bilinear maps

D × A → A, (d, a) 7→ d.a and D ×B → B, (d, b) 7→ d.b

with
[d, a⊗ x] = d.a⊗ x and [d, b⊗ y] = d.b⊗ y.

Interpreting A as the space Homg∆
(g∆, g), the action of D on this space corre-

sponds to
d.ϕ := (ad d) ◦ ϕ,

and likewise for B = Homg∆
(Vs, g).

We may therefore assume that i, j ∈ {1, 2}. For k = 3, i.e., Mk = K, the space

Homg∆
(Mi ⊗Mj,K) ∼= Homg∆

(Mi,M
∗
j )

is trivial for i 6= j because M1 and M2 have different dimensions. For M1 = g∆

we have
Homg∆

(g∆ ⊗ g∆,K) = Kκ,

where κ is the Cartan-Killing form. As Vs and V ∗
s have the same weight set

∆s = −∆s, they are isomorphic, and [Bou90, Ch. VIII, §7, no. 5, Prop. 12]
implies that, for i = j = 2,

Homg∆
(Vs ⊗ Vs,K) = KκVs

for a non-zero invariant symmetric bilinear form κVs on Vs. The symmetry of the
form follows from the fact that the highest weight λs of Vs is an integral linear
combination of the base roots of ∆.
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The complete information on the relevant Hom-spaces is given in Theorem II.6
below. We have to prepare the statement of this theorem with the discussion of
some special cases.

Definition II.4. (a) On the space Mn(K) of n×n-matrices the matrix product
is equivariant with respect to the adjoint action of the Lie algebra gln(K). Hence
the product (x, y) 7→ xy + yx does also have this property, and therefore the map

sln(K)× sln(K) → sln(K), (x, y) 7→ x ∗ y := xy + yx− 2 tr(xy)

n
1

is equivariant with respect to the adjoint action of sln(K). In the following x ∗ y
will always denote this product.
(b) Let Ω be the non-degenerate alternating form on K2r given by Ω(x, y) =

(x, y)J(x, y)>, where J =

(
0 −1
1 0

)
(cf. Example I.7). For X] := JX>J−1 we

then have

sp2r(K) ∼= {X ∈ gl2r(K) : X] = −X} and Vs
∼= {X ∈ gl2r(K) : X] = X, tr X = 0}.

This follows easily by decomposing gl2r(K) into weight spaces with respect to
a Cartan subalgebra of sp2r(K). Here we use (XY )] = Y ]X] to see that Vs is
invariant under brackets with sp2r(K) and satisfies [Vs, Vs] ⊆ sp2r(K). Moreover,
the ∗-product restricts to sp2r(K)-equivariant symmetric bilinear maps

βV
g : sp2r(K)× sp2r(K) → Vs and βV

V : Vs × Vs → Vs.

Remark II.5. For ∆ = Ar, r ≥ 2, the product ∗ is an equivariant symmetric
product on g∆ = slr+1(K). Of course, the same formula also yields for r = 1 a
symmetric product, but in this case we have x ∗ y = 0 (Lemma I.8).

Theorem II.6. For the Hom-spaces of the different kinds of Lie algebras we
have:

(1) For ∆ not of type Ar, r ≥ 2, the space Homg∆
(g∆⊗g∆, g∆) is one-dimensional

and generated by the Lie bracket. For ∆ of type Ar, r ≥ 2, this space
is two-dimensional and a second generator is the symmetric product ∗ on
g∆

∼= slr+1(K).

(2) If ∆ is not of type Cr, r ≥ 2, then Homg∆
(g∆ ⊗ g∆, Vs) ∼= Homg∆

(g∆

⊗ Vs, g∆) = {0}. For ∆ of type Cr, r ≥ 2, and g∆
∼= sp2r(K) the space

Homg∆
(g∆ ⊗ g∆, Vs) is generated by the ∗-product.

(3) Homg∆
(Vs⊗Vs, g∆) ∼= Homg∆

(g∆⊗Vs, Vs) is one-dimensional and generated
by the module structure on Vs. For ∆ of type Cr, a basis of the first space
is given by the bracket map on gl2r(K), restricted to Vs.
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(4) Homg∆
(Vs ⊗ Vs, Vs) is one-dimensional for Cn, n ≥ 3, F4 and G2, and

vanishes for Bn, n ≥ 2. For ∆ of type Cn, a basis of this space is given by
the ∗-product.

Proof. All these statements follow from Definition II.4 and the explicit decom-
position of the tensor products, which are worked out in detail in [Se76, §A.2] (see
also the Appendix of [BZ96] for a list of the decompositions).

Before we turn to a more explicit description of the Lie bracket on g, we have
to fix a notation for the basis elements of the Hom-spaces mentioned above.

Definition II.7. First we recall the symmetric invariant bilinear form κVs on
Vs from Remark II.3. Let βV

g be a basis element of Homg∆
(g∆ ⊗ g∆, Vs) if this

space is non-zero, and βg
g,V the corresponding basis element of Homg∆

(g∆⊗Vs, g∆)
which is related to βV

g by the relation

κVs(β
V
g (x, y), v) = κ(βg

g,V (x, v), y), x, y ∈ g∆, v ∈ Vs.

Let βg
V : Vs ⊗ Vs → g∆ be the equivariant map defined by

κVs(x.v, v′) = κ(βg
V (v, v′), x), v, v′ ∈ Vs, x ∈ g∆.

Then
κVs(x.v, v′) = −κVs(v, x.v′) = −κVs(x.v′, v)

(cf. Remark II.3 for the symmetry of κVs) implies that βg
V is skew-symmetric . We

further write βV
V for a basis element of Homg∆

(Vs ⊗ Vs, Vs).
For ∆ of type Cr, r ≥ 2, we take

κVs(v, w) = θ tr(vw),

where the factor θ = 2(r + 1) is determined by κ(x, y) = θ tr(xy) ([Bou90,
Ch. VIII]). We further put

βV
g (x, y) := x ∗ y, βg

g,V (x, v) = x ∗ v, βg
V (v, w) = [v, w], βV

V (v, w) = v ∗ w,

and observe that from the embedding sp2r(K) ↪→ sl2r(K) we get for v ∈ Vs:

κVs(β
V
g (x, y), v) = θ tr((x ∗ y) · v) = θ tr((xy + yx) · v)

= θ tr((vx + xv) · y) = θ tr((x ∗ v) · y) = κ(βg
g,V (x, v), y).

This calculation implies that our special definitions for type Cr are compatible
with the general requirements on the relation between βV

g and βg
g,V .
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In view of Lemma II.2 and Theorem II.6, there exist continuous bilinear maps

γA
± : A× A → A, γB

A : A× A → B, γA
A,B : A×B → A, γB

A,B : A×B → B,

γA
B : B ×B → A, γB

B : B ×B → B, δD
A : A× A → D, δD

B : B ×B → D,

such that the Lie bracket on

g = (A⊗ g∆)⊕ (B ⊗ Vs)⊕D

satisfies
(B1) [a⊗ x, a′ ⊗ x′] = γA

+(a, a′)⊗ [x, x′] + γA
−(a, a′)⊗ x ∗ x′ + γB

A (a, a′)⊗ βV
g (x, x′)

+κ(x, x′)δD
A (a, a′), for a, a′ ∈ A, x, x′ ∈ g∆,

(B2) [a⊗ x, b⊗ v] = γA
A,B(a, b)⊗ βg

g,V (x, v) + γB
A,B(a, b)⊗ x.v,

for a ∈ A, b ∈ B, x ∈ g∆, v ∈ Vs, and for b, b′ ∈ B and v, v′ ∈ Vs:

(B3) [b⊗v, b′⊗v′] = γA
B(b, b′)⊗βg

V (v, v′)+γB
B (b, b′)⊗βV

V (v, v′)+κVs(v, v′)δD
B (b, b′).

From the skew-symmetry of the Lie bracket and the symmetry of ∗, it follows
that γA

+ is symmetric and γA
− is alternating. Further the symmetry of κ and κVs

implies that δD
A and δD

B are alternating. The skew-symmetry of βg
V implies that γA

B

is symmetric and likewise the symmetry of βV
g entails that γB

A is skew-symmetric.
If ∆ is not of type Ar, r ≥ 2, then we put γA

− = 0. In all cases where the β-map
vanishes, we define the corresponding γ-map to be zero.

Definition II.8. (The coordinate algebra A of g) (a) On A we define an algebra
structure by

ab := γA
+(a, b) + γA

−(a, b),

and observe that

γA
+(a, b) =

ab + ba

2
and γA

−(a, b) =
ab− ba

2
.

We define a (not necessarily associative) algebra structure on A := A⊕ B by
defining the product on A × A by γA

+ + γA
− + γB

A , on A × B by γA
A,B + γB

A,B, on
B ×B by γA

B + γB
B , and on B × A by

ba := γB
A,B(a, b)− γA

A,B(a, b) = ab− 2γA
A,B(a, b).

Then

γA
A,B(a, b) =

1

2
[a, b] =

1

2
(ab− ba) and γB

A,B(a, b) =
1

2
(ab + ba).

(b) The space D = zg(g∆) is a Lie subalgebra of g which acts by derivations on
A preserving both subspaces A and B. This easily follows from the fact that the
actions of D and g∆ on g commute.

We combine the two maps δD
A and δD

B to an alternating bilinear map

δD : A×A → D, (a + b, a′ + b′) 7→ δD
A (a, a′) + δD

B (b, b′)

vanishing on A×B.
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Example II.9. Below we briefly explain how the relations (B1)–(B3) simplify
for the two classes of Lie algebras that we obtain if we distinguish Lie algebras of
type Ar or Cr and all others. In some sense the information is more explicit for
Ar and Cr. We first discuss the other cases.
(a) For ∆ not of type Ar, r ≥ 2, we have γA

− = 0, and for ∆ not of type Cr, r ≥ 2,
we have γB

A = γA
A,B = 0 (Theorem II.6.(2)). If these two conditions are satisfied,

then the product on A is given by

(a, b) · (a′, b′) = (γA
+(a, a′) + γA

B(b, b′), γB
A,B(a, b′) + γB

A,B(a′, b) + γB
B (b, b′))

= (aa′ + γA
B(b, b′), ab′ + ba′ + γB

B (b, b′)).

In this case the Lie bracket in g can be written as

[a⊗ x, a′ ⊗ x′] = aa′ ⊗ [x, x′] + κ(x, x′)δD
A (a, a′), a, a′ ∈ A, x, x′ ∈ g∆,

[a⊗ x, b⊗ v] = ab⊗ x.v, a ∈ A, b ∈ B, x ∈ g∆, v ∈ Vs,

and

[b⊗ v, b′ ⊗ v′] = γA
B(b, b′)⊗ βg

V (v, v′) + γB
B (b, b′)⊗ βV

V (v, v′) + κVs(v, v′)δD
B (b, b′).

(b) If ∆ is of type Ar, r ≥ 1, then B = {0} and A = A.
For ∆ of type Cr, r ≥ 2, we have βV

V (v, v′) = v ∗ v′, which is symmetric.
Therefore γB

B is skew-symmetric. In view of

bb′ = γA
B(b, b′) + γB

B (b, b′),

this implies

γA
B(b, b′) =

bb′ + b′b
2

and γB
B (b, b′) =

1

2
[b, b′] :=

bb′ − b′b
2

.

For r = 2 we have βV
V = 0 and therefore γB

B = 0 (Theorem II.6(4)). In this case
C2
∼= B2 implies that Vs can be viewed as the representation of so3,2(K) on K5.
In contrast to the formulas under (a), we have for ∆ of type Ar and Cr the

unifying formulas

[a⊗ x, a′ ⊗ x′] =
aa′ + a′a

2
⊗ [x, x′] + γA

−(a, a′)︸ ︷︷ ︸
= 0 for Cr

⊗x ∗ x′

+ γB
A (a, a′)︸ ︷︷ ︸

= 0 for Ar

⊗x ∗ x′ + κ(x, x′)δD
A (a, a′),

=
aa′ + a′a

2
⊗ [x, x′] +

1

2
[a, a′]⊗ x ∗ x′ + κ(x, x′)δD

A (a, a′)

for a, a′ ∈ A, x, x′ ∈ g∆, where we use that

[a, a′] = aa′ − a′a = 2(γA
− + γB

A )(a, a′), a, a′ ∈ A.
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We further have for Cr:

[a⊗ x, b⊗ v] =
1

2
[a, b]⊗ x ∗ v +

1

2
(ab + ba)⊗ [x, v], a ∈ A, b ∈ B, x ∈ g∆, v ∈ Vs,

and

[b⊗ v, b′ ⊗ v′] =
1

2
(bb′ + b′b)⊗ [v, v′] +

1

2
[b, b′]⊗ v ∗ v′ + κVs(v, v′)δD

B (b, b′).

Remark II.10. (Involution on A) On the space A = A⊕ B we have a natural
continuous involution σ(a, b) := (a,−b) with

A = Aσ := {a ∈ A : aσ = a} and B = A−σ := {a ∈ A : aσ = −a}.
The map σ is an algebra involution, i.e., σ(xx′) = σ(x′)σ(x) for x, x′ ∈ A, if and
only if

(I1) σ(aa′) = a′a for a, a′ ∈ A, i.e., γA
− = 0,

(I2) σ(ab) = −ba for a ∈ A, b ∈ B, which is always the case because [a, b] ∈ A,
and

(I3) σ(bb′) = b′b for b, b′ ∈ B, which means that γA
B is symmetric and γB

B is
skew-symmetric.

Condition (I1) is satisfied for any ∆ not of type Ar, r ≥ 2. For condition (I3),
we recall that γA

B is symmetric because βg
V is skew-symmetric (Definition II.7).

That γB
B is skew-symmetric means that βV

V is symmetric, which is the case for ∆
of type Cn, where βV

V (v, v′) = v ∗ v′. It is also the case for ∆ of type F4, but not
for type G2, where it is the Malcev product on the pure octonions (cf. [ABG00,
p.521]).

Remark II.11. (a) (The identity in A) The inclusion g∆ ↪→ g is an element of
Homg∆

(g∆, g) = A ⊆ A which we call 1. It satisfies

[1⊗ x, a⊗ y] = x.(a⊗ y) = a⊗ [x, y], and [1⊗ x, b⊗ v] = b⊗ x.v.

This means that

1a = a1 = a and δD(1, a) = 0 for all a ∈ A.

In particular, 1 is an identity element in A.
(b) The subspace A is a subalgebra of A if and only if γB

A = 0. If this map is
non-zero, then βV

g 6= 0 and ∆ is of type Cr, r ≥ 2 (Theorem II.6(2)). In all other
cases A is a subalgebra of A, and this subalgebra is commutative if and only if
γA
− vanishes, which in turn is the case if ∆ is not of type Ar or Cr, r ≥ 2.



Locally convex root graded Lie algebras 55

Remark II.12. (a) Axiom (R4) for a locally convex root graded Lie algebra
is equivalent to the condition that the D-parts of the brackets [gα, g−α] span a
dense subspace of D. First we observe that only brackets of the type (B1) and
(B3) have a non-zero D-part. Using the coordinate structure (B1)–(B3) of g, we
can therefore translate (R4) into the fact that im(δD

A ) + im(δD
B ) = im(δD) spans a

dense subspace of D.
(b) Recall from Remark II.5 that for each root α we have xα ∗ x−α = 0, and
therefore, for all a, a′ ∈ A, the simplification

[a⊗ xα, a′ ⊗ x−α] = γA
+(a, a′)⊗ [xα, x−α] + κ(xα, x−α)δD

A (a, a′).

Hence

[a⊗ xα, a′ ⊗ x−α]− [a′ ⊗ xα, a⊗ x−α] = 2κ(xα, x−α)δD
A (a, a′).

Theorem II.13. The alternating map δD : A × A → D satisfies the cocycle
condition

(2.2) δD(aa′, a′′) + δD(a′a′′, a) + δD(a′′a, a′) = 0, a, a′, a′′ ∈ A,

and

(2.3) δD(d.a, a′) + δD(a, d.a′) = [d, δD(a, a′)] d ∈ D, a, a′ ∈ A.

Proof. The plan of the proof is as follows. We will use the fact that (B1)–(B3)
satisfy the Jacobi identity to obtain four relations for δD, which then will lead to
the required cocycle condition for δD, where 0, 1, 2, 3 elements among a, a′, a′′ are
contained in A, and the others in B.

Step 1: For a, a′, a′′ ∈ A and x, x′, x′′ ∈ g∆, we use (B1) to see that the
D-component of

[[a⊗ x, a′ ⊗ x′], a′′ ⊗ x′′]

is

(2.4) κ([x, x′], x′′)δD
A (γA

+(a, a′), a′′) + κ(x ∗ x′, x′′)δD
A (γA

−(a, a′), a′′).

From the invariance and the symmetry of κ, we derive

κ([x, x′], x′′) = κ(x, [x′, x′′]) = κ([x′, x′′], x),

i.e., the cyclic invariance of κ([x, x′], x′′). If ∆ is not of type Ar, r ≥ 2, then
x ∗ x′ = 0, and the second summand in (2.4) vanishes. But for ∆ of type Ar we
have κ(x, x′) = 2(r + 1) tr(xx′) and therefore

κ(x ∗ x′, x′′)

= 2(r + 1) tr
((

xx′ + x′x− 2 tr(xx′)
r + 1

1
)
· x′′

)
= 2(r + 1)

(
tr(xx′x′′) + tr(x′xx′′)

)
.
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Hence we get in all cases the cyclic invariance of κ(x∗x′, x′′). Therefore the Jacobi
identity in g, applied to the D-components of the form (2.4), leads to

0 =
∑

cycl.

(
κ([x, x′], x′′)δD

A (γA
+(a, a′), a′′) + κ(x ∗ x′, x′′)δD

A (γA
−(a, a′), a′′)

)

= κ([x, x′], x′′)
∑

cycl.

δD
A (γA

+(a, a′), a′′) + κ(x ∗ x′, x′′)
∑

cycl.

δD
A (γA

−(a, a′), a′′).

For x ∈ gα and x′ ∈ g−α with [x, x′] = α̌ we have x ∗ x′ = 0 (Remark II.5), and
we thus obtain ∑

cycl.

δD
A (γA

+(a, a′), a′′) = 0.

Choosing x, x′, x′′ such that κ(x∗x′, x′′) 6= 0, we also obtain
∑

cycl. δ
D
A (γA

−(a, a′), a′′) =
0. Adding these two identities leads to

∑

cycl.

δD
A (aa′, a′′) = 0.

Step 2: For a, a′ ∈ A, b ∈ B, and x, x′ ∈ g∆, v ∈ Vs, we get for the D-
component of

0 = [[a⊗ x, a′ ⊗ x′], b⊗ v] + [[a′ ⊗ x′, b⊗ v], a⊗ x] + [[b⊗ v, a⊗ x], a′ ⊗ x′]

the relation

0 = κVs(β
V
g (x, x′), v)δD

B (γB
A (a, a′), b) + κ(βg

g,V (x′, v), x)δD
A (γA

A,B(a′, b), a)

−κ(βg
g,V (x, v), x′)δD

A (γA
A,B(a, b), a′)

= κ(βg
g,V (x, v), x′)

(
δD
B (γB

A (a, a′), b) + δD
A (γA

A,B(a′, b), a)− δD
A (γA

A,B(a, b), a′)
)

= κ(βg
g,V (x, v), x′)

(
δ(aa′, b) + δ(a′b, a) + δ(ba, a′)

)

because δD vanishes on A×B, the A-component γA
A,B(a, b) of ab is skew-symmetric

in a and b, and
κ(βg

g,V (x, v), x′) = κVs(β
V
g (x, x′), v)

is symmetric in x and x′ (Definition II.7). We conclude that

δD(aa′, b) + δD(a′b, a) + δD(ba, a′) = 0.

Step 3: For a ∈ A, b, b′ ∈ B, and x ∈ g∆, v, v′ ∈ Vs, we get from the
D-components of

0 = [[b⊗ v, b′ ⊗ v′], a⊗ x] + [[b′ ⊗ v′, a⊗ x], b⊗ v] + [[a⊗ x, b⊗ v], b′ ⊗ v′]
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the relation

0 = κ(βg
V (v, v′), x)δD

A (γA
B(b, b′), a)− κVs(x.v′, v)δD

B (γB
A,B(a, b′), b)

+κVs(x.v, v′)δD
B (γB

A,B(a, b), b′)

= κVs(x.v, v′)
(
δD
A (γA

B(b, b′), a) + δD
B (γB

A,B(a, b′), b) + δD
B (γB

A,B(a, b), b′)
)

= κVs(x.v, v′)
(
δD(bb′, a) + δD(b′a, b) + δD(ab, b′)

)

because δD vanishes on A×B and the B-component γB
A,B(a, b) of ab is symmetric

in a and b. We conclude that

0 = δD(bb′, a) + δD(b′a, b) + δD(ab, b′).

Step 4: For b, b′, b′′ ∈ A and v, v′, v′′ ∈ Vs, the D-component of [[b ⊗ v,
b′ ⊗ v′], b′′ ⊗ v′′] is

κVs(β
V
V (v, v′), v′′)δD

B (γB
B (b, b′), b′′).

We claim that F (v, v′, v′′) := κVs(β
V
V (v, v′), v′′) satisfies

F (v, v′, v′′) = F (v′, v′′, v) for v, v′, v′′ ∈ Vs.

Fix v′, v′′ ∈ Vs. Then the map

Vs → K, v 7→ κVs(β
V
V (v, v′), v′′) = F (v, v′, v′′)

can be written as
Vs → K, v 7→ κVs(T (v′, v′′), v)

for a unique element T (v′, v′′) ∈ Vs. From the g∆-equivariance properties and the
uniqueness, we derive that T : Vs × Vs → Vs is g∆-equivariant, hence of the form
λβV

V for some λ ∈ K (Theorem II.6). As F is symmetric or skew-symmetric in the
first two arguments, F is an eigenvector for the action of S3 on Lin(V ⊗V ⊗V,K).
Then F is fixed by the commutator subgroup of S3, hence fixed under cyclic
rotations, and this implies λ = 1.

Therefore the Jacobi identity in g, applied to the D-components above, leads
to

0 =
∑

cycl.

δD
B (γB

B (b, b′), b′′) =
∑

cycl.

δD(bb′, b′′).

Combining all four cases, we see that δD satisfies the cocycle identity (2.2)
because the function

G : A3 → D, (a, b, c) 7→ δD(ab, c) + δD(bc, a) + δD(ca, b)

is cyclically invariant and trilinear, so that it suffices to verify it in the four cases
we dealt with above.
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To verify the relation (2.3), we first use (B1) and (B3) to see that a comparison
of the D-components of the brackets

[d, [a⊗ x, a′ ⊗ x′]] = [d.a⊗ x, a′ ⊗ x′] + [a⊗ x, d.a′ ⊗ x′], a, a′ ∈ A, x, x′ ∈ g∆

and

[d, [b⊗ v, b′ ⊗ v′]] = [d.b⊗ v, b′ ⊗ v′] + [b⊗ v, d.b′ ⊗ v′], b, b′ ∈ B, v, v′ ∈ Vs

leads to (2.3).

Definition II.14. Let g be a ∆-graded Lie algebra. From the isotypic decom-
position of g with respect to g∆, we then obtain three items which, in view of
(B1)–(B3), completely encode the structure of g:

(1) the coordinate algebra A = A⊕B,

(2) the Lie algebra D and its representation by derivations on A preserving the
subspaces A and B, and

(3) the cocycle δD : A×A → D (Theorem II.13).

All other data that enters the description of the bracket in g only depends on
the Lie algebra g∆ and the module Vs (Theorem II.6). We therefore call the triple
(A, D, δD) the coordinate structure of the ∆-graded Lie algebra g.

Theorem II.15. Let g be a root graded Lie algebra with coordinate structure
(A, D, δD). Further let D̂ be a locally convex Lie algebra acting by derivations
preserving A and B on A, and

δD̂ : A×A → D̂

a continuous alternating bilinear map such that

(1) δD̂(aa′, a′′) + δD̂(a′a′′, a) + δD̂(a′′a, a′) = 0 for a, a′, a′′ ∈ A,
(2) the map D̂ ×A → A, (d, a) 7→ d.a is continuous,

(3) [d, δD̂(a, a′)] = δD̂(d.a, a′) + δD̂(a, d.a′) for a, a′ ∈ A, d ∈ D̂, and

(4) δD̂(a, a′).a′′ = δD(a, a′).a′′ for a, a′, a′′ ∈ A, and

(5) δD̂(A×B) = {0}.
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Then we obtain on

ĝ := (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̂

a Lie bracket by

[d, a⊗ x + b⊗ v + d′] = d.a⊗ x + d.b⊗ v + [d, d′],

and

[a⊗ x, a′ ⊗ x′] = γA
+(a, a′)⊗ [x, x′] + γA

−(a, a′)⊗ x ∗ x′ + γB
A (a, a′)⊗ βV

g (x, x′)

+κ(x, x′)δD̂(a, a′),

[a⊗ x, b⊗ v] =
ab− ba

2
⊗ βg

g,V (x, v) +
ab + ba

2
⊗ x.v,

[b⊗ v, b′ ⊗ v′] = γA
B(b, b′)⊗ βg

V (v, v′) + γB
B (b, b′)⊗ βV

V (v, v′) + κVs(v, v′)δD̂(b, b′).

If im(δD̂) is dense in D̂, then ĝ is a ∆-graded Lie algebra with coordinate structure
(A, D̂, δD̂).
Proof. From the definition and condition (3) it directly follows that the oper-
ators ad d, d ∈ D̂, are derivations for the bracket. Therefore it remains to verify
the Jacobi identity for triples of elements in A ⊗ g∆ or B ⊗ Vs. In view of (4)
and the fact that the Jacobi identity is satisfied in g, it suffices to consider the
D̂-components of triple brackets. Reading the proof of Theorem II.13 backwards,
it is easy to see that (1) and (4), applied to the four cases corresponding to how
many among the a, a′, a′′ are contained in A, resp., B, lead to the Jacobi identity
for triple brackets of elements in A⊗ g∆, resp., B ⊗ Vs.

For this argument one has to observe that in the case a, a′, a′′ ∈ A the relation
(1) for all a, a′, a′′ also implies

δD̂(γA
+(a, a′), a′′) + δD̂(γA

+(a′, a′′), a) + δD̂(γA
+(a′′, a), a′)

=
1

2

(
δD̂(aa′, a′′) + δD̂(a′a′′, a) + δD̂(a′′a, a′) + δD̂(a′a, a′′)

+δD̂(aa′′, a′) + δD̂(a′′a′, a)
)

= 0

and

δD̂(γA
−(a, a′), a′′) + δD̂(γA

−(a′, a′′), a) + δD̂(γA
−(a′′, a), a′)

=
1

2

(
δD̂(aa′, a′′) + δD̂(a′a′′, a) + δD̂(a′′a, a′)− δD̂(a′a, a′′)

−δD̂(aa′′, a′)− δD̂(a′′a′, a)
)

= 0.
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Examples II.16. We now take a second look at the examples in Section I.
(a) For the algebras of the type g = A⊗ g∆ (Example I.4), it is clear that A = A
is the corresponding coordinate algebra, and B = D = {0}.
(b) For g = sln(A) (Example I.5), formula (1.1) for the bracket shows that A = A
is the coordinate algebra of g, D = [A,A]⊗ 1 ∼= [A,A], and

δD(a, b) =
1

2n2
[a, b]

because κ(x, y) = 2n tr(xy) for x, y ∈ sln(K).
(c) For g = sp2n(A, σ)′ (Example I.7), which is of type Cn, we see with the formula
in Example II.9(b) that A = Aσ, B = A−σ, D = [A,A]

−σ ⊗ 1 ∼= [A,A]
−σ

, and
that A is the coordinate algebra.

From κ(x, y) = θ tr(xy), κVs(x, y) = θ tr(xy) (θ = 2(n + 1)),

κ(x, x′)δD
A (a, a′) = [a, a′]⊗ tr(xx′)

2n
1, and κVs(v, v′)δD

B (b, b′) = [b, b′]⊗ tr(vv′)
2n

1,

we get

δD(α, β) =
1

2θn

1

2
([α, β]− [α, β]σ)⊗ 1 =

1

4θn
([α, β] + [ασ, βσ])⊗ 1,

because

[a + b, a′ + b′] = [a, a′] + [b, b′]︸ ︷︷ ︸
∈A−σ

+ [a, b′] + [b, a′]︸ ︷︷ ︸
∈Aσ

, a ∈ Aσ, b ∈ A−σ.

(d) For g = TKK(J) for a Jordan algebra J (Example I.9), we also see directly
from the definition that J is the coordinate algebra of g and D = 〈J, J〉. We have
κ(x, y) = 4 tr(xy) for x, y ∈ sl2(K), and therefore

δD(a, b) = δJ(a, b) =
1

4
〈a, b〉.

The following proposition deals with the special case where B is trivial and the
root system is not of type Ar. In this case it contains complete information on the
possibilities of the coordinate algebra. For the root systems ∆ of type Dr, r ≥ 4,
and Er, it provides a full description of all ∆-graded Lie algebras (cf. [BM92] for
the algebraic version of this result).

Proposition II.17. (a) If B = {0} and ∆ is not of type Ar, r ≥ 1, then the
bracket of g is of the form

[a⊗ x, a′ ⊗ x′] = ab⊗ [x, x′] + κ(x, x′)δD(a, a′),

where A is a commutative associative unital algebra and D is central in g, i.e., D
acts trivially on A.
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(b) If, conversely, D̂ is a locally convex space, A a locally convex unital commuta-
tive associative algebra and the continuous alternating bilinear map δD̂ : A×A →
D̂ satisfies

δD̂(aa′, a′′) + δD̂(a′a′′, a) + δD̂(a′′a, a′) = 0, a, a′, a′′ ∈ A,

then
ĝ := (A⊗ g∆)⊕ D̂

is a Lie algebra with respect to the bracket

[a⊗ x + d, a′ ⊗ x′ + d′] = aa′ ⊗ [x, x′] + κ(x, x′)δD̂(a, a′).

Proof. (a) Our assumption that ∆ is not of type A1 means that dim h ≥ 2,
so that there exist roots α and β with β 6= ±α. Moreover, the exclusion of Ar,
r ≥ 2, implies γA

− = 0, so that by consideration of the A ⊗ g∆-component of the
cyclic sum

∑
cycl.[[a⊗ x, a′ ⊗ x′], a′′ ⊗ x′′], the Jacobi identity in g implies

(2.6)
∑

cycl.

(aa′)a′′ ⊗ [[x, x′], x′′] + δD(a, a′).a′′ ⊗ κ(x, x′)x′′ = 0

for a, a′, a′′ ∈ A and x, x′, x′′ ∈ g∆.
Let x ∈ gα, x′ ∈ gβ, and x′′ ∈ h. Then κ(x, x′) = κ(x′, x′′) = κ(x′′, x) = 0, and

therefore

(aa′)a′′ ⊗ [[x, x′], x′′] + (a′a′′)a⊗ [[x′, x′′], x] + (a′′a)a′ ⊗ [[x′′, x], x′]

= −(α + β)(x′′)(aa′)a′′ ⊗ [x, x′]− β(x′′)(a′a′′)a⊗ [x′, x] + α(x′′)(a′′a)a′ ⊗ [x, x′]

=
(
− (α + β)(x′′)(aa′)a′′ + β(x′′)(a′a′′)a + α(x′′)(a′′a)a′

)
⊗ [x, x′].

For β(x′′) = 0 and α(x′′) = 1, we now get

(aa′)a′′ = (a′a′′)a = a(a′a′′).

Therefore the commutative algebra A is associative.
It remains to see that D is central. We consider the identity (2.6) with x ∈ gα,

x′ ∈ g−α and x′′ = α̌. Then κ(x, x′) 6= 0 = κ(x, x′′) = κ(x′, x′′). Further
∑

cycl.

(aa′)a′′ ⊗ [[x, x′], x′′] = (aa′)a′′ ⊗ ∑

cycl.

[[x, x′], x′′] = 0

follows from the fact that A is commutative and associative, and the Jacobi iden-
tity in g∆. Hence (2.6) leads to δD(a, a′).a′′ = 0. This means that δD(A,A) is
central in g, and since this set spans a dense subspace of D (Remark II.12(a)),
the subalgebra D of g is central.
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(b) For the converse, we first observe that the map

ω : (A⊗ g∆)× (A⊗ g∆) → D̂, ω(a⊗ x, a′ ⊗ x′) → κ(x, x′)δD̂(a, a′)

is a Lie algebra cocycle because
∑

cycl.

ω([a⊗ x, a′ ⊗ x′], a′′ ⊗ x′′)

=
∑

cycl.

κ([x, x′], x′′)δD̂(aa′, a′′) = κ([x, x′], x′′)
∑

cycl.

δD̂(aa′, a′′) = 0.

From this the Jacobi identity of ĝ follows easily, and the map ĝ → A ⊗ g∆ with
kernel D̂ defines a central extension of the Lie algebra A ⊗ g∆ by D̂ (cf. Exam-
ple I.4).

Definition II.18. (The Weyl group of g) To the simple split Lie algebra g∆

we associate the subgroup G∆ ⊆ Aut(g∆) generated by the automorphisms ead x,
x ∈ g∆,α, α ∈ ∆, which are defined because the operators ad x are nilpotent and
the characteristic of K is zero. Since the set of h-weights of VS is contained in the
set of roots of g∆, it follows from the theory of reductive algebraic groups that
G∆ also has a representation on VS, compatible with the representation ρVS

of the
Lie algebra g∆ in the sense that ead x, x ∈ g∆,α, acts by eρV (x). This implies that
G∆ also acts in a natural way on the root graded Lie algebra g, and that it is
isomorphic to the subgroup of Aut(g) generated by the automorphisms ead x of g.
From now on we identify G∆ with the corresponding subgroup of Aut(g).

Let α ∈ ∆ and fix x±α ∈ g±α such that [xα, x−α] = α̌. We consider the
automorphism

σα := ead xαe− ad x−αead xα ∈ G∆ ⊆ Aut(g).

If h ∈ ker α ⊆ h, then h commutes with x±α, so that σα.h = h. We claim that
σα.α̌ = −α̌.

In SL2(K) we have

S :=

(
1 1
0 1

) (
1 0
−1 1

) (
1 1
0 1

)
=

(
0 1
−1 0

)
.

As σα |g∆
corresponds to conjugation with S in sl2(K), we obtain

σα.α̌ = −α̌, σα.xα = −x−α and σα.x−α = −xα.

We conclude that σα |h coincides with the reflection in the hyperplane α̌⊥:

σα(h) = h− α(h)α̌ for h ∈ h

(cf. [MP95, Props. 4.1.3, 6.1.8]). The corresponding reflection on h∗ is given by

rα : h∗ → h∗, β 7→ β − β(α̌)α.
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This leads to
σα(gβ) = grα.β, β ∈ ∆ ∪ {0}.

We call
W := 〈rα : α ∈ ∆〉 ⊆ GL(h)

the Weyl group of g.
From the preceding calculation we obtain in particular that

σα ∈ NG∆
(h) := {ϕ ∈ G∆ : ϕ(h) = h}.

This group contains the subgroup

ZG∆
(h) = {ϕ ∈ G∆ : ϕ |h = idh},

and each automorphism ϕ in this group is given by a group homomorphism

χ ∈ Hom(Z[∆],K×) ∼= (K×)r

in the sense that ϕ(x) = χ(α)x for all α ∈ ∆ and x ∈ gα. We therefore have a
group extension

Γ ↪→ Ŵ →→W ,

where Ŵ ⊆ NG∆
(h) is the inverse image ofW under the restriction homomorphism

to h and Γ ⊆ (K×)r is a subgroup. This extension does not split for ∆(∆̌) 6⊆ 2Z
because in this case there exists a root α with 1 ∈ ∆(α̌), which implies that σα is
of order 4, as we see from the even-dimensional simple modules of SL2(K).

Example II.19. (cf. [Ti62]) We take a closer look at the case ∆ = A1 = {±α}.
We write

g∆ = span{α̌, xα, x−α}
with

xα ∈ gα, x−α ∈ g−α, α̌ = [xα, x−α].

Then formula (B1) for the product on A leads to

[a⊗ xα, [1⊗ x−α, b⊗ xα]] = [a⊗ xα,−b⊗ α̌] = ab⊗ [α̌, xα] = 2ab⊗ xα,

and hence to

ab⊗ xα =
1

2
[a⊗ xα, [1⊗ x−α, b⊗ xα]] =

1

2
[a⊗ xα, [x−α, b⊗ xα]].

Identifying A via the map a 7→ a⊗ xα with gα, the product on A is given by

ab :=
1

2
[a, [x−α, b]].
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We recall from Definition II.18 the automorphism σα of g. From the g∆-module
decomposition of g it follows directly that σ2

α = idg because the restriction of σα

to g∆ is an involution. Moreover, σα(xα) = −x−α. To see that the product on gα

defines a Jordan algebra structure on A, we first observe that Theorem C.3 (a)
implies that

{x, y, z} :=
1

2
[[x, σα.y], z]

defines a Jordan triple structure on gα, and hence that ab = {a,−xα, b} defines a
Jordan algebra structure by Theorem C.4(b).

The quadratic operators of the Jordan triple structure are given by

P (x).y = {x, y, x} = −1

2
(ad x)2 ◦ σα.y.

We claim that
P (−xα) = −1

2
(ad xα)2 ◦ σα = − idgα .

Since the action of ad xα and σα is given by the g∆-module structure of g =
(A⊗ g∆)⊕D, the claim follows from

−1

2
(ad xα)2 ◦ σα.xα =

1

2
(ad xα)2.x−α =

1

2
[xα, α̌] = −xα.

We now conclude from Theorem C.4(b) that the Jordan triple structure associated
to the Jordan algebra structure is given by −{·, ·, ·}.

This permits us to determine δA. First we recall that

[a⊗ xα, a′ ⊗ x−α] = aa′ ⊗ α̌ + δD(a, a′)κ(xα, x−α) = aa′ ⊗ α̌ + 4δD(a, a′),

which leads to

2(aa′)a′′ ⊗ xα + 4δA(a, a′).a′′ ⊗ xα

=
[
[a⊗ xα, a′ ⊗ x−α], a′′ ⊗ xα

]

= −
[
[a⊗ xα, σα(a′ ⊗ xα)], a′′ ⊗ xα

]
= −2{a, a′, a′′} ⊗ xα

= 2((aa′)a′′ + a(a′a′′)− a′(aa′′))⊗ xα.

From that we immediately get

δA(a, a′) =
1

2
[La, La′ ].

The following theorem contains some refined information on the type of the
coordinate algebras. We define

δA(α, β).γ := δD(α, β).γ, α, β, γ ∈ A.

Theorem II.20. (Coordinatization Theorem) The coordinate algebra A of a
∆-graded Lie algebra g is:
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(1) a Jordan algebra for ∆ of type A1, and

δA(α, β) =
1

2
[Lα, Lβ].

(2) an alternative algebra for ∆ of type A2, and

δA(α, β) =
1

3
(L[α,β] −R[α,β] − 3[Lα, Rβ]).

(3) an associative algebra for ∆ of type Ar, r ≥ 3, and

δA(α, β) =
1

r + 1
ad[α, β].

(4) an associative commutative algebra for ∆ of type Dr, r ≥ 4, and E6, E7 and
E8, and δA(α, β) = 0.

(5) an associative algebra (A, σ) with involution for ∆ of type Cr, r ≥ 4, and

δA(α, β) =
1

4r
(ad[α, β] + ad[ασ, βσ]).

(6) a Jordan algebra associated to a symmetric bilinear form β : B×B → A for
∆ of type Br, r ≥ 3, and δA(α, β) = −[Lα, Lβ].

Proof. (1) follows from the discussion in Example II.19 (see also [Ti62] and
[BZ96]).
(2)–(4) [BM92]; see also Appendix B for some information on alternative algebras
and Proposition II.17 for a proof of (4).
(5), (6) [BZ96] (cf. Lemma B.7 for Jordan algebras associated to symmetric bilin-
ear forms and the discussion in Example I.9(d)).

The scalar factors in the formulas for δA are due to the normalization of the
invariant bilinear forms κ and κVs .

For the details on the coordinate algebras for ∆ of type C3 (an alternative
algebra with involution containing A in the associative center (the nucleus), i.e.,
left, resp., right multiplications with elements of A commute with all other right,
resp., left multiplications), C2 (a Peirce half space of a unital Jordan algebra
containing a triangle), F4 (an alternative algebra over A with normalized trace
mapping satisfying the Cayley–Hamilton identity ch2) and G2 (a Jordan algebra
over A with a normalized trace mapping satisfying the Cayley-Hamilton identity
ch3), we refer to [ABG00], [BZ96] and [Neh96]. For all these types of coordinate
algebras one has natural derivations δA(α, β) given by explicit formulas.
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III Universal covering Lie algebras and isogeny
classes
In this section we discuss the concept of a generalized central extension of a locally
convex Lie algebra. It generalizes central extensions ĝ → g, i.e., quotient maps
with central kernel. Its main advantage is that it permits us to construct for a
topologically perfect locally convex Lie algebra g a universal generalized central
extension qg : g̃ → g. This is remarkable because universal central extensions do
not always exist, not even for topologically perfect Banach–Lie algebras.

III.1 Generalized central extensions

Definition III.1. Let g and ĝ be locally convex Lie algebras. A continuous Lie
algebra homomorphism q : ĝ → g with dense range is called a generalized central
extension if there exists a continuous bilinear map b : g× g → ĝ with

(3.1) b(q(x), q(y)) = [x, y] for x, y ∈ ĝ.

We observe that, since q has dense range, the map b is uniquely determined by
(3.1) and that (3.1) implies that ker q is central in ĝ.

Remark III.2. If q : ĝ → g is a quotient homomorphism of locally convex Lie
algebras with central kernel, i.e., a central extension, then q×q : ĝ× ĝ → g×g also
is a quotient map. Therefore the Lie bracket of ĝ factors through a continuous
bilinear map b : g × g → ĝ with b(q(x), q(y)) = [x, y] for x, y ∈ ĝ, showing that q
is a generalized central extension of g.

Definition III.3. (a) Let z be a locally convex space and g a locally convex
Lie algebra. A continuous z-valued Lie algebra 2-cocycle is a continuous skew-
symmetric bilinear function ω : g× g → z satisfying

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0, x, y, z ∈ g.

It is called a coboundary if there exists a continuous linear map α ∈ Lin(g, z) with
ω(x, y) = α([x, y]) for all x, y ∈ g. We write Z2(g, z) for the space of continuous
z-valued 2-cocycles and B2(g, z) for the subspace of coboundaries. We define the
second continuous Lie algebra cohomology space as

H2(g, z) := Z2(g, z)/B2(g, z).

(b) If ω is a continuous z-valued 2-cocycle on g, then we write g ⊕ω z for the
locally convex Lie algebra whose underlying locally convex space is the topological
product g× z, and whose bracket is defined by

[(x, z), (x′, z′)] =
(
[x, x′], ω(x, x′)

)
.

Then q : g⊕ω z → g, (x, z) 7→ x is a central extension and σ : g → g⊕ω z, x 7→ (x, 0)
is a continuous linear section of q.
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Lemma III.4. For a generalized central extension q : ĝ → g with the correspond-
ing map b the following assertions hold:

(1) [x, y] = q(b(x, y)) for all x, y ∈ g.

(2) [g, g] ⊆ im(q) and ker q ⊆ z(ĝ).

(3) b ∈ Z2(g, ĝ), i.e., b([x, y], z) + b([y, z], x) + b([z, x], y) = 0 for x, y, z ∈ g.

(4) For x ∈ g we define

âd(x) : ĝ → ĝ, y 7→ b(x, q(y)).

Then âd defines a continuous representation of g on ĝ by derivations for
which q is equivariant with respect to the adjoint representation of g on g.

(5) If ĝ is topologically perfect, then q−1(z(g)) = z(ĝ).

Proof. (1) If x = q(a) and y = q(b) holds for a, b ∈ ĝ, then

[x, y] = [q(a), q(b)] = q([a, b]) = q(b(x, y)).

Therefore the Lie bracket on g coincides on the dense subset im(q) × im(q) of
g × g with the continuous map q ◦ b, so that (1) follows from the continuity of
both maps.
(2) follows from (1).
(3) In view of (3.1), the Jacobi identity in ĝ leads to

0 = [[x, y], z] + [[y, z], x] + [[z, x], y]

= b(q([x, y]), q(z)) + b(q([y, z]), q(x)) + b(q([z, x]), q(y))

= b([q(x), q(y)], q(z)) + b([q(y), q(z)], q(x)) + b([q(z), q(x)], q(y)).

Therefore the restriction of b to im(q) is a Lie algebra cocycle, and since im(q) is
dense and b is continuous, it is a Lie algebra cocycle on g.
(4) First we observe that the bilinear map g × ĝ → ĝ, (x, y) 7→ b(x, q(y)) is
continuous. Moreover, (1) implies

q(âd(x).y) = q(b(x, q(y))) = [x, q(y)],

i.e., q ◦ âd(x) = ad x ◦ q.
From the cocycle identity

b([x, y], z) + b([y, z], x) + b([z, x], y) = 0, x, y, z ∈ g,
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we derive in particular for x ∈ g and y, z ∈ ĝ:

0 = b([x, q(y)], q(z)) + b([q(y), q(z)], x) + b([q(z), x], q(y))

= b(q(âd(x)y), q(z)) + b(q([y, z]), x)− b(q(âd(x).z), q(y))

= [âd(x)y, z]− âd(x)[y, z]− [âd(x)z, y].

Therefore each âd(x) is a derivation of ĝ. On the other hand, the cocycle identity
for b leads for x, y ∈ g and z ∈ ĝ to

0 = b([x, y], q(z)) + b([y, q(z)], x) + b([q(z), x], y)

= âd([x, y])z + b(q(âd(y)z), x)− b(q(âd(x)z), y)

= âd([x, y])z − âd(x)âd(y)z + âd(y)âd(x)z,

so that âd : g → der(ĝ) is a representation of g by derivations of ĝ, and the map
q is equivariant with respect to the adjoint representation of g on g.
(5) Let ẑ(g) := q−1(z(g)). We first observe that [ẑ(g), ĝ] is contained in ker q ⊆ z(ĝ)
because

q([ẑ(g), ĝ]) ⊆ [z(g), g] = {0}.
This leads to

[ẑ(g), [ĝ, ĝ]] ⊆ [ĝ, [ẑ(g), ĝ]] ⊆ [ĝ, ker q] = {0}.
If ĝ is topologically perfect, we obtain ẑ(g) ⊆ z(ĝ). The other inclusion follows
from the density of the image of q.

The following proposition shows that generalized central extensions can be
characterized as certain closed subalgebras of central extensions defined by cocy-
cles.

Proposition III.5. (a) If q : ĝ → g is a generalized central extension and
b : g× g → ĝ the corresponding cocycle, then the map

ψ : ĝ → g⊕b ĝ, x 7→ (q(x), x)

is a topological embedding of ĝ onto a closed ideal of g ⊕b ĝ containing the com-
mutator algebra.

If |g| denotes the space g considered as an abelian Lie algebra, then the map

η : g⊕b ĝ → |g|, (x, y) 7→ x− q(y)

is a quotient morphism of Lie algebras whose kernel is im(ψ) ∼= ĝ.
(b) If ω ∈ Z2(g, z) is a continuous 2-cocycle, p : g⊕ω z → g the projection onto g

of the corresponding central extension, and ĝ ⊆ g ⊕ω z is a closed subalgebra for
which p(ĝ) is dense in g, then q := p |̂g : ĝ → g is a generalized central extension
with b(x, y) = ([x, y], ω(x, y)) for x, y ∈ g.
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Proof. (a) We recall from Definition III.3 that the bracket in g⊕b ĝ is given by

[(x, y), (x′, y′)] = ([x, x′], b(x, x′)).

Now

[ψ(x), ψ(x′)] = [(q(x), x), (q(x′), x′)] = ([q(x), q(x′)], b(q(x), q(x′)))

= (q([x, x′]), [x, x′]) = ψ([x, x′])

implies that the continuous linear map ψ is a morphism of Lie algebras. As the
graph of the continuous linear map q, the image of ψ is a closed subspace of g⊕b ĝ,
and the projection onto the second factor is a continuous linear map. Therefore
ψ is a topological embedding onto a closed subalgebra.

Moreover, the formula for the bracket, together with q(b(x, x′)) = [x, x′] shows
that im(ψ) contains all brackets, hence is an ideal. Therefore the map η : g⊕b ĝ →
|g| whose kernel is im(ψ) is a morphism of Lie algebras. That it is a quotient
map follows from the fact that its restriction to the subspace g is a topological
isomorphism.
(b) The range of q is dense by the assumption that p(ĝ) is dense in g. It is also
clear that b◦(p×p) is the bracket on g⊕ω z, but it remains to show that im(b) ⊆ ĝ.

For x = q(x′), y = q(y′) in im(q) = p(ĝ) we have

b(x, y) = b(q(x′), q(y′)) = [x′, y′] = ([x, y], ω(x, y)) ∈ ĝ.

Now the continuity of b, the density of im(q) in g, and the closedness of ĝ imply
that im(b) ⊆ ĝ.

III.2 Full cyclic homology of locally convex algebras

In this subsection we define cyclic 1-cocycles for locally convex algebras A which
are not necessarily associative. This includes in particular Lie algebras, where
cyclic 1-cocycles are Lie algebra 2-cocycles. It also covers the more general co-
ordinate algebras of root graded locally convex Lie algebras (see Section IV). In
particular, we associate to A a locally convex space 〈A,A〉 in such a way that
continuous cyclic 1-cocycles are in one-to-one correspondence to linear maps on
〈A,A〉. Moreover, we will discuss a method to obtain Lie algebra structures on
〈A,A〉, which will be crucial in Section IV for the construction of the universal
covering algebra of a root graded Lie algebra.

Definition III.6. (a) Let A be a locally convex algebra (not necessarily asso-
ciative or with unit). We endow the tensor product A ⊗ A with the projective
tensor product topology and denote this space by A⊗π A. Let

I := span{a⊗ a, ab⊗ c + bc⊗ a + ca⊗ b : a, b, c ∈ A} ⊆ A⊗π A.
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We define
〈A,A〉 := (A⊗π A)/I,

endowed with the quotient topology, which turns it into a locally convex space.
We write 〈a, b〉 for the image of a⊗ b in the quotient space 〈A,A〉.
(b) Our definition of 〈A,A〉 in (a) is the one corresponding to the category of
locally convex spaces, resp., algebras. In the category of complete locally convex
spaces we write 〈A,A〉 for the completion of the quotient space (A⊗π A)/I, and
in the category of sequentially complete spaces for the smallest sequentially closed
subspace of the completion, i.e., its sequential completion.

In the category of Fréchet spaces, the completed version of 〈A,A〉 can be
obtained more directly by first replacing A ⊗π A by its completion A⊗̂πA. If
I denotes the closure of I in the completion A⊗̂πA, then the quotient space
A⊗̂πA/I is automatically complete, hence a Fréchet space.
(c) For a locally convex space z the continuous linear maps 〈A,A〉 → z correspond
to those alternating continuous bilinear maps ω : A×A → z satisfying

ω(ab, c) + ω(bc, a) + ω(bc, a) = 0, a, b, c ∈ A.

These maps are called cyclic 1-cocycles. We write Z1(A, z) for the space of con-
tinuous cyclic 1-cocycles A×A → z and note that

Z1(A, z) ∼= Lin(〈A,A〉, z).
The identity id〈A,A〉 corresponds to the universal cocycle

ωu : A×A → 〈A,A〉, (a, b) 7→ 〈a, b〉.
Remark III.7. Lie algebra 2-cocycles ω : g × g → z (Definition III.3) are the
same as cyclic 1-cocycles of the algebra g.

In particular we have

Z2(g, z) ∼= Lin(〈g, g〉, z)
for any locally convex space z.

Remark III.8. Let A be a locally convex associative algebra, AL the corre-
sponding Lie algebra with the commutator bracket [a, b] = ab − ba, and AJ the
corresponding Jordan algebra with the product a ◦ b := 1

2
(ab + ba). In A⊗A we

have the relations

[a, b]⊗ c+ [b, c]⊗ a+ [c, a]⊗ b = ab⊗ c+ bc⊗ a+ ca⊗ b− (ba⊗ c+ cb⊗ a+ ac⊗ b)

and

2(a ◦ b⊗ c+ b ◦ c⊗a+ c ◦a⊗ b) = ab⊗ c+ bc⊗a+ ca⊗ b+ ba⊗ c+ cb⊗a+ac⊗ b.

Therefore we have natural continuous linear maps

〈AL,AL〉 → 〈A,A〉, 〈a, b〉 7→ 〈a, b〉 and 〈AJ ,AJ〉 → 〈A,A〉, 〈a, b〉 7→ 〈a, b〉.
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A remarkable point of the following proposition is that it applies without any
assumption on the algebra A, such as associativity etc.

Proposition III.9. Let A be a locally convex algebra and

δ : 〈A,A〉 → der(A), 〈a, b〉 7→ δ(a, b)

be a cyclic 1-cocycle for which the map A × A × A → A, (a, b, c) 7→ δ(a, b).c is
continuous. As der(A) acts naturally on 〈A,A〉 by

d.〈a, b〉 = 〈d.a, b〉+ 〈a, d.b〉, d ∈ der(A), a, b ∈ A,

we obtain a well-defined continuous bilinear map

[·, ·] : 〈A,A〉 × 〈A,A〉 → 〈A,A〉, [〈a, b〉, 〈c, d〉] = δ(a, b).〈c, d〉
= 〈δ(a, b).c, d〉+ 〈c, δ(a, b).d〉.

Suppose that

(1) δ(δ(a, b).〈c, d〉) = [δ(a, b), δ(c, d)], and

(2) δ(a, b).〈c, d〉 = −δ(c, d).〈a, b〉 for a, b, c, d ∈ A.
Then [·, ·] defines on 〈A,A〉 the structure of a locally convex Lie algebra and δ is
a homomorphism of Lie algebras.
Proof. According to our continuity assumption on δ, the quadrilinear map

A×A×A×A → 〈A,A〉, (a, b, c, d) 7→ δ(a, b).〈c, d〉 = 〈δ(a, b).c, d〉+〈c, δ(a, b).d〉

is continuous. That δ is a cyclic cocycle implies that it factors through a contin-
uous bilinear map

[·, ·] : 〈A,A〉 × 〈A,A〉 → 〈A,A〉, (〈a, b〉, 〈c, d〉) 7→ δ(a, b).〈c, d〉.

Condition (2) means that the bracket on 〈A,A〉 is alternating. In view of (1), the
Jacobi identity follows from

[[〈a, b〉, 〈c, d〉], 〈u, v〉] = δ(δ(a, b).〈c, d〉).〈u, v〉 = [δ(a, b), δ(c, d)].〈u, v〉
= [〈a, b〉, [〈c, d〉, 〈u, v〉]]− [〈c, d〉, [〈a, b〉, 〈u, v〉]].

Finally, we observe that (1) means that δ is a homomorphism of Lie algebras.
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Example III.10. Typical examples where Proposition III.9 applies are
(1) Lie algebras: If g is a locally convex Lie algebra and δ(x, y) = ad[x, y], then
the Jacobi identity implies that δ is a cocycle. That δ is equivariant with respect
to the action of der(g) follows for d ∈ der(g) and x, y ∈ g from

δ(d.x, y)+δ(x, d.y) = ad([d.x, y]+[x, d.y]) = ad(d.[x, y]) = [d, ad[x, y]] = [d, δ(x, y)].

We also have in 〈g, g〉 the relation:

δ(x, y).〈x′, y′〉 = 〈[[x, y], x′], y′〉+ 〈x′, [[x, y], y′]〉
= −〈[x′, y′], [x, y]〉 − 〈[y′, [x, y]], x′〉+ 〈x′, [[x, y], y′]〉
= 〈[x, y], [x′, y′]〉,

which implies δ(x, y).〈x′, y′〉 = −δ(x′, y′).〈x, y〉. Moreover, the bracket map

bg : 〈g, g〉 → g, 〈x, y〉 7→ [x, y]

is a homomorphism of Lie algebras because

bg([〈x, y〉, 〈x′, y′〉]) = [[x, y], [x′, y′]] = [bg(〈x, y〉), bg(〈x′, y′〉)].

(2) Associative algebras: If A is an associative algebra, then the commutator
bracket

A×A → A, (a, b) 7→ [a, b] = ab− ba

is a cyclic cocycle because

[ab, c] + [bc, a] + [ca, b] = abc− cab + bca− abc + cab− bca = 0.

Therefore δ(x, y) = ad[x, y] defines a cocycle A × A → der(A). That δ is equiv-
ariant with respect to the action of der(A) follows with the same calculations as
in (1) above. Alternatively, we can observe that if AL denotes the Lie algebra
A with the commutator bracket, then 〈A,A〉 is a quotient of 〈AL,AL〉 (Remark
III.8).
(3) If A is a Jordan algebra and δA(a, b) = [L(a), L(b)], then we have

δA(d.〈a, b〉) = [d, δA(a, b)]

for all derivations d ∈ der(A), hence (1) in Proposition III.9. To verify (2), we
calculate
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δA(a, a′).〈b, b′〉 = 〈δA(a, a′).b, b′〉+ 〈b, δA(a, a′).b′〉
= 〈a(a′b)− a′(ab), b′〉+ 〈b, a(a′b′)− a′(ab′)〉
= 〈a(a′b), b′〉 − 〈a′(ab), b′〉+ 〈b, a(a′b′)〉 − 〈b, a′(ab′)〉
= −〈(a′b)b′, a〉 − 〈b′a, a′b〉+ 〈(ab)b′, a′〉+ 〈b′a′, ab〉

−〈a, (a′b′)b〉 − 〈a′b′, ba〉+ 〈a′, (ab′)b〉+ 〈ab′, ba′〉
= −〈b′(ba′), a〉 − 〈b′a, a′b〉+ 〈b′(ba), a′〉+ 〈b′a′, ab〉

−〈a, b(b′a′)〉 − 〈b′a′, ab〉+ 〈a′, b(b′a)〉+ 〈b′a, a′b〉
= −〈b′(ba′), a〉+ 〈b′(ba), a′〉 − 〈a, b(b′a′)〉+ 〈a′, b(b′a)〉
= 〈δA(b′, b).a, a′〉+ 〈a, δA(b′, b).a′〉
= −δA(b, b′).〈a, a′〉.

III.3 The universal covering of a locally convex Lie algebra

We call a generalized central extension qg : g̃ → g of a locally convex Lie algebra
g universal if for any generalized central extension q : ĝ → g there exists a unique
morphism of locally convex Lie algebras α : g̃ → ĝ with q ◦ α = qg.

Theorem III.11. A locally convex Lie algebra g has a universal generalized
central extension if and only if it is topologically perfect. If this is the case, then the
universal generalized central extension is given by the natural Lie algebra structure
on g̃ := 〈g, g〉 satisfying

(3.2) [〈x, x′〉, 〈y, y′〉] = 〈[x, x′], [y, y′]〉 for x, x′, y, y′ ∈ g,

and the natural homomorphism

qg : g̃ → g, 〈x, y〉 7→ [x, y]

is given by the Lie bracket on g.
Proof. Suppose first that qg : g̃ → g is a universal generalized central extension.
We consider the trivial central extension ĝ := g × K with q(x, t) = x. According
to the universal property, there exists a unique morphism of locally convex Lie
algebras α : g̃ → g × K with q ◦ α = qg. For each Lie algebra homomorphism
β : g̃ → K the sum α + β : g̃ → g × K also is a homomorphism of Lie algebras
with q ◦ (α + β) = qg. Hence the uniqueness implies that β = 0. That all
morphisms g̃ → K are trivial means that g̃ is topologically perfect, and therefore
g is topologically perfect.
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Conversely, we assume that g is topologically perfect and construct a universal
generalized central extension. Using Proposition III.9 and Example III.10(1), we
see that 〈g, g〉 carries a locally convex Lie algebra structure with

[〈x, y〉, 〈z, u〉] = 〈[x, y], [z, u]〉, x, y, z, u ∈ g.

Next we observe that im(qg) is dense because [g, g] is dense in g. The corre-
sponding bracket map on g̃ is given by the universal cocycle

ωu : g× g → g̃, (x, y) 7→ 〈x, y〉.

In fact, for x, x′, y, y′ ∈ g we have

ωu(qg(〈x, x′〉), qg(〈y, y′〉)) = ωu([x, x′], [y, y′]) = 〈[x, x′], [y, y′]〉 = [〈x, x′〉, 〈y, y′〉].

Since the elements of the form 〈x, x′〉 span a dense subspace of g̃, equation (3.1)
holds for q = qg.

Now let q : ĝ → g be another generalized central extension with the corre-
sponding map b : g × g → ĝ. Then Lemma III.4(3) and Remark III.7 imply the
existence of a unique continuous linear map α : g̃ = 〈g, g〉 → ĝ with

b(x, y) = α(〈x, y〉), x, y ∈ g.

For x = q(a), x′ = q(a′), y = q(b) and y′ = q(b′) we then have

α([〈x, x′〉, 〈y, y′〉]) = α(〈[x, x′], [y, y′]〉) = b([x, x′], [y, y′]) = b(q([a, a′]), q([b, b′]))

= [[a, a′], [b, b′]] = [b(x, x′), b(y, y′)] = [α(〈x, x′〉), α(〈y, y′〉)].

Now the fact that im(q) is dense in g implies that α is a homomorphism of Lie
algebras. Further,

q(α(〈x, y〉)) = q(b(x, y)) = [x, y] = qg(〈x, y〉),

again with the density of im(q) in g, leads to q ◦ α = qg.
To see that α is unique, we first observe that g̃ is topologically perfect because

g is topologically perfect. If β : g̃ → ĝ is another homomorphism with q ◦ β = qg,
then γ := β − α is a continuous linear map g̃ → ker q ⊆ z(ĝ). Moreover, for
x, y ∈ 〈g, g〉 = g̃,

γ([x, y]) = β([x, y])− α([x, y]) = [β(x), β(y)]− [α(x), α(y)]

= [β(x)− α(x), β(y)] + [α(x), β(y)]− [α(x), α(y)]

= [γ(x), β(y)] + [α(x), γ(y)] = 0

because the values of γ are central. Now γ = 0 follows from the topological
perfectness of g̃.
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Definition III.12. For a topologically perfect locally convex Lie algebra g the
Lie algebra g̃ = 〈g, g〉 is called the universal generalized central extension of g or
the (topological) universal covering Lie algebra of g.

We call two topologically perfect Lie algebras g1 and g2 centrally isogenous if
g̃1
∼= g̃2.
In the category of sequentially complete, resp., complete locally convex Lie

algebras we define g̃ as 〈g, g〉 in the sense of Definition III.6(b). Then the same
arguments as in the proof of Theorem III.11 show that g̃ is a universal generalized
central extension in the corresponding category.

We call a central extension q : ĝ → g of a locally convex Lie algebra g universal
if for any central extension q′ : ĝ′ → g there exists a unique morphism of locally
convex Lie algebras α : ĝ → ĝ′ with q′ ◦ α = q. The following corollary clarifies
the relation between universal central extensions and universal generalized cen-
tral extensions. In particular it implies that the existence of a universal central
extension is a quite rare phenomenon.

Corollary III.13. A locally convex Lie algebra g has a universal central ex-
tension if and only if it is topologically perfect and the universal covering map
qg : g̃ → g is a quotient map. Then qg is a universal central extension.
Proof. Suppose first that q : ĝ → g is a universal central extension. Then the
same argument as in the proof of Theorem III.11 implies that ĝ is topologically
perfect, which implies that g is topologically perfect. Therefore the universal
generalized central extension qg : g̃ → g exists by Theorem III.11. Its universal
property implies the existence of a unique morphism q̃ : g̃ → ĝ with q ◦ q̃ = qg. If
b̂ : g × g → ĝ is the unique continuous bilinear map for which b̂ ◦ (q × q) is the
bracket on ĝ, the construction in the proof of Theorem III.11 implies that

q̃ ◦ ωu = b̂

for the universal cocycle ωu(x, y) = 〈x, y〉.
Now let qu : g ⊕ωu g̃ → g be the central extension of g by g̃, considered as an

abelian Lie algebra, defined by the universal cocycle. Then the universal property
of ĝ implies the existence of a unique morphism

ψ : ĝ → g⊕ωu g̃

with qu ◦ ψ = q. This means that ψ(x) = (q(x), α(x)), where α : ĝ → g̃ is a
continuous linear map. That ψ is a Lie algebra homomorphism means that

(q([x, y]), α([x, y])) = ψ([x, y]) = [ψ(x), ψ(y)] = ([q(x), q(y)], 〈q(x), q(y)〉),

which implies that

α(b̂(q(x), q(y))) = α([x, y]) = 〈q(x), q(y)〉, x, y ∈ ĝ,
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and hence
α ◦ b̂ = ωu.

For the continuous linear maps g̃ → g̃ corresponding to these cocycles, we obtain

α ◦ q̃ = idg̃ .

We also have
q̃ ◦ α ◦ b̂ = q̃ ◦ ωu = b̂,

and since im(b̂) spans a dense subspace of the topologically perfect Lie algebra ĝ,
it follows that

q̃ ◦ α = idĝ .

Therefore q̃ is an isomorphism of locally convex spaces, hence an isomorphism of
locally convex Lie algebras, and this implies that qg is a central extension.

If, conversely, g is topologically perfect and qg is a central extension, its uni-
versal property as a generalized central extension implies that it is a universal
central extension.

Comparing the construction above with the universal central extensions in-
vestigated in [Ne02c], it appears that generalized central extensions are more
natural in the topological context because one does not have to struggle with
the problem that closed subspaces of locally convex spaces do not always have
closed complements, which causes many problems if one works only with central
extensions defined by cocycles (cf. Definition III.3). Moreover, universal gener-
alized central extensions do always exist for topologically perfect locally convex
algebras, whereas there are Banach–Lie algebras which do not admit a universal
central extension ([Ne01, Ex. II.18, III.9] and Proposition III.19 below, combined
with Corollary III.13). The typical example is the Lie algebra of Hilbert–Schmidt
operators on an infinite-dimensional Hilbert space discussed in some detail below.

We now address the question for which Lie algebra the universal covering
morphism qg : g̃ → g is an isomorphism. At the end of this section we will in
particular describe examples, where qg̃ : ˜̃g → g̃ is not an isomorphism.

Proposition III.14. For a topologically perfect locally convex Lie algebra g the
following are equivalent:

(1) qg : g̃ → g is an isomorphism of Lie algebras.

(2) H2(g, z) = {0} for each locally convex space z.

If, in addition, g is a topologically perfect Banach–Lie algebra, then (1) and
(2) are equivalent to

(3) H2(g,K) = {0}.
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Proof. (1)⇒ (2): Let ω ∈ Z2(g, z) be a continuous Lie algebra cocycle g×g →
z. According to Remark III.7, there exists a continuous linear map α : g̃ → z with

ω(x, y) = α(〈x, y〉) = α ◦ q−1
g ([x, y])

for x, y ∈ g, and this means that ω is a coboundary.
(2) ⇒ (1): The triviality of H2(g, g̃) implies that there exists a continuous linear
map α : g → g̃ with

(3.3) 〈x, y〉 = α([x, y]), x, y ∈ g.

Then
(qg ◦ α)([x, y]) = qg(〈x, y〉) = [x, y],

so that the density of [g, g] in g leads to qg ◦ α = idg. On the other hand, (3.3)
can also be read as α ◦ qg = idg̃. Therefore qg is an isomorphism of locally convex
spaces, hence of locally convex Lie algebras.

Now we assume that g is a topologically perfect Banach–Lie algebra. It is clear
that (2) implies (3).
(3) ⇒ (1): (cf. [Ne02c, Prop. 3.5]) Let qg : g̃ → g be the universal covering map.
The condition H2(g,K) = {0} means that each 2-cocycle is a coboundary, i.e.,
that the adjoint map

q∗g : Lin(g,K) → Lin(g̃,K) ∼= Z2(g,K)

is surjective. Since g is topologically perfect, it is also injective, hence bijective.
The surjectivity of q∗g implies in particular that qg is injective. Further the Closed
Range Theorem ([Ru73, Th. 4.14]) implies that the image of qg is closed, and
hence that qg is bijective. Finally the Open Mapping Theorem implies that qg is
an isomorphism.

A topologically perfect locally convex Lie algebra satisfying the two equivalent
conditions of Proposition III.14 is called centrally closed. This means that g is its
own universal covering algebra, or, equivalently, that the Lie bracket g× g → g is
a universal Lie algebra cocycle.

Remark III.15. (a) Let g1, g2 and g3 be topologically perfect locally convex
Lie algebras and q1 : g1 → g2, q2 : g2 → g3 generalized central extensions. Then
q := q2 ◦ q1 : g1 → g3 is a morphism of locally convex Lie algebras with dense
range. Moreover, Lemma III.4(5) implies that

ker q = q−1
1 (ker q2) ⊆ q−1

1 (z(g2)) = z(g1).

Unfortunately, we cannot conclude in general that q is a generalized central ex-
tension. The bilinear map b1 : g2 × g2 → g1 for which b1 ◦ (q1 × q1) is the Lie
bracket of g1 is a Lie algebra cocycle, which implies that

b1(ker q2, g2) ⊆ b1(z(g2), [g2, g2]) = {0}.
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Therefore b1 factors through a bilinear map

b : im(q2)× im(q2) → g1, (q2(x), q2(y)) 7→ b1(x, y)

with
b(q(x), q(y)) = b1(q1(x), q1(y)) = [x, y], x, y ∈ g1.

If b is continuous, it extends to a continuous bilinear map g3 × g3 → g1 with the
required properties, and q is a generalized central extension, but unfortunately,
there is no reason for this to be the case.
(b) If q2 is a quotient map, i.e., a central extension, then b is continuous. This
shows that in the context of topologically perfect locally convex Lie algebras a
generalized central extension of a central extension is a generalized central exten-
sion. This means in particular that if the universal covering map qg : g̃ → g is a
quotient map, then g̃ is centrally closed.

Proposition III.16. Let q̃ : g̃ → g be a generalized central extension, z ⊆ z(g)
a closed subspace and pz : g → g/z the quotient map. Then the composition map
qz := pz ◦ q̃ : g̃ → g/z is a generalized central extension. If q is universal, then qz

is universal, too.
Proof. From Remark III.15(b) we derive in particular that qz is a generalized
central extension.

Now we assume that q̃ : g̃ → g is universal. So let q : ĝ → g/z be a generalized
central extension and consider the pullback Lie algebra

h := {(x, y) ∈ ĝ⊕ g : q(x) = pz(y)},
on which we have two coordinate projections pg : h → g and pĝ : h → ĝ. We
claim that pg is a generalized central extension. Its range is the inverse image
p−1

z (im q) ⊆ g. If U ⊆ g is an open subset intersecting p−1
z (im q) trivially, then the

open subset pz(U) ⊆ g/z intersects im(q) trivially, and therefore U = Ø. Hence
im(pg) is dense in g. Let bz : g/z× g/z → ĝ denote a continuous bilinear map for
which bz ◦ (q × q) is the Lie bracket on ĝ. Then the map

b : g× g → h, (y, y′) 7→ (bz(pz(y), pz(y
′)), [y, y′])

satisfies

b(pg(x, y), pg(x
′, y′)) = b(y, y′) = (bz(pz(y), pz(y

′)), [y, y′])

= (bz(q(x), q(x′)), [y, y′]) = ([x, x′], [y, y′]) = [(x, y), (x′, y′)].

Hence pg is a generalized central extension, and the universal property of q̃ implies
the existence of a unique Lie algebra morphism α : g̃ → h with pg ◦ α = q̃. This
means that

α(x) = (β(x), q̃(x))

for some Lie algebra morphism β : g̃ → ĝ satisfying qz = pz ◦ q̃ = q ◦ β. This
argument shows that qz : g̃ → g/z is a universal generalized central extension of
g/z.
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III.4 Schatten classes as interesting examples

Lemma III.17. Let H be a Hilbert space and sl0(H) the Lie algebra of all
continuous finite rank operators of zero trace on H. For each derivation

∆: sl0(H) → sl0(H)

there exists a continous operator D ∈ B(H) with ∆(x) = [D, x] for each x ∈
sl0(H). The operator D is unique up to an element in K1.
Proof. ([dlH72]) Step 1: For each finite subset F of sl0(H) there exists a
finite-dimensional subspace E ⊆ H such that

F ⊆ sl(E) := {ϕ ∈ sl0(H) : ϕ(E) ⊆ E, ϕ(E⊥) = {0}}.

The Lie algebra sl(E) ∼= sl|E|(K) is simple and the restriction ∆E of ∆ to sl(E)
is a linear map sl(E) → sl0(H) satisfying

∆E([x, y]) = [∆E(x), y] + [x, ∆E(y)].

This means that ∆E ∈ Z1(sl(E), sl0(H)), where sl(E) acts on sl0(H) by the ad-
joint action. Since this action turns sl0(H) into a locally finite module, Lemma A.3
implies that the cocycle ∆E is trivial, i.e., there exists an element DE ∈ sl0(H)
with ∆E(x) = [DE, x] for all x ∈ sl(E). Suppose that D′

E is another element in
sl0(H) with this property. Then we write

DE −D′
E =

(
a b
c d

)

as a block matrix according to the decomposition H = E ⊕ E⊥. As DE − D′
E

commutes with sl(E), it preserves the subspaces sl(E).H = E and E⊥ = {x ∈
H : sl(E).x = {0}}. Therefore b = c = 0, and a ∈ K idE. This proves that
DE |E − D′

E |E ∈ K idE. If we require, in addition, DE.v⊥v for some non-zero
vector v ∈ E, then the restriction of DE to E is uniquely determined.

Step 2: We may assume that dim H ≥ 2, otherwise the assertion is trivial.
Fix 0 6= v ∈ H. As in Step 1, we find for each finite-dimensional subspace E ⊆ H
an operator DE as above with DE.v⊥v. For E ⊆ E ′ the operator DE′ also satisfies
DE′ .v⊥v and ∆E(x) = [DE′ , x] for x ∈ sl(E) ⊆ sl(E ′). Therefore DE′ |E = DE, so
that we obtain a well-defined operator

D : H → H, D.w := DE.w for w ∈ E.

This operator satisfies

∆(x) = [D, x] for all x ∈ sl0(H).
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Step 3: D is continuous: For x, y ∈ H we consider the rank-one-operator
Px,y.v = 〈v, y〉x. Then tr Px,y = 〈x, y〉 vanishes if x⊥y. Then Px,y ∈ sl0(H), and

[D,Px,y](v) = PD.x,y.v − 〈D.v, y〉x.

As for each y ∈ H there exists an element x orthogonal to y, it follows that all
functionals

v 7→ 〈D.v, y〉
are continuous, i.e., that the adjoint operator D∗ of the unbounded operator D is
everywhere defined, and therefore that D has a closed graph ([Ne99, Th. A.II.8]).
Now the Closed Graph Theorem implies that D is continuous.

Step 4: Uniqueness: We have to show that if an operator D on H commutes
with sl0(H), then it is a multiple of the identity. The condition [D, Px,y] = 0 for
x⊥y implies that

〈v, y〉D.x = 〈D.v, y〉x, v ∈ H.

It follows in particular that each x ∈ H is an eigenvector, and hence that D ∈ K1.

Definition III.18. Let H be an infinite-dimensional Hilbert space. For each
p ∈ [1,∞] we write Bp(H) for the corresponding Schatten ideal in B(H), where
B∞(H) denotes the space of compact operators (cf. [dlH72], [GGK00]). Each
operator A ∈ Bp(H) is compact, and if we write the non-zero eigenvalues of the
positive operator

√
A∗A (counted with multiplicity) in a sequence (λn)n∈N (which

might also contain zeros), the norm on Bp(H) is given by

‖A‖p =
( ∑

n∈N
λp

n

) 1
p

.

According to [GGK00, Th. IV.11.2], we then have the estimate

‖AB‖p ≤ ‖A‖p1‖B‖p2 for
1

p
≤ 1

p1

+
1

p2

.

It follows in particular that each Bp(H) is a Banach algebra. We also have

‖ABC‖ ≤ ‖A‖‖B‖p‖C‖, B ∈ Bp(H), A, C ∈ B(H).

For 1 < p ≤ ∞ and 1
p

+ 1
q

= 1 we have

Bp(H)′ ∼= Bq(H),

where the pairing is induced by the trace 〈x, y〉 = tr(xy). Here we use that
Bp(H)Bq(H) ⊆ B1(H), and that the trace extends to a continuous linear func-
tional tr : B1(H) → K (cf. [dlH72, p.113]). We have
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B1(H) ⊆ Bp(H) ⊆ Bp′(H) ⊆ B∞(H)

for p ≤ p′.
For p = 1 the elements of B1(H) are the trace class operators and for p = 2 the

elements of B2(H) are the Hilbert-Schmidt operators. As the trace is a continuous
linear functional on B1(H) vanishing on all commutators, the subspace

sl(H) := {x ∈ B1(H) : tr x = 0}
is a Lie algebra hyperplane ideal.

Proposition III.19. For 1 ≤ p ≤ ∞ let glp(H) be the Banach-Lie algebra
obtained from Bp(H) with the commutator bracket. Then glp(H) is topologically
perfect if and only if p > 1. The universal covering map is given by the inclusion
maps

sl(H) ↪→ glp(H) for 1 < p ≤ 2, and gl p
2
(H) ↪→ glp(H) for 2 < p = ∞.

The Lie algebra sl(H) is topologically perfect and centrally closed.
Proof. That gl1(H) is not topologically perfect follows from the fact that the
trace vanishes on all brackets. Assume that p > 1. Then an elementary argument
with diagonal matrices implies that sl0(H) is dense in Bp(H) with respect to ‖·‖p.
Since sl0(H) is a perfect Lie algebra, glp(H) is topologically perfect.

Let ω : glp(H)× glp(H) → K be a continuous Lie algebra cocycle. Then there
exists a unique continuous linear map

∆: glp(H) → glq(H) ∼= glp(H)′,
1

p
+

1

q
= 1,

with tr(∆(x)y) = ω(x, y) for all x, y ∈ glp(H), and the cocycle identity for ω
implies that ∆ is a derivation, i.e.,

∆([x, y]) = [∆(x), y] + [x, ∆(y)], x, y ∈ glp(H).

The Lie algebra sl0(H) is a perfect ideal in gl(H) and hence in each glp(H).
Therefore it is invariant under ∆, and Lemma III.17 implies the existence of a
continuous operator D ∈ B(H) with ∆(x) = [D, x] for all x ∈ sl0(H). As both
sides describe continuous linear maps glp(H) → gl(H) which coincide on the dense
subspace sl0(H), we have ∆ = ad D on glp(H).

For 1 ≤ p ≤ 2 we have q ≥ 2 ≥ p, so that each bounded operator D ∈ B(H)
satisfies ad D(glp(H)) ⊆ glp(H) ⊆ glq(H). For p > 2 the dual space glq(H) is a
proper subspace of glp(H), and it is shown in [dlH72, p.141] that

{D ∈ gl(H) : [D, glp(H)] ⊆ glq(H)} = glr(H) for
1

r
=

1

q
− 1

p
= 1− 2

p
=

p− 2

p
.
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The cocycle associated to an operator D is given by

ω(x, y) = tr([D, x]y) = tr(D[x, y]), x, y ∈ glp(H).

That the trace on the right hand side makes sense follows from Bp(H)Bp(H) ⊆
B1(H) for p ≤ 2 and Bp(H)Bp(H) ⊆ B p

2
(H) and D ∈ B p

2
(H)′ for p > 2.

For p ≤ 2 we have

[glp(H), glp(H)] ⊆ [gl2(H), gl2(H)] ⊆ [sl0(H), sl0(H)] = sl0(H) = sl(H),

where the closure refers to the trace norm ‖·‖1. An operator D ∈ gl(H) ∼= gl1(H)′

represents the cocycle 0 if and only if it is orthogonal to the hyperplane sl(H),
which means that D ∈ K1. For p > 2 an operator D ∈ glr(H) is never a multiple
of 1, so that we obtain

(3.4) Z2(glp(H),K) ∼=
{

pgl(H) := gl(H)/K1 for 1 ≤ p ≤ 2
gl p

2
(H)′ ∼= glr(H) for 2 < p.

Now let q(〈x, y〉) = [x, y] denote the bracket map

q : g̃lp(H) ∼= 〈glp(H), glp(H)〉 →
{

sl(H) for 1 ≤ p ≤ 2
gl p

2
(H) for 2 < p.

Then q is a continuous morphism of Banach–Lie algebras. Further

Z2(glp(H),K) ∼= Lin(g̃lp(H),K),

and (3.4) imply that the adjoint map q∗ is bijective. That q∗ is injective implies
that q has dense range and the surjectivity of q∗ implies in particular that q is
injective. Further the Closed Range Theorem ([Ru73, Th. 4.14]) implies that the
image of q is closed, and hence that q is bijective. Finally the Open Mapping
Theorem implies that q is an isomorphism.

It remains to show that sl(H) is centrally closed. That it is topologically
perfect follows immediately from the density of the perfect ideal sl0(H). Since
the dual space of gl1(H) can be identified with the full operator algebra gl(H)
via the trace pairing, and the annihilator of the closed hyperplane sl(H) is the
center K1 ⊆ gl(H), the dual space sl(H)′ can be identified in a natural way
with the quotient pgl(H) = gl(H)/K1. Let ω ∈ Z2(sl(H),K) be a continuous
cocycle. As above, there exists a continuous derivation ∆: sl(H) → sl(H)′ with
tr(∆(x)y) = ω(x, y) for x, y ∈ sl(H), where we use that tr(ab) := tr(a′b) is well
defined for a = a′+K1 ∈ pgl(H) and b ∈ sl(H). From the invariance of the perfect
ideal sl0(H) under ∆, we obtain with Lemma III.17 the existence of D ∈ gl(H)
with ∆(x) = [D, x] for all x ∈ sl0(H), and the density of sl0(H) implies that
∆ = ad D. Therefore

ω(x, y) = tr([D, x]y) = tr(D[x, y])

is a coboundary, which leads to H2(sl(H),K) = {0}, and thus sl(H) is centrally
closed by Proposition III.14.
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Remark III.20. From the preceding proposition, we obtain in particular exam-
ples of Lie algebras where the universal covering algebra is not centrally closed.
For example each glp(H) with p > 2 has this property. For p < 2 ≤ 4 we have

g̃lp(H) ∼= gl p
2
(H) and ˜̃

glp(H) ∼= sl(H),

but for 2k < p ≤ 2k+1 we need to pass k + 1-times to the universal covering Lie
algebra until we reach sl(H) which is centrally closed.

In Section IV below we shall see many other concrete examples of universal
central extensions, when we discuss root graded locally convex Lie algebras.

IV Universal coverings of locally convex root graded
Lie algebras
In this section we describe the universal covering Lie algebra g̃ of a locally convex
root graded Lie algebra g. In particular, we shall see that it can be constructed
directly from its coordinate structure (A, D, δD). For the class of the so called
regular root graded Lie algebras, the universal covering algebra does not depend on
D, hence has a particularly nice structure. Since not every root graded Lie algebra
g is regular, the description of g̃ is more involved than in the algebraic context
([ABG00]). A key point is that the concept of a generalized central extension
provides the natural framework to translate the algebraic structure of the universal
covering algebra into the locally convex context.

IV.1 Generalized central extensions of root graded Lie alge-
bras

Proposition IV.1. Let q : ĝ → g be a generalized central extension for which
ĝ is topologically perfect. If g is ∆-graded, then ĝ is ∆-graded and vice versa.
Proof. (a) First we assume that g is ∆-graded. On ĝ we consider the g∆-
module structure given by âd (Lemma III.4). Then the corestriction ĝ → im(q)
is an extension of the locally finite g∆-module im(q) by the trivial module ker q,
hence a trivial extension (Proposition A.4). It follows in particular that ĝ is an
h-weight module. The weights occurring in this module are identical with those
occurring in im(q) ⊇ [g, g] (Lemma III.4(1)). This implies that we have an h-
weight decomposition

ĝ = ĝ0 ⊕
⊕

α∈∆

ĝα

with q(ĝα) = gα for α 6= 0. As the central Lie algebra extension q−1(g∆) →
→ g∆ is trivial, its commutator algebra ĝ∆ is a subalgebra which is mapped by
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q isomorphically onto g∆. Therefore (R1)–(R3) are satisfied for ĝ∆ as a grading
subalgebra in ĝ.

As the bracket in ĝ is given by [x, y] = b(q(x), q(y)), the topological perfectness
of ĝ implies that the image of b spans a dense subspace of ĝ. Therefore

b(g0, g0) +
∑

0 6=α

b(gα, g−α) = b(g0, g0) +
∑

06=α

[ĝα, ĝ−α]

is dense in ĝ0. For x±α ∈ ĝ±α and x±β ∈ ĝ±β we further have

b([q(xα), q(x−α)], [q(xβ), q(x−β)]) = [[xα, x−α], [xβ, x−β]] ∈ [ĝ0, [ĝβ, ĝ−β]] ⊆ [ĝβ, ĝ−β].

Hence
b([gα, g−α], [gβ, g−β]) ⊆ [ĝβ, ĝ−β],

so that (R4) holds for g, and the relation q(ĝα) = gα for α 6= 0 imply that b(g0, g0)
is contained in the closure of the sum of the spaces [ĝα, ĝ−α], α 6= 0. This implies
(R4) for ĝ.
(b) Now we assume that ĝ is ∆-graded with grading subalgebra ĝ∆. Then ker q ⊆
z(ĝ), so that g∆ := q(ĝ∆) ∼= ĝ∆. Clearly g carries a natural g∆-module structure.

From [g, g] ⊆ im(q) (Lemma III.4(2)) we derive that g/ im(q) is a trivial g∆-
module. Moreover, im(q) ∼= ĝ/ ker(q) is a locally finite g∆-module. Therefore
Proposition A.4 implies that g is a locally finite g∆-module which is a direct sum
of q(ĝ) and a trivial module Z. This immediately leads to a weight decomposition
of g with weight system ∆, and it is obvious that (R1)–(R3) are satisfied.

As h acts on g by continuous operators, the projection g → g0 along the sum
of the other root spaces is continuous, so that the density of the image of q in g

implies that q(ĝ0) is dense in g0. We further have

[gα, g−α] = q(b(gα, g−α)) = q(b(q(ĝα), q(ĝ−α))) = q([ĝα, ĝ−α]),

so that (R4) for ĝ implies (R4) for g.

Corollary IV.2. If g is ∆-graded with grading subalgebra g∆, then z(g) ⊆
zg(g∆) ⊆ zg(h) = g0, and g/z(g) ∼= ad g is a ∆-graded Lie algebra. The quotient
map ad: g → g/z(g) is a morphism of ∆-graded Lie algebras.

Lemma IV.3. Let g1 and g2 be locally convex ∆-graded Lie algebras with coor-
dinate structures (Ai = Ai ⊕ Bi, Di, δ

Di), and ηi : g∆ → g the corresponding em-
beddings that we use to identify g∆ with a subalgebra of g1 and g2. If ϕ : g1 → g2

is a morphism of locally convex Lie algebra with ϕ ◦ η1 = η2, then there exist
continuous linear maps

ϕA : A1 → A2, ϕB : B1 → B2 and ϕD : D1 → D2
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such that

(4.1) ϕ(a⊗ x + b⊗ v + d) = ϕA(a)⊗ x + ϕB(b)⊗ v + ϕD(d)

for a ∈ A1, b ∈ B1, d ∈ D1, x ∈ g∆ and v ∈ Vs, and

ϕA := ϕA ⊕ ϕB : A1 → A2

is a continuous algebra homomorphism with

(4.2) δD2 ◦ (ϕA × ϕA) = ϕD ◦ δD1 .

Proof. The condition ϕ ◦ η1 = η2 means that ϕ is equivariant with respect to
the representations of g∆ on g1 and g2. Identifying A1 with Homg∆

(g∆, g1), the
equivariance of ϕ with respect to g∆ permits us to define ϕA(a) := ϕ ◦ a. We
likewise define ϕB and ϕD. Then (4.1) is satisfied. Now (4.2) and that ϕA defines
an algebra homomorphism follow directly from (B1)–(B3), because the algebra
structure on A1, resp., A2 is completely determined by the Lie bracket.

Remark IV.4. The preceding lemma applies in particular to generalized central
extensions q : ĝ → g. In this case the proof of Proposition IV.1 implies that qA is
a topological isomorphism, hence an isomorphism of locally convex algebras. We
therefore may assume that g and g̃ have the same coordinate algebra A. In this
sense we write

g = (A⊗ g∆)⊕ (B ⊗ Vs)⊕D and ĝ = (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̂,

and qD : D̂ → D is a map with dense range, qD ◦ δD̂ = δD, and since q is a
generalized central extension, restricting the g∆-equivariant corresponding map
b : g× g → ĝ to D ×D leads to a continuous bilinear map bD : D ×D → D̂ with
bD(qD(d), qD(d′)) = [d, d′] for d, d′ ∈ D̂. We conclude that qD : D̂ → D also is a
generalized central extension.

This applies in particular to the universal covering algebra, which we write as

g̃ = (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̃.

In the following subsection we will see how D̃ can be described directly in terms
of the coordinate algebra A and δA.

IV.2 The universal covering of a ∆-graded locally convex Lie
algebra

To describe the universal covering Lie algebra g̃ of a locally convex root graded Lie
algebra g, we first consider its coordinate structure (A = A⊕B,D, δD) (Definition
II.14). We consider the locally convex space

〈A,A〉σ := 〈A,A〉/〈A,B〉
and write the image of 〈a, a′〉 ∈ 〈A,A〉 in 〈A,A〉σ also as 〈a, a′〉.
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Theorem IV.5. For each root system ∆, a corresponding coordinate algebra
A, and the natural map δA : A × A → der(A), the derivations δA(a, b) preserve
the subspace 〈A,B〉 of 〈A,A〉, and we obtain on 〈A,A〉σ the structure of a locally
convex Lie algebra by

[〈a, a′〉, 〈b, b′〉] := δA(a, a′).〈b, b′〉.
The map δA factors through a Lie algebra homomorphism 〈A,A〉σ → der(A).
Proof. Since the map A3 → A, (a, b, c) 7→ δD(a, b).c is continuous, and δD is a
cyclic 1-cocycle vanishing on A×B (Theorem II.13), it defines a continuous linear
map

〈A,A〉σ → D, 〈a, b〉 7→ δD(a, b).

Now define
δA : 〈A,A〉σ → der(A), δA(a, b).c := δD(a, b).c,

and observe that the bilinear map

〈A,A〉σ ×A → A, (〈a, b〉, c) 7→ δA(a, b).c

is continuous.
From (2.3) in Theorem II.13 we further derive that

(4.3) δA(δA(a, b).〈c, d〉) = δA(δA(a, b).c, d)+δA(c, δA(a, b).d) = [δA(a, b), δA(c, d)]

for a, b, c, d ∈ A.
As the operators δ(a, b) ∈ der(A) all preserve the subspaces A and B of A,

the subspace 〈A,B〉 ⊆ 〈A,A〉 is invariant under all these operators with respect
to the natural action of der(A) on 〈A,A〉, and we therefore obtain a well-defined
bracket on 〈A,A〉σ with

[〈a, a′〉, 〈b, b′〉] := δA(a, a′).〈b, b′〉.
As in Proposition III.9, the Jacobi identity for this bracket is a direct conse-

quence of (4.3). That the bracket is alternating is equivalent to the relation

(4.4) δA(a, a′).〈b, b′〉 = −δA(b, b′).〈a, a′〉
for a, a′, b, b′ ∈ A. This relation can be verified case by case for the coordinate
algebras associated to the different types of root systems (see [ABG00, p.521]; cf.
also Theorem II.20 and the subsequent comments). Formula (4.3) immediately
shows that δA is a morphism of Lie algebras.

For the case where A is an associative or a Jordan algebra, (4.4) can be ob-
tained as in Example III.10(2), (3). In this case we already have on 〈A,A〉 a
natural Lie algebra structure, and since 〈A,B〉 is invariant under the operators
δA(a, b), it is a Lie algebra ideal, so that 〈A,A〉σ simply is the quotient Lie alge-
bra.
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Definition IV.6. Let D be a locally convex Lie algebra and D × A → A a
continuous action by derivations on A which preserves the subspaces A and B of
A. Since the map

D ×A×A → 〈A,A〉, (d, a, b) 7→ d.〈a, b〉 = 〈d.a, b〉+ 〈a, d.b〉

is trilinear and continuous, it induces a continuous bilinear map

D × 〈A,A〉 → 〈A,A〉.

Therefore the semidirect product 〈A,A〉σ o D carries a natural structure of a
locally convex Lie algebra.

Using Example III.10(1) and Proposition III.9, we obtain a locally convex Lie
algebra structure on 〈D, D〉 with

[〈d, d′〉, 〈e, e′〉] = 〈[d, d′], [e, e′]〉

such that the bracket map bD : 〈D, D〉 → D, 〈d, d′〉 7→ [d, d′] is a morphism of
locally convex Lie algebras.

Combining this with the semidirect product construction from above, we ob-
tain a semidirect product D1 := 〈A,A〉σ o 〈D, D〉. In this Lie algebra the closed
subspace I generated by the elements of the form

(d.〈a, a′〉,−〈d, δD(a, a′)〉), a, a′ ∈ A, d ∈ D

is an ideal because I commutes with the ideal 〈A,A〉σ, and D acts in a natural
way by derivations on D1 preserving I. Since im(δD) spans a dense subspace of
D, the ideal I is also generated by the elements of the form

([〈a, a′〉, 〈b, b′〉],−〈δD(a, a′), δD(b, b′)〉), a, a′, b, b′ ∈ A.

We define
D̃ := (〈A,A〉σ o 〈D, D〉)/I.

This is a locally convex Lie algebra that will be needed in the description of the
universal covering algebra qg : g̃ → g of a root graded Lie algebra g with coordinate
structure (A, D, δD). We write [(x, y)] for the image of the pair (x, y) ∈ D1 in the
quotient Lie algebra D̃.

Lemma IV.7. The map

qg,D : D̃ → D, [(〈a, a′〉, 〈d, d′〉)] 7→ δD(a, a′) + [d, d′]

is a well-defined generalized central extension.
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Proof. First we observe that δD
A : 〈A,A〉σ → D is a morphism of Lie algebras

because

δD
A([〈a, b〉, 〈c, d〉]) = δD

A(δA(a, b).〈c, d〉) = [δD
A(〈a, b〉), δD

A(〈c, d〉)]
(Theorem II.13). Therefore

δD
A([〈a, a′〉, 〈b, b′〉]) = [δD(a, a′), δD(b, b′)],

which implies that qg,D is well-defined. The equivariance of qg,D with respect to the
action of D by derivations on 〈A,A〉σ and 〈D, D〉 implies that qg,D is a morphism
of Lie algebras.

Its range contains the image of δD, hence is dense in D. Moreover, the con-
tinuous bilinear map

b : D ×D → D̃, (d, d′) 7→ [(0, 〈d, d′〉)]
satisfies

b([d, d′], [e, e′]) = [(0, 〈[d, d′], [e, e′]〉)] =
[
[(0, 〈d, d′〉)], [(0, 〈e, e′〉)]

]
,

b(δD(a, a′), δD(b, b′)) = [(0, 〈δD(a, a′), δD(b, b′)〉)] = [([〈a, a′〉, 〈b, b′〉], 0)],

and

b([d, d′], δD(a, a′)) = [(0,−〈δD(a, a′), [d, d′]〉)] = [([d, d′].〈a, a′〉, 0)]

=
[
[(0, 〈d, d′〉)], [(〈a, a′〉, 0)]

]
.

This implies that b ◦ (qg,D × qg,D) is the Lie bracket on D̃, and hence that qg,D is
a generalized central extension.

Note that, in general, D̃ is not the universal covering Lie algebra because D
might be abelian, so that it has no universal covering algebra.

The following theorem is the locally convex version of the description of the
universal covering Lie algebra (cf. [ABG00] for the algebraic case).

Theorem IV.8. Let g be a ∆-graded locally convex Lie algebra with coordinate
structure (A, D, δD). Then the Lie algebra D̃ acts continuously by derivations on
A via

(〈a, b〉, 〈d, d′〉).c := δD(a, b).c + [d, d′].c,

and we have a continuous bilinear map

δD̃ : A×A → D̃, (a, b) 7→ [(〈a, b〉, 0)].

The Lie algebra
g̃ := (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̃
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with the Lie bracket given by

[d, a⊗ x + b⊗ v + d′] = d.a⊗ x + d.b⊗ v + [d, d′],

and

[a⊗ x, a′ ⊗ x′] = γA
+(a, a′)⊗ [x, x′] + γA

−(a, a′)⊗ x ∗ x′ + γB
A (a, a′)⊗ βV

g (x, x′)

+κ(x, x′)δD̃(a, a′),

[a⊗ x, b⊗ v] =
ab + ba

2
⊗ βg

g,V (x, v) +
ab− ba

2
⊗ x.v, ,

[b⊗ v, b′ ⊗ v′] = γA
B(b, b′)⊗ βg

V (v, v′) + γB
B (b, b′)⊗ βV

V (v, v′) + κVs(v, v′)δD̃(b, b′)

is the universal covering Lie algebra of g with respect to the map

qg(a⊗ x + b⊗ v + d) = a⊗ x + b⊗ v + qg,D(d),

where
qg,D : D̃ → D, [(〈a, a′〉, 〈d, d′〉)] 7→ δD(a, a′) + [d, d′].

Proof. In view of the comments in Definition IV.6, the Lie algebra D̃ together
with the map δD̃ : D̃ → der(A) satisfy all assumptions of Theorem II.15, and we
obtain on

g̃ := (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̃

a Lie bracket as described above for which g̃ is a ∆-graded Lie algebra with
coordinate structure (A, D̃, δ

D̃
), and qg : g̃ → g is a morphism of Lie algebras.

Since the range of qg,D contains the image of δD, the range of qg is dense.
To see that qg is a generalized central extension, we observe that the formulas

for the bracket in Theorem II.15 show how to define a continuous bilinear map
bg : g× g → g̃ for which b ◦ (qg× qg) is the bracket of g̃ (cf. Lemma IV.7). We only
have to replace δD̂ by δD̃ and define bg on D × g by

bg(d, a⊗ x + b⊗ v + d′) := d.a⊗ x + d.b⊗ v + [(0, 〈d, d′〉)].
The main point in the complicated construction of the Lie algebra D̃ was the need
for the bilinear map bg on D × D. This proves that qg is a generalized central
extension.

To prove the universality of qg, let q : ĝ → g be a generalized central extension,
where we write ĝ as

ĝ = (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̂

and recall that qD : D̂ → D also is a generalized central extension, so that there
exists a continuous bilinear map bD : D ×D → D̂ such that bD ◦ (qD × qD) is the
Lie bracket on D̂ (Remark IV.4). Then the corresponding map δD̂

A : 〈A,A〉σ → D̂
is a continuous homomorphism of Lie algebras because

δD̂
A([〈a, b〉, 〈c, d〉]) = δD̂

A(δA(a, b).〈c, d〉) = [δD̂
A(a, b), δD̂

A(c, d)]
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(Theorem II.13). This homomorphism is equivariant with respect to the action
of D on 〈A,A〉σ and D̂, where the action of D on D̂ is given by factorization of
the adjoint representation of D̂ to an action of D on D̂ (Lemma III.4). Further
bD induces a continuous Lie algebra homomorphism

bD : 〈D, D〉 → D̂

(Lemma III.4.3) because for d, d′, e, e′ ∈ D we have

[bD(〈d, d′〉), bD(〈e, e′〉)] = bD(qD(bD(〈d, d′〉)), qD(bD(〈e, e′〉)))
= bD(〈[d, d′], [e, e′]〉) = bD([〈d, d′〉, 〈e, e′〉]).

Combining bD with δD̂
A , we get a continuous Lie algebra morphism

〈A,A〉σ o 〈D, D〉 → D̂, (〈a, a′〉, 〈d, d′〉) 7→ δD̂(a, a′) + bD(d, d′),

and this morphism maps

[〈a, a′〉, 〈b, b′〉]− 〈δD(a, a′), δD(b, b′)〉

to
[δD̂(a, a′), δD̂(b, b′)]− bD(δD(a, a′), δD(b, b′)) = 0

because qD ◦ δD̂ = δD. Hence it factors through a morphism

qg,D : D̃ → D̂, [(〈a, a′〉, 〈d, d′〉)] 7→ δD̂(a, a′) + bD(d, d′).

We now obtain a continuous linear map

qg : g̃ → ĝ, a⊗ x + b⊗ v + d 7→ a⊗ x + b⊗ v + qg,D(d),

and (B1)–(B3) together with the relation qD ◦ δD̂ = δD ((4.2) in Lemma IV.3)
imply that this map is a continuous morphism of Lie algebras satisfying q ◦qg = q̃.
This proves that qg : g̃ → g is a universal covering Lie algebra of g.

Definition IV.9. We call a ∆-graded Lie algebra g with coordinate structure
(A, D, δD) regular if the natural map

δD
A : 〈A,A〉σ → D, 〈a, b〉 7→ δD(a, b)

is a generalized central extension, i.e., there exists a continuous bilinear map
bD : D ×D → 〈A,A〉σ such that bD ◦ (δD

A × δD
A) is the bracket on 〈A,A〉σ.
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Examples IV.10. We continue the discussion from Examples II.16 by showing
that all Lie algebras discussed there are regular.
(a) For the algebras of the type g = A ⊗ g∆ we have D = {0}, so that they are
regular.
(b) For g = sln(A) we have A = A, D ∼= [A,A], and

δD(a, b) =
1

2n2
[a, b].

The corresponding Lie bracket on 〈A,A〉 is given by

[〈a, b〉, 〈a′, b′〉] = δD(a, b).〈a′, b′〉 =
1

2n2
(〈[[a, b], a′], b′〉+ 〈a, [[a, b], b′]〉)

=
1

2n2
〈[a, b], [a′, b′]〉.

Therefore the bilinear map

b : D ×D → 〈A,A〉, (a, b) 7→ 2n2〈a, b〉
satisfies

b(δD(a, b), δD(a′, b′)) =
1

4n4
b([a, b], [a′, b′]) =

1

2n2
〈[a, b], [a′, b′]〉 = [〈a, b〉, 〈a′, b′〉],

which implies that δD
A : 〈A,A〉 → D is a generalized central extension, and there-

fore sln(A) is regular.
(c) For g = sp2n(A, σ)′ we have with the notation from Example II.16

D ∼= [A,A]
−σ

and δD(a, b) = µn([a, b] + [aσ, bσ])

for some µn ∈ K. The corresponding Lie bracket on 〈A,A〉σ is given by

[〈a, b〉, 〈a′, b′〉] = δD(a, b).〈a′, b′〉 = µn〈[a, b]− [a, b]σ, [a′, b′]〉
=

µn

2
〈[a, b]− [a, b]σ, [a′, b′]− [a′, b′]σ〉.

Therefore the bilinear map

b : D ×D → 〈A,A〉, (a, b) 7→ 1

2µn

〈a, b〉

satisfies

b(δD(a, b), δD(a′, b′)) = µ2
nb([a, b]− [a, b]σ, [a′, b′]− [a′, b′]σ)

=
µn

2
〈[a, b]− [a, b]σ, [a′, b′]− [a′, b′]σ〉 = [〈a, b〉, 〈a′, b′〉],

which implies that δD̃ : 〈A,A〉σ → D is a generalized central extension, so that
sp2n(A)′ is regular.
(d) For g = TKK(J) for a Jordan algebra J we have D = 〈J, J〉 ∼= 〈A,A〉σ, so
that δD̃ = id implies that g is regular.

The following lemma provides a handy criterion for regularity.
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Lemma IV.11. The ∆-graded Lie algebra g with coordinate structure (A, D, δD)
is regular if and only if the natural map

δD̃
A : 〈A,A〉σ → D̃, 〈a, b〉 7→ [(〈a, b〉, 0)]

is an isomorphism.
Proof. According to Lemma IV.7, the map qg,D : D̃ → D is a generalized
central extension. If δD̃

A is an isomorphism, the composed map δD
A : 〈A,A〉σ → D

also is a generalized central extension.
If, conversely, g is regular, i.e., δD

A is a generalized central extension, and
bD : D ×D → 〈A,A〉σ a continuous bilinear map for which bD ◦ (δD

A × δD
A) is the

bracket on 〈A,A〉σ, then we define

ϕ : D̃ → 〈A,A〉σ, [(〈a, a′〉, 〈d, d′〉)] 7→ 〈a, a′〉+ bD(d, d′).

That this map is well-defined follows from

[〈a, a′〉, 〈b, b′〉]− bD(δD(a, a′), δD(b, b′))

= [〈a, a′〉, 〈b, b′〉]− bD(δD̃(〈a, a′〉), δD̃(〈b, b′〉)) = 0

for a, a′, b, b′ ∈ A. Moreover, ϕ is a morphism of Lie algebras:

[〈a, a′〉+ bD(d, d′), 〈b, b′〉+ bD(e, e′)]

= [〈a, a′〉, 〈b, b′〉] + [d, d′] .〈b, b′〉 − [e, e′] .〈a, a′〉+ [bD(d, d′), bD(e, e′)]

= [〈a, a′〉, 〈b, b′〉] + [d, d′] .〈b, b′〉 − [e, e′] .〈a, a′〉+ bD([〈d, d′〉, 〈e, e′〉])
= ϕ

([
[(〈a, a′〉, 〈d, d′〉)] , [(〈b, b′〉, 〈e, e′〉)]

])
.

We have ϕ ◦ δD̃
A = id〈A,A〉σ and

(δD̃
A ◦ ϕ)

(
[(〈a, a′〉, 〈d, d′〉)]

)
= [(〈a, a′〉+ bD(d, d′), 0)].

For d = δD(a, b) and d′ = δD(a′, b′) we have

bD(d, d′) = bD(δD(a, b), δD(a′, b′)) = bD(δD̃(〈a, b〉), δD̃(〈a′, b′〉)) = [〈a, b〉, 〈a′, b′〉],

which, as an element of D̃, equals 〈δD(a, b), δD(a′, b′)〉 = 〈d, d′〉. Since the image
of δD spans a dense subspace of D, it follows that

[(〈d, d′〉, 0)] = [(0, bD(d, d′))]

for all d, d′ ∈ D, and hence that δD̃
A ◦ϕ = id

D̃
. Therefore δD̃

A is an isomorphism of
locally convex Lie algebras whose inverse is ϕ.
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Remark IV.12. (a) The preceding lemma shows that if g is regular, then its
universal covering Lie algebra is given by

g̃ ∼= g̃(∆,A) := (A⊗ g∆)⊕ (B ⊗ Vs)⊕ 〈A,A〉σ

with the Lie bracket given by

[d, a⊗ x + b⊗ v + d′] = d.a⊗ x + d.b⊗ v + [d, d′],

and

[a⊗ x, a′ ⊗ x′] = γA
+(a, a′)⊗ [x, x′] + γA

−(a, a′)⊗ x ∗ x′ + γB
A (a, a′)⊗ βV

g (x, x′)

+κ(x, x′)δA(a, a′),

[a⊗ x, b⊗ v] =
ab + ba

2
⊗ βg

g,V (x, v) +
ab− ba

2
⊗ x.v,

[b⊗ v, b′ ⊗ v′] = γA
B(b, b′)⊗ βg

V (v, v′) + γB
B (b, b′)⊗ βV

V (v, v′) + κVs(v, v′)δA(b, b′)

with
qg(a⊗ x + b⊗ v + d) = a⊗ x + b⊗ v + δD

A(d),

where δD
A(〈a, b〉) = δD(a, b) for a, b ∈ A.

(b) If g is not regular, then we can still consider the Lie algebra

g] := (A⊗ g∆)⊕ (B ⊗ Vs)⊕ 〈A,A〉σ

with the coordinate structure (A, 〈A,A〉σ, δ〈A,A〉σ), where δ〈A,A〉σ(a, b) = 〈a, b〉,
and 〈A,A〉σ acts on A via δA (Theorem II.15). Then the map

q] : g] → g, a⊗ x + b⊗ v + d 7→ a⊗ x + b⊗ v + δD
A(d)

is a morphism of locally convex Lie algebras with dense range. The subspace
ker q] = ker δD

A ⊆ 〈A,A〉σ acts trivially on A, hence on A ⊗ g∆ and B ⊗ Vs, and
therefore on g]. This means that ker q] is central. If g is not regular, then q] is
not a generalized central extension.

Nevertheless, q] has the following universal property: If q : ĝ → g is a general-
ized central extension with

ĝ = (A⊗ g∆)⊕ (B ⊗ Vs)⊕ D̂

(cf. Remark IV.4), then qD : D̂ → D also is a generalized central extension. As in
the proof of Theorem IV.8, we see that the corresponding map δD̂

A : 〈A,A〉σ → D̂
is a continuous homomorphism of Lie algebras and that we obtain a continuous
morphism of Lie algebras

ϕ : g] → ĝ, a⊗ x + b⊗ v + d 7→ a⊗ x + b⊗ v + δD̂
A(d)

with q ◦ ϕ = q]. As ker q is central, the uniqueness of ϕ follows from the fact
that all Lie algebra homomorphisms g] → ker q ⊆ z(ĝ) are trivial because g] is
topologically perfect.
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Corollary IV.13. If g is a regular ∆-graded locally convex Lie algebra, then its
universal covering Lie algebra g̃ only depends on the pair (A, δA), which in turn is
completely determined by the coordinate algebra A and the type of ∆. If we write
g̃(∆,A) for g̃, then the assignment

A 7→ g̃(∆,A)

defines a functor from the category of locally convex algebras determined by the
root system ∆ to the category of locally convex Lie algebras.

Corollary IV.14. Each Lie algebra g̃(∆,A) is centrally closed and in particular
regular.
Proof. For the Lie algebra g := g̃(∆,A) we have D = 〈A,A〉σ, so that
δD
A = idD, which trivially is a generalized central extension. Therefore the ex-
plicit description of g̃ in Theorem IV.8 implies that g is its own universal covering
Lie algebra because the universal covering Lie algebra has the same coordinate
algebra A.

We shall see in Example IV.24 below that there are examples of root graded
Lie algebras for which g̃ is not centrally closed.

Remark IV.15. Let g = (A⊗g∆)⊕(B⊗Vs)⊕D be a root graded locally convex
Banach–Lie algebra. Let Dp := im(δD) ⊆ der(A) (the p stands for “projective”),
where the closure is to be taken with respect to the norm topology on der(A) ⊆
B(A). Then Theorem II.15 applies to the natural corestriction δDp : A×A → D̂,
and we obtain a root graded Lie algebra

pg(∆,A) := (A⊗ g∆)⊕ (B ⊗ Vs)⊕Dp

with the coordinate structure (A, Dp, δ
Dp). It is clear from the construction that

the center of the Lie algebra pg(∆,A) is trivial because Dp acts faithfully on A.
Moreover, the adjoint representation ad: g → der(g) factors through a continuous
linear map

g → pg(∆,A) → der(g),

and it is easy to see that
pg(∆,A) ∼= ad(g)

because the natural action of g∆ on ad(g) directly leads to the structure of a
∆-graded Lie algebra on ad(g) with coordinate structure (A, Dp, δ

Dp).
This implies that for a Banach–Lie algebra g, the Lie algebra ad(g) only de-

pends onA and ∆, which justifies the notation pg(∆,A), the projective Lie algebra
associated to ∆ and A.

The Lie algebra g is now caught in a diagram of the form

g̃(∆,A)
pg−−→g

ad−−→pg(∆,A)

with morphisms with dense range and central kernel which need not be generalized
central extensions.
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IV.3 Lie algebra cocycles on root graded Lie algebras

Proposition IV.16. Every continuous Lie algebra cocycle on a root graded Lie
algebra g is equivalent to a g∆-invariant one.
Proof. As a module of g∆, the Lie algebra g decomposes topologically as

g = (A⊗ g∆)⊕ (B ⊗ Vs)⊕D,

and therefore

g⊗ g ∼= (g∆ ⊗ g∆)⊗ (A⊗ A)⊕ (g∆ ⊗ Vs)⊗ (A⊗B) + · · ·

is the decomposition of g⊗ g as a g∆-module, where A, B and D are considered
as trivial modules. We conclude that for each trivial locally convex g∆-module z

we have

Lin(g⊗ g, z) ∼= (g∆ ⊗ g∆)∗ ⊗ Lin(A⊗ A, z)⊕ (g∆ ⊗ Vs)
∗ ⊗ Lin(A⊗B, z) + · · ·

Since g∆ and Vs are finite-dimensional, Lin(g⊗ g, z) is a locally finite g∆-module,
hence semisimple. This property is in particular inherited by the submodule
Z2(g, z) ⊆ Lin(g⊗ g, z) of continuous Lie algebra cocycles. Hence the decomposi-
tion into trivial and effective part yields

Z2(g, z) = Z2(g, z)g∆ ⊕ g∆.Z2(g, z).

For the representation ρ of g on the space C2(g, z) of continuous Lie algebra 2-
cochains we have the Cartan formula

ρ(x) = ix ◦ d + d ◦ ix, x ∈ g,

which implies that on 2-cocycles we have ρ(x).ω = d(ix.ω) and hence g.Z2(g, z) ⊆
B2(g, z). We conclude that each element of H2(g, z) has a g∆-invariant represen-
tative.

Proposition IV.17. If g is a regular ∆-graded Lie algebra, then the g∆-
invariant Lie algebra cocycles ω ∈ Z2(g, z)g∆ are in one-to-one correspondence
with the elements of the space Lin(〈A,A〉σ, z), where we obtain from ω ∈ Z2(g, z)g∆

∼= Lin(g̃, z)g∆ a function ωA on 〈A,A〉σ by restricting to the subspace 〈A,A〉σ of
g̃.

The cocycle ω is a coboundary if and only if ωA can be written as α ◦ δD
A for

an α ∈ Lin(D, z), so that

H2(g, z) ∼= Lin(〈A,A〉σ, z)/ Lin(D, z) ◦ δD
A .
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Proof. If qg : g̃ ∼= 〈g, g〉 → g is the universal covering Lie algebra, then we
have for each locally convex space z a natural isomorphism Z2(g, z) ∼= Lin(g̃, z)
(Remark III.7). As qg is equivariant with respect to the action of g∆, this leads to

Z2(g, z)g∆ ∼= Lin(g̃, z)g∆

for the invariant Lie algebra cocycles. On the other hand

g̃ = (A⊗ g∆)⊕ (B ⊗ Vs)⊕ 〈A,A〉σ

implies that Lin(g̃, z)g∆ ∼= Lin(〈A,A〉σ, z).
If α ∈ Lin(D, z), then we extend α to a continuous linear map αg : g → z

by zero on the subspaces A ⊗ g∆ and B ⊗ Vs. Then dα(x, y) = α([y, x]) is a
g∆-invariant cocycle on g, and the corresponding function (dα)̃g on g̃ ∼= 〈g, g〉
satisfies (dα)̃g = −α ◦ bg which implies that

(dα)A = −α ◦ bg |〈A,A〉σ = −α ◦ δD
A .

If, conversely, ω = dα is a g∆-invariant coboundary, then the same argument as
in the proof of Proposition IV.16 implies that we may choose α as a g∆-invariant
function on g, which means that α vanishes on A⊗g∆ and B⊗Vs, hence is of the
form discussed above. We conclude that

Lin(D, z) ◦ δD
A ⊆ Lin(〈A,A〉σ, z)

corresponds to the g∆-invariant coboundaries. This completes the proof.

The preceding proposition describes the cohomology of g with values in a
trivial module z in terms of the coordinate algebra. For the topological homology
space we get

H2(g) := ker qg
∼= ker δD

A ⊆ 〈A,A〉σ,
which describes H2(g) completely in terms of the coordinate algebra and D.

Definition IV.18. Motivated by the corresponding concept for associative
algebras with involution (Appendix D), we define the full skew dihedral homology
of A, resp., the pair (A, δA) as

HF (A) := ker δA ⊆ 〈A,A〉σ.
Proposition IV.19. If g is a regular ∆-graded locally convex Lie algebra, then
the centerfree Lie algebra g/z(g) is also ∆-graded with the same coordinate algebra
and the same universal covering algebra, and

H2(g/z(g)) ∼= HF (A).

Proof. The first two assertions follow from Corollary IV.2, Proposition IV.17
and Proposition III.16.
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With respect to the g∆-isotypical decomposition of g, we have

z(g) = {d ∈ D : (∀a ∈ A) d.a = 0},
which implies that

H2(g/z(g)) = ker qg/z(g) = q−1
g (z(g)) = z(g̃) = ker δA = HF (A).

Example IV.20. (a) Let A be an associative algebra with involution σ, A :=
Aσ, B := A−σ, and consider the modified bracket map defined by

bσ(x, y) := [x, y]− [x, y]σ = [x, y]− [yσ, xσ] = [x, y] + [xσ, yσ].

Then bσ defines a continuous linear map 〈A,A〉σ → A−σ, and

HD′
1(A, σ) := ker bσ ⊆ 〈A,A〉σ

is called the first skew-dihedral homology space of (A, σ) (see Appendix D for
more information on skew-dihedral homology). The corresponding full dihedral
homology space is

HF (A) = b−1
σ (Z(A)) = {x ∈ 〈A,A〉σ : ad(bσ(x)) = 0}.

(b) If A = A is an associative algebra, B = {0}, and δA(a, b) = ad([a, b]), then

〈A,A〉σ = 〈A,A〉
with the Lie algebra structure

[〈a, b〉, 〈c, d〉] = 〈[a, b], [c, d]〉
defined in Example III.10(2). If bA : 〈A,A〉 → A, 〈a, b〉 7→ [a, b] is the commutator
bracket, then

HC1(A) := ker bA

is the first cyclic homology of A, and in this case the full skew-dihedral homology
space is the full cyclic homology space:

HF (A) = b−1
A (Z(A)) ⊇ HC1(A),

where Z(A) is the center of A.
By corestriction of the bracket map bA, we obtain a generalized central exten-

sion of locally convex Lie algebras

HC1(A) ↪→ 〈A,A〉 → [A,A].

We also have a generalized central extension of locally convex Lie algebras

HF (A) ↪→ 〈A, A〉 → [A,A]/
(
Z(A) ∩ [A,A]).
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(c) If A is commutative and associative, then bA = 0, so that

HF (A) = HC1(A) = 〈A,A〉.

A more direct description of this space can be given as follows. Let M be a lo-
cally convex A-module in the sense that the module structure A × M → M is
continuous. A derivation D : A → M is a continuous linear map with D(ab) =
a.D(b)+b.D(a) for a, b ∈ A. One can show that for each locally convex commuta-
tive associative algebra there exists a universal differential module Ω1(A), which
is endowed with a derivation d : A → Ω1(A) which has the universal property that
for each derivation D : A → M there exists a continuous linear module homomor-
phism ϕ : Ω1(A) → M with ϕ ◦ d = D (cf. [Ma02]). We consider the quotient
space Ω1(A)/dA endowed with the locally convex quotient topology. Then we
have a natural isomorphism

〈A,A〉 → Ω1(A)/dA, 〈a, b〉 7→ [a · db].

Example IV.21. (a) Let n ≥ 4. If g = sln(A) for a locally convex unital
associative algebra, then Examples IV.10 and the preceding considerations imply
that

(4.5) H2(sln(A)) ∼= HC1(A) and H2(psln(A)) ∼= HF (A),

where
psln(A) := sln(A)/z(sln(A)) ∼= sln(A)/(Z(A) ∩ [A,A]).

If n = 3, then g is A2-graded, and we have to consider A as an alternative
algebra. Since A is associative, the left and right multiplications La and Rb on A
commute, so that

L[a,b] −R[a,b] − 3[La, Rb] = ad[a, b].

This implies that 〈A, A〉 carries the same Lie algebra structure, regardless of
whether we consider it as an associative or an alternative algebra. We conclude
that (4.5) remains true for n = 3.

For n = 2 the coordinate algebra of sl2(A) is the Jordan algebra A = AJ with
the product a ◦ b = ab+ba

2
. Let La(x) = ax and Ra(x) = xa denote the left and

right multiplications in the associative algebra A, and LJ
a (x) = 1

2
(La + Ra) the

left multiplication in the corresponding Jordan algebra. Then

8δAJ
(a, b) = 4[LJ

a , LJ
b ] = [La + Ra, Lb + Rb] = [La, Lb] + [Ra, Rb]

= L[a,b] −R[a,b] = ad[a, b].

For g = sl2(A) we also have D = [A,A] and

δD
AJ

(a, b) =
1

2
[a, b]
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(Example II.16(b)). We therefore obtain

H2(sl2(A)) ∼= ker δD
AJ

and H2(psl2(A)) ∼= HF (AJ).

In the algebraic context, the preceding results have been obtained for n = 2
by Gao ([Gao93]), and for n ≥ 3 by Kassel and Loday ([KL82]).
(b) For g = sp2n(A, σ) (Example I.7, Example II.16(c)) the coordinate algebra is
an associative algebra A with involution. For

psp2n(A, σ) := sp2n(A, σ)/z(sp2n(A, σ)),

we therefore obtain
H2(psp2n(A, σ)) ∼= HF (A)

and H2(sp2n(A, σ)) is isomorphic to the kernel of the map

〈A,A〉σ → [A,A]
−σ

, 〈a, b〉 7→ [a, b] + [aσ, bσ].

(c) If J is a Jordan algebra, then it follows from the construction in Example
I.9 and our explicit description of the centrally closed ∆-graded Lie algebras in
this section that T̃KK(J) is centrally closed, hence the notation. In the sense of
Corollary IV.13, we could also write T̃KK(J) = g̃(A2, J).

Example IV.22. In general it is not always easy to determine the space HC1(A)
for a concrete commutative locally convex algebra. The following cases are of
particular interest for applications:
(1) Ω1(A) = {0} for any commutative C∗-algebra A (Johnson, 1972; see [BD73,
Prop. VI.14]).
(2) If M is a connected finite-dimensional smooth manifold and A = C∞(M,K)
for K ∈ {R,C}, then A is a Fréchet algebra (a Fréchet space with continuous
algebra multiplication). If Ω1(M,K) is the space of smooth K-valued 1-forms on
M , then the differential

d : C∞(M,K) → Ω1(M,K), f 7→ df

has the universal property, and therefore

Ω1(A) ∼= Ω1(M,K) and HC1(A) ∼= Ω1(M,K)/dC∞(M,K)

([Ma02]).
A similar result holds for the locally convex algebra A = C∞

c (M,K) of smooth
functions with compact support, endowed with the locally convex direct limit
topology with respect to the Fréchet spaces C∞

K (M,K) of all those functions whose
support is contained in a fixed compact subset K ⊆ M . In this case we have
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Ω1(A) ∼= Ω1
c(M,K) and HC1(A) ∼= Ω1

c(M,K)/dC∞
c (M,K)

([Ma02], [Ne02d]).
(3) If M is a complex manifold, then the algebra A := O(M) of C -valued

holomorphic functions is a Fréchet algebra with respect to the topology of uniform
convergence on compact subsets of M . Assume that M can be realized as an open
submanifold of a closed submanifold of some Cn, i.e., as an open subset of a Stein
manifold. Let Ω1

O(M) be the space of holomorphic 1-forms on M . Then it is
shown in [NW03] that the differential

d : O(M) → Ω1
O(M), f 7→ df

has the universal property, and therefore

Ω1(A) ∼= Ω1
O(M) and HC1(A) ∼= Ω1

O(M)/dO(M).

Example IV.23. We construct two root graded Lie algebras g1 and g2 which
are isogenous, non-isomorphic, but have trivial center.

Let A be a locally convex associative unital algebra with A = [A,A]⊕K1 and
Z(A) = K1. Then the center of

sln(A) ∼= A⊗ sln(K)⊕ [A,A]⊗ 1

is trivial.
For the associative Banach algebra B2(H) of Hilbert-Schmidt operators on

an infinite-dimensional Hilbert space H we consider the associated unital Banach
algebra A := B2(H) +K1. Then

〈A,A〉 = 〈B2(H), B2(H)〉

follows from 〈A,1〉 = {0}. If gl2(H) := B2(H)L is the Lie algebra obtained from
B2(H) via the commutator bracket, then we have seen in Proposition III.19 that
g̃l2(H) = 〈gl2(H), gl2(H)〉 ∼= sl(H), and the universal Lie algebra cocycle is the
commutator bracket

ωu : gl2(H)× gl2(H) → sl(H).

On the other hand the discussion in Example III.10(2) shows that the space
〈B2(H), B2(H)〉 obtained from the associative algebra structure is a quotient of
〈gl2(H), gl2(H)〉. As the bracket map qgl2(H) : 〈gl2(H), gl2(H)〉 → gl2(H) is injec-
tive, 〈B2(H), B2(H)〉 must be the quotient by the trivial subspace, and therefore
the bracket map

〈B2(H), B2(H)〉 → sl(H), 〈a, b〉 7→ [a, b]

is an isomorphism of Banach spaces.
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Let n ≥ 3. Then the natural morphism

s̃ln(A) ∼= (A⊗ sln(K))⊕ 〈A,A〉 → sln(A)

is injective, and hence s̃ln(A) has trivial center. As the map sl(H) → B2(H) is not
surjective, the two An−1-graded Lie algebras s̃ln(A) and sln(A) both have trivial
center but are not isomorphic.

Example IV.24. We describe examples of non-regular locally convex root graded
Lie algebras. As in the preceding example, we consider the associative algebra
A := A := K1 + B2(H), where H is a K-Hilbert space. Then for each p > 1
the Lie algebra D := glp(H) of operators of Schatten class p acts continuously
by derivations on A via d.a := [d, a] (Definition III.18). Moreover, the bracket
defines a continuous bilinear map

δD : A× A → D, (a, b) 7→ [a, b].

Applying Theorem II.15 to the An−1-graded Lie algebra sln(A) for n ≥ 3, we
obtain an An−1-graded Lie algebra

g = (A⊗ sln(K))⊕D

with the coordinate structure (A,D, δD).
We have seen in Example IV.22 that 〈A,A〉 ∼= sl(H), where the bracket map

corresponds to the natural inclusion sl(H) ↪→ B2(H) ↪→ A. Further Proposition
III.19 shows that the universal covering Lie algebra 〈D, D〉 of D is sl(H) for
1 < p ≤ 2 and gl p

2
(H) for p > 2. This determines the Lie algebra 〈A,A〉o 〈D,D〉.

The ideal I is generated by the elements of the form

(d.〈a, a′〉,−〈d, δD(a, a′)〉) = ([d, [a, a′]],−[d, [a, a′]]), a, a′ ∈ A, d ∈ D.

As the subset [D, sl(H)] is dense in sl(H), it follows that

I = {(x,−x) : x ∈ sl(H)},
which implies that

D̃ ∼= 〈D,D〉
is the universal covering algebra of D.

Now Theorem IV.8 implies that the universal covering algebra g̃ has the coor-
dinate structure (A, D̃, δD̃). For p > 2 the map

δD
A : 〈A, A〉 ∼= sl(H) → D

is an inclusion with dense range, but not a generalized central extension, because
there exists no continuous projection gl p

2
(H) → sl(H). Hence g is not regular for

p > 2. Furthermore, g̃ is a Lie algebra of the same type as g, so that we can iterate
the preceding arguments to determine ˜̃g. Now Proposition III.19 shows that g̃ is
not centrally closed for 2 < p < ∞. For p = ∞ we have D̃ ∼= 〈D, D〉 ∼= D, so
that g̃ is centrally closed. For p = 1 we obtain the Lie algebra g̃(An−1, A) which
is centrally closed by Corollary IV.14.
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V Perspectives: Root graded Lie groups
In this section we briefly discuss some aspects of the global Lie theory of root
graded Lie algebras, namely root graded Lie groups.

An infinite-dimensional Lie group G is a manifold modeled on a locally convex
space g which carries a group structure for which the multiplication and the
inversion map are smooth ([Mi83], [Gl01a], [Ne02b]). The space of left invariant
vector fields on G is closed under the Lie bracket of vector fields, hence inherits
a Lie algebra structure. Identifying elements of the tangent space g := T1(G) of
G in the identity 1 with left invariant vector fields, we obtain on g the structure
of a locally convex Lie algebra L(G). That the so obtained Lie bracket on g is
continuous follows most easily from the observation that if we consider the group
multiplication in local coordinates, where the identity element 1 ∈ G corresponds
to 0 ∈ g, then the first two terms of its Taylor expansion are given by

x ∗ y = x + y + b(x, y) + · · · ,

where the quadratic term b : g× g → g is bilinear with

[x, y] = b(x, y)− b(y, x).

We call a locally convex Lie algebra g integrable if there exists a Lie group G
with L(G) = g. A Lie group G is said to be ∆-graded if its Lie algebra L(G) is
∆-graded. The question when a root graded Lie algebra g is integrable can be
quite difficult.

According to Lie’s Third Theorem, every finite-dimensional Lie algebra is in-
tegrable, but this is no longer true for infinite-dimensional locally convex Lie
algebras. If g is a Banach–Lie algebra, then the Lie algebra g/z(g) always is inte-
grable. Let PG(g) denote a corresponding connected Lie group. Then there is a
natural homomorphism of abelian groups, called the period homomorphism

perg : π2(PG(g)) → z(g),

and g is integrable if and only if the image of perg is discrete. For general locally
convex Lie algebras the situation is more complicated, but if q : ĝ → g = L(G) is
a central extension with a sequentially complete locally convex space z as kernel
and a continuous linear section, then there is a period homomorphism

per : π2(G) → z,

and the existence of a Lie group Ĝ with L(Ĝ) = ĝ depends on the discreteness
of the image of per ([Ne02a], [Ne03a]). For finite-dimensional groups these ob-
structions are vacuous because π2(G) always vanishes by a theorem of É. Cartan
([Mim95, Th. 3.7]).
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For the class of root graded Banach–Lie algebras the situation can be described
very well by period maps. In this case the Lie algebra g is integrable if and only
if the image of perg is discrete. As the universal covering g̃ of g also is a universal
covering of g/z(g) ∼= g̃/z(g̃) (Remark III.15), we obtain a similar criterion for the
integrability of g̃ via a period map

per̃g : π2(PG(g)) → z(g̃) = HF (A),

where A is the coordinate algebra of g and HF (A) is its full skew-dihedral ho-
mology. If g1 is a quotient of g̃ by a central subspace and g̃ is integrable, then g1

is integrable if and only if the period map

perg1
: π2(PG(g)) → z(g1)

obtained by composing per̃g with the natural map z(g̃) → z(g1) has discrete image.
For general locally convex root graded Lie algebras which are not Banach–

Lie algebras the situation is less clear, but there are many important classes of
locally convex root graded Lie algebras, to which many results from the Banach
context can be extended, namely the Lie algebras related to matrix algebras over
continuous inverse algebras. A unital continuous inverse algebra (CIA) is a unital
locally convex algebra A for which the unit group A× is open and the inversion
is a continuous map A× → A, a 7→ a−1. Typical associated root graded Lie
algebras are the An−1-graded Lie algebra sln(A), and for a commutative CIA the
Lie algebras of the type g = A ⊗ g∆ (cf. [Gl01b]). Further examples are the Lie
algebras sp2n(A, σ) and on,n(A, σ) discussed in Section I. For Jordan algebras the
situation is more complicated, but in this context there also is a natural concept
of a continuous inverse Jordan algebra, which is studied in [BN03], and can be
applied to show that certain related Lie algebras are integrable.

Both classes lead to interesting questions in non-commutative geometry be-
cause for a sequentially complete CIA the discreteness of the image of the period
map for s̃ln(A) follows from the discreteness of the image of a natural homomor-
phism

P 3
A : K3(A) → HC1(A) ∼= H2(sln(A)),

where K3(A) := lim−→ π2(GLn(A)) is the third topological K-group of the algebra
A. If, in addition, A is complex, Bott periodicity implies that

K3(A) ∼= K1(A) := lim−→ π0(GLn(A)),

and the latter group is much better accessible. In particular, we get a period map

P 1
A : K1(A) → HC1(A).

One can show that this homomorphism is uniquely determined as a natural trans-
formation between the functors K1 and HC1, which permits us to evaluate it for
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many concrete CIAs ([Ne03a]). If PA has discrete image, then s̃ln(A) is integrable,
but the converse is not clear and might even be false. Nevertheless, one can con-
struct certain Fréchet CIAs which are quantum tori of dimension three, for which
the Lie algebra s̃ln(A) is not integrable. For the details of these constructions we
refer to [Ne03a].

There is also a purely algebraic approach to groups corresponding to root
graded Lie algebras. Here we associate to a root graded Lie algebra g the corre-
sponding projective group

PGalg(g) := 〈ead gα : α ∈ ∆〉 ⊆ Aut(g).

As each derivation ad x, x ∈ gα, of g is nilpotent, the operator ead x is a well-
defined automorphism of g (cf. [Ti66], [Ze94]). The group PGalg(g) can easily
seen to be perfect, so that it has a universal covering group (a universal central
extension) G̃

alg
(g). Let PG(g) be a Lie group with Lie algebra g/z(g). There are

many interesting problems associated with these groups:

(1) Describe G̃
alg

(g) by generators and relations.

(2) Show that PG(g) is a topologically perfect group. When is it perfect?

(3) Suppose that G̃(g) is a Lie group with Lie algebra g̃. Describe the kernel of
the universal covering G̃(g) → PG(g) in terms of the coordinate algebra.

(4) Is there a homomorphism PGalg(g) → PG(g)?

(5) Is there a homomorphism G̃
alg

(g) → G̃(g)?

It is an interesting project to clarify the precise relation between the Lie the-
oretic (analytic) approach to root graded groups and the algebraic one.

Appendix A. Some generalities on representations
In this section we collect some material on finite-dimensional representations of
reductive Lie algebras, which is used in Sections II and III of this paper. All
results in this appendix are valid over any field K of characteristic zero.

Let r be a finite-dimensional split reductive Lie algebra over the field K of
characteristic zero and h ⊆ r a splitting Cartan subalgebra. We fix a positive
system ∆+ of roots of r with respect to h and write L(λ) for the simple r-module
of highest weight λ ∈ h∗ with respect to ∆+. We write Z := Z(U(r)) for the center
of the enveloping algebra U(r) of r. Recall that for each highest weight module
V we have Endr(V ) = K1 because the highest weight space is one-dimensional
and cyclic. Therefore Z acts by scalar multiples of the identity on L(λ), and
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we obtain for each λ an algebra homomorphism χλ : Z → K, the corresponding
central character.

The following theorem permits us to see immediately that certain modules are
locally finite. We call an r-module an h-weight module if it is the direct sum of the
common h-eigenspaces. An h-weight module V of a split reductive Lie algebra r

is called integrable if for each xα ∈ rα the operator ad xα is locally nilpotent.

Theorem A.1. For an h-weight module V of the finite-dimensional split re-
ductive Lie algebra r with splitting Cartan subalgebra h the following assertions
hold:

(1) If V is integrable, then V is locally finite and semisimple.

(2) If supp(V ) := {α ∈ h∗ : Vα 6= {0}} is finite, then V is integrable.

Proof. (1) Let V be an integrable r-module and ∆ := {α1, . . . , αm}. Then

r = h⊕ rα1 ⊕ . . .⊕ rαm ,

so that the Poincaré–Birkhoff–Witt Theorem implies

U(r) = U(h)U(rα1) · · ·U(rαm).

Since V is integrable, it is by definition a locally finite module for each of the
one-dimensional Lie algebras rα, α ∈ ∆. Hence for each vector v ∈ V we see
inductively that the space

U(rαj
) · · ·U(rαm).v

is finite-dimensional for j = m,m − 1, . . . , 1, and finally that U(r).v is finite-
dimensional. Therefore V is a locally finite r-module.

Let F ⊆ V be a finite-dimensional submodule. Since F is a weight module, it
is a direct sum of the common eigenspaces for z(r) ⊆ h, which are r-submodules.
According to Weyl’s Theorem, these common eigenspaces are semisimple modules
of the semisimple Lie algebra r′ := [r, r], hence also of r = r′+ z(r). Therefore F is
a sum of simple submodules, and the same conclusion holds for the locally finite
module V . As a sum of simple submodules, the module V is semisimple ([La93,
XVII, §2]).
(2) If supp(V ) is finite, then xα.Vβ ⊆ Vβ+α for β ∈ supp(V ) and α ∈ ∆ imply that
the root vectors xα act as locally nilpotent operators on V .

The preceding theorem is a special case of a much deeper theorem on Kac–
Moody algebras. According to the Kac–Peterson Theorem, each integrable module
in category O is semisimple ([MP95, Th. 6.5.1]). This implies in particular that
integrable modules of finite-dimensional split reductive Lie algebras are semisim-
ple.
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Proposition A.2. Let V be an h-weight module of r for which supp(V ) is
finite. Then the following assertions hold:

(1) V is a semisimple r-module with finitely many isotypic components V1, . . . , Vn.

(2) The simple submodules of V are finite-dimensional highest weight modules
L(λ1), . . . , L(λn).

(3) For each j ∈ {1, . . . , n} there exists a central element zj in U(g∆) with
χλk

(zj) = δjk. In particular, zj acts on V as the projection onto the isotypic
component Vj.

Proof. (1), (2) First Theorem A.1 implies that V is semisimple. Moreover,
each simple submodule is a finite-dimensional weight module, hence isomorphic
to some L(λ). As supp(V ) is finite, there are only finitely many possibilities for
the highest weights λ.
(3) According to Harish-Chandra’s Theorem ([Dix74, Prop. 7.4.7]), for λ, µ ∈ h∗

we have
χλ = χµ ⇔ µ + ρ ∈ W .(λ + ρ),

where W is the Weyl group of (r, h) and ρ = 1
2

∑
α∈∆+ α. If L(λ) and L(µ) are

finite-dimensional, then λ and µ are dominant integral. Therefore λ+ρ and µ+ρ
are dominant, so that µ+ρ ∈ W .(λ+ρ) implies λ = µ. Hence two non-isomorphic
finite-dimensional highest weight modules L(λ) and L(µ) have different central
characters.

This proves that the central characters χλ1 , . . . , χλn corresponding to the iso-
typic components of V are pairwise different. As the kernel of a character is a
hyperplane ideal, this means that for i 6= j we have

ker χλi
+ ker χλj

= Z.

Now the Chinese Remainder Theorem ([La93, Th. II.2.1]) implies that the map

χ : Z → Kn, z 7→ (χλ1(z), . . . , χλn(z))

is surjective. Finally (3) follows with zi := χ−1(ei), where e1, . . . , en ∈ Kn are the
standard basis vectors.

For the following lemma, we recall the definition of Lie algebra cohomology
from [We95].

Lemma A.3. If s is a finite-dimensional semisimple Lie algebra and V a locally
finite s-module, then

Hp(s, V ) = {0} for p = 1, 2.
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Proof. As V is a direct sum of finite-dimensional modules Vj, j ∈ J , the
relations

Cp(s, V ) ∼=
⊕

j∈J

Cp(s, Vj) easily lead to Hp(s, V ) ∼=
⊕

j∈J

Hp(s, Vj),

so that the assertion follows from theWhitehead Lemmas ([We95, Cor. 7.8.10/12]),
saying that Hp(s, Vj) vanishes for each j and p = 1, 2.

Proposition A.4. Let s be a semisimple finite-dimensional Lie algebra s.
(1) Each extension Z ↪→ M̂

q−−→M of a locally finite s-module M by a trivial
module Z is trivial.

(2) Each extension M ↪→ M̂
q−−→Z of a trivial s-module Z by a locally finite s-

module M is trivial.
Proof. (1) If M̂ is locally finite, then Weyl’s Theorem implies that it is semisim-
ple, and therefore that the extension of M by Z splits. Hence it suffices to show
that M̂ is locally finite. Let v ∈ M̂ . We have to show that v generates a finite-
dimensional submodule. Since the s-submodule of M generated by q(v) is finite-
dimensional, we may replace M by this module and hence assume that M is
finite-dimensional. Now

Ext(M, Z) ∼= H1(s, Hom(M, Z))

([We95, Ex. 7.4.5]), and Hom(M, Z) ∼= M∗ ⊗ Z is a locally finite module, so that

H1(s, Hom(M, Z)) = {0}
(Lemma A.3). Therefore the module extension splits, and in particular M̂ is
locally finite.
(2) First we show that M̂ is locally finite. Let v ∈ M̂ . To see that v generates
a finite-dimensional submodule, we may assume that Z is one-dimensional. Then
Hom(Z, M) ∼= M is a locally finite s-module, and the same argument as in (1)
above implies that the extension M̂ → Z is trivial. In particular, we conclude
that M̂ is locally finite.

Returning to the general situation, we obtain from Weyl’s Theorem that the
locally finite module M̂ is semisimple, hence in particular that M̂ = g.M̂ ⊕ M̂ g.
As Z is trivial, we have g.M̂ ⊆ M , so that each subspace of M̂ g complementing
M ∩ M̂ g yields a module complement to M .

Appendix B. Jordan algebras and alternative alge-
bras
In this appendix we collect some elementary results on Jordan algebras.
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Jordan algebras

Definition B.1. A finite dimensional vector space J over a field K is said to
be a Jordan algebra if it is endowed with a bilinear map J × J → J, (x, y) 7→ xy
satisfying:
(JA1) xy = yx.
(JA2) x(x2y) = x2(xy), where x2 := xx.

In this section J denotes a Jordan algebra and (a, b) 7→ L(a)b := ab = ba the
multiplication of J . Then (JA2) means that

[L(a), L(a2)] = 0 for all a ∈ J.

Proposition B.2. For a Jordan algebra J over a field K with {2, 3} ⊆ K× the
following assertions hold for x, y, z ∈ J .
(1) [L(x), L(yz)] + [L(y), L(zx)] + [L(z), L(xy)] = 0.
(2) L(x(yz)− y(xz)) = [[L(x), L(y)], L(z)].
Proof. Passing to the first derivative of (JA2) with respect to x in the direction
of z leads to

z(x2y) + 2x((xz)y) = 2(xz)(xy) + x2(zy)

for x, y, z ∈ J . Passing again to the derivative with respect to x in the direction
of u leads to

z((xu)y) + u((xz)y) + x((uz)y) = (uz)(xy) + (xz)(uy) + (xu)(zy)

for u, x, y, z ∈ J . This means that

[L(z), L(xu)] + [L(u), L(xz)] + [L(x), L(uz)] = 0,

or, by interpreting each term as a function of u,

L(xy)L(z)+L(zx)L(y)+L(yz)L(x) = L(z)L(y)L(x)+L
(
(zx)y

)
+L(x)L(y)L(z).

Note that the expression

L(xy)L(z) + L(zx)L(y) + L(yz)L(x)

is invariant under any permutation of x, y, z. By exchanging x and y and sub-
tracting, we therefore obtain

[[L(x), L(y)], L(z)] = L
(
(zy)x

)
− L

(
(zx)y

)
= L

(
x(yz)− y(xz)

)
.
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Corollary B.3.

[L(J), L(J)] ⊆ der(J) := {D ∈ End(J) : (∀x, y ∈ J)D.(xy) = (D.x)y + x(D.y)}.

Proof. This means that for x, y ∈ J the operator D := [L(x), L(y)] is a
derivation of J , which in turn means that

[D,L(z)] = L(D.z), z ∈ J.

This is a reformulation of Proposition B.2(2).

Jordan algebras associated to bilinear forms

Lemma B.4. Let A be a commutative associative algebra, B an A-module and
β : B ×B → A a symmetric bilinear form which is invariant in the sense that

aβ(b, b′) = β(ab, b′) = β(b, ab′), a ∈ A, b, b′ ∈ B.

Then A := A⊕B is a Jordan algebra with respect to

(a, b)(a′, b′) := (aa′ + β(b, b′), ab′ + a′b).

Proof. First we note that

L(a, 0)(a′, b′) = (aa′, ab′) and L(0, b)(a′, b′) = (β(b, b′), a′b).

The set L(A, 0) ⊆ End(A) is commutative because A is a commutative algebra.
Further

L(0, b)L(a, 0)(a′, b′) = (β(b, ab′), aa′b) = L(a, 0)L(0, b)(a′, b′)

implies that L(A, 0) commutes with L(0, B), so that L(A, 0) is central in the
subspace L(A) of End(A).

It is clear that A is commutative. To see that it is a Jordan algebra, we have
to verify that each L(a, b) commutes with

L((a, b)2) = L(a2 + β(b, b), 2ab).

As L(A, 0) is central in L(A), it suffices to show that L(0, b) commutes with
L(0, ab), which follows from

L(0, b)L(0, ab)(x, y) = L(0, b)(β(ab, y), xab) = (β(b, xab), β(ab, y)b)

= (β(xb, ab), β(b, y)ab) = L(0, ab)(β(b, y), xb)

= L(0, ab)L(0, b)(x, y).
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Alternative algebras

Lemma B.5. Let A be a (non-associative) algebra. For a, b, c ∈ A we define the
associator

(a, b, c) := (ab)c− a(bc).

Then the associator is an alternating function if and only if for a, b ∈ A we have

(B.1) a2b = a(ab) and ab2 = (ab)b.

Proof. First we assume that the associator is alternating. Then

a2b− a(ab) = (a, a, b) = 0 and ab2 − (ab)b = −(a, b, b) = 0.

Suppose, conversely, that (B.1) is satisfied. The derivative of the function

fc(a) := a2c− a(ac)

in the direction of b is given by

dfc(a)(b) = (ab + ba)c− b(ac)− a(bc),

which leads to the identity

(a, b, c) = (ab)c− a(bc) = b(ac)− (ba)c = −(b, a, c).

We likewise obtain from a(c2) = (ac)c the identity

(a, b, c) = (ab)c− a(bc) = a(cb)− (ac)b = −(a, c, b).

As the group S3 is generated by the transpositions (12) and (23), the associator
is an alternating function.

We call an algebra A alternative if the conditions from Lemma B.5 are satisfied.
For La(b) := ab =: Rb(a) this means that

L2
a = La2 and Rb2 = R2

b .

Theorem B.6. (Artin) An algebra is alternative if every subalgebra generated
by two elements is associative.
Proof. In view of (B.1), the algebra A is alternative if any pair (a, b) of elements
generates an associative subalgebra. For the converse we refer to [Sch66, Th. 3.1].

Lemma B.7. Each alternative algebra is a Jordan algebra with respect to a◦b :=
1
2
(ab + ba).

Proof. Let LJ
a (b) := a ◦ b, La(b) = ab and Ra(b) := ba. Since A is alternative,

we have
0 = (a, b, a) = (ab)a− a(ba)

which means that [La, Ra] = 0. Therefore the associative subalgebra of End(A)
generated by La and Ra is commutative. Since LJ

a = 1
2
(La + Ra) commutes with

LJ
a2 = 1

2

(
La2 + Ra2

)
= 1

2

(
L2

a + R2
a

)
,

(A, ◦) is a Jordan algebra.
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Appendix C. Jordan triple systems
The natural bridge between Lie algebras and Jordan algebras is formed by Jordan
triple systems. In this appendix we briefly recall how this bridge works. We are
using this correspondence in particular in Section III to see that for each A1-graded
Lie algebra the coordinate algebra is a Jordan algebra.

Definition C.1. (a) A finite dimensional vector space V over a field K is
said to be a Jordan triple system (JTS) if it is endowed with a trilinear map
{·} : V × V × V → V satisfying:
(JT1) {x, y, z} = {z, y, x}.
(JT2) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}} for all

a, b, x, y, z ∈ V .
For x, y ∈ V we define the operator x¤y by (x¤y).z := {x, y, z} and put P (x)(y) :=
{x, y, x}. Then (JT2) is equivalent to

(JT2′) [a¤b, x¤y] =
(
(a¤b).x

)
¤y − x¤

(
(b¤a).y

)
.

It follows in particular that the subspace V ¤V ⊆ EndK(V ) spanned by the ele-
ments x¤y is a Lie algebra. This Lie algebra is denoted istr(V ) and called the
inner structure algebra of V .

If 2 ∈ K×, then (JT1) implies that the trilinear map {·, ·, ·} can be recon-
structed from the quadratic maps P (x) via polarization of P (x).y = {x, y, x}, i.e.,
by taking derivatives w.r.t. x in the direction of z. Therefore the Jordan triple
structure is completely determined by the maps P (x), x ∈ V .

Lemma C.2. If 3 ∈ K× and (V, {·, ·, ·}) is a Jordan triple system, then the
following formulas hold for x, y, z ∈ V :
(1) P (x).{y, x, z} = {P (x).y, z, x} = {x, y, P (x).z}.
(2) P (x)(y¤x) = (x¤y)P (x).
(3) [P (x)P (y), x¤y] = 0.
Proof. (1) From the Jordan triple identity

x¤y.{a, b, c} = {x¤y.a, b, c} − {a, y¤x.b, c}+ {a, b, x¤y.c}

we derive

{x, y, {x, z, x}} = {{x, y, x}, z, x} − {x, {y, x, z}, x}+ {x, z, {x, y, x}}
= 2{{x, y, x}, z, x} − {x, {y, x, z}, x}
= 2{x, y, {x, z, x}} − 2{x, {y, x, z}, x}+ 2{{x, z, x}, y, x}

−{x, {y, x, z}, x}
= 4{x, y, {x, z, x}} − 3{x, {y, x, z}, x}.
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This implies
3{x, y, {x, z, x}} = 3{x, {y, x, z}, x},

so that 3 ∈ K× leads to

{x, y, {x, z, x}} = {x, {y, x, z}, x}.

This proves that the first and third term are equal. The equality of the first and
the second term now follows from (JT1).
(2) follows directly from (1).
(3) is an immediate consequence of (2).

Theorem C.3. (a) If g = g1 ⊕ g0 ⊕ g−1 is a 3-graded Lie algebra with an
involutive automorphism τ satisfying τ(gj) = g−j for j = 0,±1, then V := g1 is
a Jordan triple system with respect to {x, y, z} :=

[
[x, τ.y], z

]
.

(b) If, conversely, V is a Jordan triple system for which there exists an involution
σ on istr(V ) with σ(a¤b) = −b¤a for a, b ∈ V , then g := V × istr(V ) × V is a
Lie algebra with respect to the bracket

[(a, x, d), (a′, x′, d′)] = (x.a′ − x′.a, a¤d′ − a′¤d + [x, x′], σ(x).d′ − σ(x′).d)

and τ(a, b, c) := (c, σ(b), a) is an involutive automorphism of g.
Proof. (a) Since g is graded, we have [g1, g1] = {0}, and this implies that
[ad x, ad y] = 0 for x, y ∈ g1, hence (JT1). To verify (JT2), we first observe that
a¤b = ad[a, τ.b]. We have

[
[a, τ.b], [c, τ.d]

]
=

[
[[a, τ.b], c], τ.d

]
+

[
c, [[a, τ.b], τ.d]

]

=
[
[[a, τ.b], c], τ.d

]
+

[
c, τ.[[τ.a, b], d]

]

=
[
[[a, τ.b], c], τ.d

]
−

[
c, τ.[[b, τ.a], d]

]
.

Therefore (JT2) follows from

[a¤b, c¤d] = ad
[
[a, τ.b], [c, τ.d]

]
= ad

[
[[a, τ.b], c], τ.d

]
− ad

[
c, τ.[[b, τ.a], d]

]

= (a¤b).c¤d− c¤(b¤a).d.

(b) One observes directly that τ is an involution preserving the bracket. It is clear
that the bracket is skew symmetric, so that

J(x, y, z) :=
[
[x, y], z

]
+

[
[y, z], x

]
+

[
[z, x], y

]

is an alternating trilinear function on g. We have to show that J vanishes.
Let g1 := V × {(0, 0)}, g0 = {0} × istr(V )× {0}, and g−1 := {(0, 0)} × V . It

is easy to check that J(x, y, z) = 0 if all entries are contained either in g0 + g1
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or in g0 + g−1. We identify x ∈ V with (x, 0, 0) and write x̃ = (0, 0, x) for the
corresponding element of g−1. Then we may assume that the first entry is x ∈ g1

and the second one is ỹ ∈ g−1. For z ∈ V ∼= g1 we then obtain

J(x, ỹ, z) =
[
[ỹ, z], x

]
+

[
[x, ỹ], z

]
= (x¤y).z − (z¤y).x = {x, y, z} − {z, y, x} = 0.

If z ∈ g−1, the assertion follows from τ.J(x, ỹ, z) = J(τ.x, τ.ỹ, τ.z) = 0. Finally,
let z ∈ g0. We may assume that z = a¤b. Then (JT2) implies that [z, x¤y] =
[z, x]¤y + x¤σ(z).y. This leads to

J(x, ỹ, z) =
[
[ỹ, z], x

]
+

[
[z, x], ỹ

]
+

[
[x, ỹ], z

]

= −[(σ(z).y)̃ , x] + [z.x, ỹ] + [x¤y, z]

= x¤(σ(z).y) + (z.x)¤y − [z, x¤y] = 0.

We conclude this section with the connection between Jordan algebras and
Jordan triple systems.

Theorem C.4. Suppose that 2, 3 ∈ K×.
(a) If J is a Jordan algebra, then J is a Jordan triple system with respect to

(C.1) {x, y, z} = (xy)z + x(yz)− y(xz), i.e., x¤y = L(xy) + [L(x), L(y)],

where we write L(x)y := xy for the left multiplications in J .
(b) If V is a JTS and a ∈ V , then

x ·a y := {x, a, y}
defines on V the structure of a Jordan algebra. The Jordan triple structure deter-
mined by the Jordan product ·a is given by

{x, y, z}a = {x, {a, y, a}, z} = {x, P (a).y, z}.
It coincides with the original one if P (a) = 1.
(c) Let J be a Jordan algebra which we endow with the Jordan triple structure
from (a). If e ∈ J is an identity element, then x ·e y = xy reconstructs the Jordan
algebra structure from the Jordan triple structure.
Proof. (a) From (JA1) it immediately follows that (C.1) satisfies (JT1). The
proof of (JT2) requires Lemma B.2.

In view of Corollary B.3, D := [L(x), L(y)] is a derivation of J , so that

D.{a, b, c} = {D.a, b, c}+ {a,D.b, c}+ {a, b,D.c}.
Therefore (C.1) shows that to prove (JT2), it suffices to show that for each x ∈ J
we have

L(x).{a, b, c} = {L(x).a, b, c} − {a, L(x).b, c}+ {a, b, L(x).c},
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i.e.,
L(x).(a¤b) = (xa)¤b− a¤(xb) + (a¤b)L(x),

which in turn means that

L(x)L(ab) + L(x)[L(a), L(b)] = L((xa)b) + [L(xa), L(b)]− L(a(bx))

−[L(a), L(xb)] + L(ab)L(x) + [L(a), L(b)]L(x),

i.e.,

[L(x), L(ab)]+[L(a), L(xb)]+[L(b), L(ax)] = [[L(a), L(b)], L(x)]+L((xa)b)−L(a(bx)).

This identity follows from Lemma B.2, because both sides of this equation vanish
separately.
(b) Put xy := x ·a y, so that L(x) = x¤a. The identity (JA1) follows directly
from (JT1). To verify (JA2), we observe that

L(x2).y = {{x, a, x}, a, y} = {y, a, {x, a, x}}
= {{y, a, x}, a, x} − {x, {a, y, a}, x}+ {x, a, {y, a, x}}
= 2(x¤a)2.y − P (x)P (a).y.

Therefore Lemma C.2(3) implies

[L(x2), L(x)] = [2(x¤a)2 − P (x)P (a), x¤a] = [x¤a, P (x)P (a)] = 0.

The quadratic operator P a(x) associated to the Jordan triple structure defined
by ·a in the sense of (a) is given by

P a(x) = 2L(x)2 − L(x2) = 2(x¤a)2 −
(
2(x¤a)2 − P (x)P (a)

)
= P (x)P (a).

Therefore the Jordan triple structure associated to ·a is given by {x, y, z}a =
{x, P (a).y, z}.
(c) is trivial.

Example C.5. (Jordan triple systems associated to a quadratic form) Let A
be a commutative algebra with 2 ∈ A× and M an A-module. A quadratic form
q : M → A is a map for which the map

M ×M → A, (x, y) 7→ q(x, y) :=
1

2
(q(x + y)− q(x)− q(y))

is A-bilinear. Note that q(x, x) = q(x).
In the following we assume that 2 ∈ A×. We claim that

{x, y, z} := −q(x, y)z − q(z, y)x + q(x, z)y
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defines on M the structure of an A-Jordan triple system. In fact, in Lemma
B.4 we have seen that J(M) := A ⊕M is a Jordan algebra with respect to the
multiplication

(a,m)(a′,m′) = (aa′ − q(m,m′), am′ + a′m).

For the corresponding Jordan triple structure we have

{m, m′, m′′} = (m¤m′).m′′ = (mm′)m′′ + m(m′m′′)−m′(mm′′)

= −q(m,m′)m′′ − q(m′,m′′)m + q(m,m′′)m′,

so that, with respect to the Jordan triple structure defined above, M is a sub-
Jordan triple system of the Jordan algebra J(M).

Note that the operators x¤y satisfy

q((x¤y).m,m′) = q(−q(x, y)m− q(m, y)x + q(x,m)y, m′)

= −q(x, y)q(m, m′)− q(m, y)q(x,m′) + q(x,m)q(y,m′)

= q(m,−q(x, y)m′ − q(x,m′)y + q(y,m′)x) = q(m, (y¤x).m′).

This implies that the operators x¤y belong to the conformal linear Lie algebra of
the quadratic module (M, q):

{X ∈ EndA(M) : (∃λ ∈ A)q(X.m, m′) + q(m,X.m′) = λq(m,m′)}.
We can also view J(M) as an A-module, and consider the quadratic form

defined by the bilinear form

q̃((a,m), (a′,m′)) = aa′ − q(m,m′) = pA((a,m)(a′,m′)),

where pA : J(M) → A is the projection onto the A-component. Then q̃ is an
A-invariant symmetric bilinear form because the Jordan multiplication on J(M)
is A-bilinear and commutative. This process can be continued inductively and
leads to a sequence of quadratic modules

(M, q), (A⊕M, qA ⊕−q), (A2 ⊕M, qA ⊕−qA ⊕ q),

(A2, qA ⊕−qA)⊕ (A⊕M, qA ⊕−q) . . . ,

where we write qA(a) = a2 for a ∈ A. This means that two steps of this process
produce a direct factor which is a hyperbolic A-plane (A2, qA ⊕−qA).

For m ∈ M , considered as a Jordan triple system, the operator P (m) is given
by

P (m).x = {m,x, m} := −q(m,x)m−q(m,x)m+q(m,m)x = q(m,m)x−2q(m,x)m.

If q(m,m) ∈ A×, then

q(m,m)−1P (m).x = x− 2
q(m, x)

q(m,m)
m

is the orthogonal reflection in the A-submodule m⊥ of M , which implies that
P (m) is invertible.
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Appendix D. Skew dihedral homology
In this section we briefly recall the definition of skew dihedral homology of associa-
tive algebras, which is the background for the definition of the full skew-dihedral
homology spaces defined in Section IV.

Definition D.1. Let A be a unital associative algebra and Cn(A) := A⊗(n+1)

the (n + 1)-fold tensor product of A with itself. We define a boundary operator

bn : Cn(A) → Cn−1(A) for n ∈ N
and b0 : C0(A) → {0} by

bn(a0 ⊗ . . .⊗ an)

:=
n−1∑

i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

Then bnbn+1 = 0 for each n ∈ N0, and the corresponding homology spaces HH∗(A)
are called the Hochschild homology of A.

Of particular interest for Lie algebras is the first Hochschild homology group
HH1(A). The map b1 : C1(A) = A⊗A → C0(A) ∼= A is given by

b1(x⊗ y) = xy − yx = [x, y],

so that Z1(A) = ker b ⊆ C1(A) is the kernel of the bracket map. The space B1(A)
of boundaries is spanned by elements of the type

b2(x⊗ y ⊗ z) = xy ⊗ z − x⊗ yz + zx⊗ y.

Note in particular that b2(x⊗ 1⊗ 1) = x⊗ 1, so that A⊗ 1 ⊆ B1(A).

Definition D.2. Let (A, σ) be an associative algebra with involution σ : A →
A, a 7→ aσ. Then we obtain a natural action of the dihedral group Dn+1 on the
space Cn(A) as follows. We present Dn+1 as the group generated by xn and yn

subject to the relations

xn+1
n = y2

n = 1 and ynxny
−1
n = x−1

n ,

and define the action of xn and yn on Cn(A) by

xn(a0 ⊗ . . .⊗ an) := (−1)nan ⊗ a0 ⊗ . . .⊗ an−1

and
yn(a0 ⊗ . . .⊗ an) := −(−1)

n(n+1)
2 aσ

0 ⊗ aσ
n ⊗ aσ

n−1 . . .⊗ aσ
2 ⊗ aσ

1 .

These operators are compatible with the boundary operators in the sense that
the operators bn induce on the spaces C ′

n(A) of coinvariants for the Dn+1-action
boundary operators

b′n : C ′
n(A) → C ′

n−1(A).

The corresponding homology is called the skew-dihedral homology HD′
n(A, σ) of

the algebra with involution (A, σ) (cf. [Lo98, 10.5.4; Th. 5.2.8]).
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In the present paper we only need the space HD′
1(A, σ). We observe that

x1.(a0 ⊗ a1) = −a1 ⊗ a0 and y1.(a0 ⊗ a1) = aσ
0 ⊗ aσ

1 .

Writing the image of a0 ⊗ a1 in C ′
1(A) as 〈a, b〉, this means that

〈a0, a1〉 = −〈a1, a0〉 = 〈aσ
0 , a

σ
1〉, a0, a1 ∈ A.

It follows in particular that 〈Aσ,A−σ〉 = {0}, and further that

C ′
1(A) ∼= Λ2(Aσ)⊕ Λ2(A−σ).

Moreover,

b′2(〈a0, a1, a2〉)
= 〈a0a1, a2〉 − 〈a0, a1a2〉+ 〈a2a0, a1〉 = 〈a0a1, a2〉+ 〈a1a2, a0〉+ 〈a2a0, a1〉,

and these elements span the space B′
1(A) ⊆ C ′

1(A) of skew-dihedral 1-boundaries.
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