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Abstract

Our objects of study are generalized L1–algebras L1(K, Q), where K
is a closed normal subgroup of the compact group L, and Q is a commu-
tative Banach algebra whose Gelfand space is a transitive L–space. The
main result tells that L–orbits in the dual of L1(K, Q) are sets of synthe-
sis, i.e., there is a unique closed two–sided ideal in L1(K,Q) whose hull
coincides with a given L–orbit. Also the empty set is a set of synthesis,
which means that each proper closed two–sided ideal is contained in the
kernel of an irreducible involutive representation. To this end, L–fixed pro-
jections in L1(K, Q) are constructed. Such projections are also useful in
other circumstances.

Introduction
The notion of sets of synthesis (or Wiener sets) is best known in the case of
L1(G), G a locally compact abelian group. In this case the (Gelfand) structure
space L1(G)∧ of the commutative Banach algebra L1(G) can be identified with the
Pontryagin dual G∧. With each closed ideal I in L1(G), one can associate a closed
subset of G∧, namely the hull h(I) := {χ ∈ G∧ | kerL1(G) χ ⊃ I}. A closed subset
A of G∧ is called a set of synthesis if there is only one closed ideal I in L1(G) with
h(I) = A. In this case I is necessarily equal to the kernel k(A) :=

⋂
χ∈A kerL1(G) χ

of A. For some results on sets of synthesis in the case of abelian groups compare
[13, 14].

Usually, the kernel is defined in the equivalent way: k(A) = {f ∈ L1(G) | f̂ =
0 on A}. We have chosen the above formulation, because then all the introduced
notions generalize immediately to arbitrary Banach algebras, as soon as one agrees
on the structure space to be considered. In the present article we study algebras
of the following type:

Let K be as closed normal subgroup of a compact group L, and let Q be a
symmetric semi–simple involutive commutative Banach algebra. Symmetry means
in the commutative case that ω(q∗) = ω(q) for all q ∈ Q and all ω in the Gelfand
space Q∧, i.e., for all multiplicative linear functionals ω : Q → C. Suppose that
L acts strongly continuously (from the right) on Q with the usual properties:
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(λq + r)` = λq` + r`, (qr)` = q`r`, (q∗)` = (q`)∗, q`m = (q`)m,

‖q`‖ = ‖q‖, and L 3 ` 7−→ q` ∈ Q is continuous. Then L acts on Q∧, (`ω)(q) =
ω(q`), and we suppose that this action is transitive. These assumptions are re-
tained throughout the article.

Now one can form our object of study, the generalized L1–algebra L1(K,Q),
compare [7], multiplication and involution being given by

(f ? g)(a) =
∫

K
f(a b)b−1

g(b−1)d b

f ∗(a) = f(a−1)∗a

for a ∈ K, f, g ∈ L1(K,Q). L1(K,Q) carries a natural L–action,

f `(a) = f(` a `−1)`

satisfying the usual properties (as written above for the pair (L,Q)).
As structure space of L1(K,Q) we take the collection Priv∗ L1(K, Q) of kernels

of all irreducible involutive representations of L1(K,Q) in Hilbert spaces equipped
with the Jacobson topology. This space carries a natural L–action. Our main goal
is to show that L–orbits are sets of synthesis. En passant, we also prove that the
empty set is a set of synthesis (sometimes called Wiener property, see [8, 10]), i.e.,
each proper closed ideal in L1(K,Q) is contained in the kernel of an involutive
irreducible representation, that there exist operators of finite rank in the image of
irreducible representations, and that Priv∗L1(K, Q) coincides with PrivL1(K,Q),
the collection of primitive ideals in L1(K,Q).

The proofs are more or less exercises in representation theory of compact
groups, based on the existence of the Haar measure, particularly on the following
easy, but useful lemma, whose proof is omitted.

Lemma 0.1. Let ι : E −→ F be a bounded linear dense injection of Banach
spaces. Suppose that a compact group G acts continuously on E and F by linear
isometries, and that ι intertwines the action. If either all G–isotypical components
in E or in F are finite–dimensional then ι induces an isomorphism of each of the
components and, as a consequence, an isomorphism from the collection E(G) of
G–finite vectors onto F (G). Moreover, E(G) resp. F (G) is dense in E resp. F .

1 The C∗–hull and the irreducible involutive rep-
resentations of L1(K, Q)

Let us fix a base point ω ∈ Q∧. Then Q∧ can be identified with the space L/Lω

of cosets, where, of course, Lω denotes the stabilizer of ω; for x ∈ L we denote
by [x] = xLω the corresponding coset. The Gelfand transform can be identified
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with an injective map G : Q −→ C(L/Lω); it is L–equivariant if ` ∈ L acts on
ϕ ∈ C(L/Lω) via ϕ`([x]) = ϕ([`x]). The map G induces an injective morphism of
involutive Banach algebras.

(1.1) L1(K, Q) → L1(K, C(L/Lω)).

Each involutive representation π of L1(K, Q) is given by a covariance pair (π′, π′′),
π′ being a continuous unitary representation of K, π′′ an involutive representation
of Q:

(1.2) π(f)ξ =
∫

K
π′(a)π′′(f(a))ξda

for f ∈ L1(K, Q).
As π′′ extends to a representation of C(L/Lω), so does π, i.e., the C∗–hull

of L1(K, Q) is the C∗–transformation algebra C∗(K, C(L/Lω). We obtain three
dense continuous inclusions

L1(K, Q) −→ L1(K, C(L/Lω)) −→ C∗(K, C(L/Lω))(1.3)
↑

C(K × L/Lω)

where C(K × L/Lω) is equipped with the uniform norm. The compact group
G := Ln (K ×K) with multiplication law

(1.4) (`, k1, k2)(t, a1, a2) = (` t, t−1k1t a1, f
−1k2t a2)

acts on all these four spaces, on L1(K, Q) via

(1.5) σ(`, k1, k2)f =
(
εk1 ? f ? εk−1

2

)`−1

,

where

(1.6) (εk ? f)(a) = f(k−1a), (f ? εk)(a) = f(a k−1)k for a, k ∈ K, f ∈ L1(K, Q),

on L1(K, C(L/Lω)) via

(1.7) (σ(`, k1, k2)ϕ)(a, [x]) = ϕ
(
k−1

1 `−1a ` k2,
[
k−1

2 `−1x
])

for ϕ ∈ L1(K, C(L/Lω)), a ∈ K, [x] ∈ L/Lω.
The action on C(K × L/Lω) is obtained by restriction, the action on C∗(K,

C(L/Lω)) by functoriality, but it is not explicitly needed. By its very construction
all three inclusions are G–invariant.

Sometimes the isomorphic copy G′ = (K ×K)o L of G is also useful, where
the multiplication is given by (k1, k2, `)(a1, a2, t) = (k1` a1`

−1, k2` a2`
−1, ` t). Via

the canonical isomorphism

(1.8) δ : G′ −→ G, δ(k1, k2, `) = (`, `−1k1`, `
−1k2`)
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one obtains representations σ′ of G′ in the above four spaces, for instance

(1.9) σ′(k1, k2, `)ϕ(a, [x]) = ϕ
(
`−1k−1

1 a k2`,
[
`−1k−1

2 a
])

for ϕ ∈ C(K × L/Lω).
If we restrict σ′ to the subgroup H ′ := K o L = (K × {e}) o L ≤ G′ we

just get the left regular representation of H ′ in C(H ′/Lω = K × L/Lω), whose
H ′–isotypical components are finite–dimensional. We conclude that the isotypical
components of σ in C(K × L/Lω) are finite–dimensional as well. The Lemma in
the introduction tells us:

Proposition 1.10. All the G–isotypical components in the four spaces L1(K, Q),
L1(K, C(L/Lω), C(K × L/Lω), C∗(K, C(L/Lω) are finite–dimensional. In fact,
they coincide as well as the collections of G–finite vectors, which are dense in the
respective spaces.

For later use we define here the group H := L n K = L n (K × {e}) ≤ G
which is isomorphic to H ′ via

(1.11) γ : H ′ −→ H , γ(k, `) = (`, `−1k `).

The group L acts on involutive representations π of L1(K,Q) (or of C∗(K,
C(L/Lω)) via

(1.12) (` π)(f) = π(f `) = π(σ(`)−1(f)).

For a continuous irreducible unitary representation α of Kω = Lω∩K in Vα we
define an irreducible involutive representation πα of C∗(K, C(L/Lω) in the Hilbert
space

(1.13) Hα = L2
Kω

(K, Vα) := {ξ : K −→ Vα | ξ is measurable,

ξ(k a) = α(a)−1ξ(k) for a ∈ Kω, k ∈ K, and
∫

K/Kω

‖ξ(k)‖2dk < ∞}

by the covariance pair (π′α, π′′α)

(π′α(k)ξ)(a) = ξ(k−1a)

(π′′α(ψ)ξ)(a) = ψ([a])ξ(a).

In particular, for ϕ ∈ C(K × L/Lω) and ξ ∈ Hα the vector πa(ϕ)ξ is given by

(1.14) (πα(ϕ)ξ)(b) =
∫

K
ϕ(y, [y−1b])ξ(y−1b)dy.

If π is any irreducible representation of C∗(K, C(L/Lω) given by the covariance
pair (π′, π′′) then π′′ is supported by a K–orbit in L/Lω as K\L/Lω is Hausdorff.
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For a suitable ` ∈ L, (`π)′′ is supported by the K–orbit through the origin, i.e.,
`π may be considered as a representation of C∗(K, C(K/Kω)). Such algebras,
actually in much higher generality, were studied in [5]. In particular, we know
that C∗(K, C(K/Kω)) is liminal, and that `π is equivalent to one of the above πα.
Therefore, we have

1.15. Each irreducible involutive representation of C∗(K, C(L/Lω)) is equivalent
to one of the collection `πα, ` ∈ L, α ∈ K∧

ω . Moreover, (`πα)(C∗(K, C(L/Lω)) is
equal to algebra K(Hα) of compact operators on Hα.

Next, we investigate, which of those representations are equivalent. If `1πα ∼
`2πβ then πβ ∼ `−1

2 `1πα. If follows that their restrictions to C(L/Lω) (i.e., their
second components considered as covariance pairs) must be carried by the same
K–orbit which means `−1

2 `1 ∈ LωK. Write `−1
2 `1 = `0k with k ∈ K and `0 ∈ Lω.

As kπα ∼ πα because kπα(f) = πα(fk) = πα(εk−1 ? f ? εk) = π′α(k−1)πα(f)π′α(k),
compare (1.6), we find that `0πα ∼ πβ. Further, it is easy so see:

1.16. For `0 ∈ Lω one has `0πα ∼ πβ if and only if `0α ∼ β (as representations
of Kω, (`0α)(b) = α(`−1

0 b `0) for b ∈ Kω).

Also for later use we write down an intertwining operator explicitly. If U :
Vα → Vβ is a unitary operator with Uα(`−1

0 b `0) = β(b)U for all b ∈ Kω then
define U ′ : Hα → Hβ by

(1.17) (U ′ξ)(k) = U(ξ(`−1
0 k `0)), k ∈ K.

These arguments work also the other way around, and we conclude:

1.18. `1πα ∼ `2πβ means that `−1
2 `1 can be written in the form `−1

2 `1 = `0k with
k ∈ K and `0 ∈ Lω satisfying `0α ∼ β.

In view of this observation we choose an indexed set of representatives of the
Lω–orbits in K∧

ω , i.e., we take a collection αj, j ∈ J , of concrete continuous
irreducible unitary representations of Kω in Vj with the following properties.

1.19. Each continuous irreducible unitary representation of Kω is equivalent to
`αj for some j ∈ J , ` ∈ Lω. If `αj ∼ `′αj′, for `, `′ ∈ Lω and j, j′ ∈ J then j = j′.

With those representations αj we construct as above the representations πj :=
παj

of C∗(K, C(L/Lω)) or of L1(K, Q) in Hj := Hαj
. Our discussion shows:

Proposition 1.20. Each of the irreducible involutive representations of L1(K,Q)
is equivalent to one of the form `πj, ` ∈ L, j ∈ J . For `1, `2 ∈ L and i, j ∈ J the
condition `1πi ∼ `2πj is equivalent to i = j and `−1

2 `1 ∈ LjK, where Lj denotes
the stabilizer of αj in Lω. (Lj is of finite index in Lω.) In other words, the set
L1(K,Q)∧ of equivalence classes is a disjoint union of the L–orbits Lπj, j ∈ J ,
and the L–stabilizer of πj is LjK.
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Remark 1.21. This description can be used to write down all the members of
Priv∗L1(K, Q), however, it is not clear at present that inequivalent representations
yield different kernels. But they do as we shall see later.

Remark 1.22. The description of L1(K, Q)∧ given in (1.20) is the one we are
going to use in the sequel. A little more canonical is the following one, also
suggested by the above discussion. The group Uω := LωK acts from the left on
K∧

ω : For `0k, `0 ∈ Lω, k ∈ K and α ∈ K∧
ω the element α′ = `0k · α ∈ K∧

ω is given
by α′(v) = α(`−1

0 v`0). And Uω acts also from the left on L by right translations:
u · x = xu−1 for x ∈ L, u ∈ Uω. Thus, Uω acts on L×K∧

ω . By (1.15), there is a
surjection L×K∧

ω −→ L1(K, Q)∧, and by (1.16) the fibers of this map are exactly
the Uω–orbits. Moreover, the L–action on L1(K, Q)∧ corresponds to translation
on L×K∧

ω in the first variable. Clearly, the space of Uω–orbits in L×K∧
ω can be

identified with the disjoint union
⋃

j∈J L/LjK in an obvious manner, respecting
the L–action.

2 The kernel operators for the representations `πj,
a surjectivity theorem

Many questions in harmonic analysis depend on an appropriate description of the
image of the Fourier transform; this principle applies also to non–commutative
situations. We shall write down the kernel functions which give the operators
(`πj)(ϕ) of the previous section, and shall prove a surjectivity theorem describing
the image (`πj)(ϕ), ` ∈ L, ϕ ∈ C(K × L/Lω). Using G–equivariance we shall
obtain a result for C(K × L/Lω)(G) = L1(K,Q)(G).

Given j, `, ϕ as above, we recall, (1.7), (1.14), that (`πj)(ϕ) in B(Hj) is given
by

[(`πj)(ϕ)ξ](b) = [πj(ϕ
` = σ(`−1)ϕ)ξ](b) =

∫

K
ϕ(` y `−1, [`y−1b])ξ(y−1b)dy

=
∫

K
ϕ(` bc−1`−1, [` c])ξ(c)dc =

∫

K/Kω

(Rjϕ)(`, b, c)ξ(c)dc,

where Rjϕ : L×K ×K → B(Vj) is defined by

(2.1) (Rjϕ)(`, b, c) =
∫

Kω

ϕ(` b s−1c−1`−1, [` c])αj(s)
−1ds.

Clearly, the functions Rjϕ are continuous, but they share also three covariance
properties, which are most easily expressed by viewing Rjϕ as a function on
G = L n (K × K). To this end, we choose intertwining operators between `αj

and αj, ` ∈ Lj:

2.2. Let Xj(`), ` ∈ Lj, be a unitary operator on Vj satisfying αj(`
−1r `) =

Xj(`)
∗αj(r)Xj(`) for all r ∈ Kω.
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For later use we remark:

2.3. For each `0 ∈ Lj there exists a function c defined in a neighborhood of `0 in
Lj with values in T such that c(`0) = 1 and ` 7−→ c(`)Xj(`) is continuous on this
neighborhood.

To see (2.3) define F (`), ` ∈ Lj, by F (`) =
∫
Kω

αj(x)Xj(`0)(` αj)(x)−1dx ∈
B(Vj). Clearly, F is continuous, and F (`0) = Xj(`0). For ` sufficiently close
to `0 the operator F (`) is invertible (or, equivalently, different from 0 as it is
an intertwining operator). Then F ′(`) = ‖F (`)‖−1F (`) is unitary, F ′ is still
continuous, and F ′(`) = c(`)Xj(`) for suitable numbers c(`) ∈ T.

¤

2.4. The B(Vj)–valued function Rjϕ on G satisfies: (Rjϕ)(t k, b, c) = (Rjϕ)(t, k b, k c)
for all (t, b, c) ∈ G, all k ∈ K or, equivalently,

(i) (Rjϕ)(g x) = Rjϕ(g)

for all g ∈ G, all x ∈ ∆ := {(k−1, k, k) | k ∈ K}. Observe that ∆ is a subgroup of
G.

(ii) (Rjϕ)(g(`, 1, 1)) = Xj(`)
∗Rjϕ(g)Xj(`)

for all g ∈ G, ` ∈ Lj.

(iii) (Rjϕ)(g(1, u, v)) = αj(u)−1(Rjϕ)(g)αj(v)

for all g ∈ G and u, v ∈ Kω.

Denote the space of all continuous B(Vj)–valued functions on G satisfying (i),
(ii), (iii) by C∆,Lj ,Kω ,Kω

(G,B(Vj)).
All these properties are easy to check as well as

2.5. For all x, g ∈ G one has Rj(σ(g)ϕ)(x) = (τj(g)Rjϕ)(x), where τj(g) on
C∆,Lj ,Kω ,Kω

(G,B(Vj)) is just left translation, i.e., (τj(g)Φ)(x) = Φ(g−1x).

Property (i) of (2.4) implies that the members Φ of C∆,Lj ,Kω ,Kω
(G,B(Vj)) are

completely determined by their restrictions ρ(Φ) to H = LnK = Ln(K×{1}) ≤
G, in other words,

2.6. ρ is an isomorphism from C∆,Lj ,Kω ,Kω
(G,B(Vj)) onto the space CLj ,Kω

(H,B(Vj))
of all continuous functions Λ : H → B(Vj) satisfying

(a) Λ(h(`, 1)) = Xj(`)
−1Λ(h)Xj(`) for all h ∈ H, ` ∈ Lj.

(b) Λ(h(1, u)) = αj(u)−1Λ(h) for all h ∈ H, u ∈ Kω.
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To transform this space into a space of functions on H ′ = K o L along the
canonical isomorphism γ : H ′ → H, see (1.11), we first note:

2.7. The subgroup M j := Kω oLj of H ′ has a canonical continuous (irreducible)
representation βj in the space B(Vj) given by

βj(x, `0)
−1(A) = Xj(`0)

∗αj(x)−1AXj(`0)

for A ∈ B(Vj).

2.8. γ induces an isomorphism γ̃, γ̃(Λ)(k, `) = Λ(`, `−1k `), from CLj ,Kω
(H,B(Vj))

onto the space CMj(H ′,B(Vj)) of all continuous functions Ψ : H ′ → B(Vj) satis-
fying

Ψ(h(x, `0)) = βj(x, `0)
−1Ψ(h)

for all h ∈ H ′, (x, `0) ∈ M j.

These easy, but a little confusing changes of viewpoints simplify the proof of
the following surjectivity theorem. In fact, they are not absolutely necessary, but
they shed some light on the structure of the elements in C∆,Lj ,Kω ,Kω

(G,B(Vj)).

Theorem 2.9. Given j ∈ J and Φ ∈ C∆,Lj ,Kω ,Kω
(G,B(Vj)) there exists ϕ ∈

C(K × L/Lω) satisfying Rjϕ = Φ and Riϕ = 0 for all i ∈ J , i 6= j.

Proof. By what we have seen above, it is enough to find ϕ with (γ̃ ◦ ρ)(Φ) = (γ̃ ◦
ρ)(Rjϕ) and (γ̃◦ρ)(Riϕ) = 0 for i ∈ J , i 6= j. For short we put Ψ = (γ̃◦ρ)(Φ). We
choose an orthonormal basis v1, . . . , vn of Vj, and identify, for fixed h = (k, `) ∈ H ′,
the operator Ψ(h) with an n× n–matrix,

Ψ(h)vt =
n∑

s=1

Ψ(h)stvs

for 1 ≤ t ≤ n.
In terms of this basis we construct explicitly a function ψ̃ on Kω such that∫

Kω
ψ̃(u)αj(u)du = Ψ(h), namely

(2.10) ψ̃(h; u) := n
n∑

s,r=1

〈αj(u)−1vs, vr〉Ψ(h)sr for u ∈ Kω.

The orthogonality relations, see e.g. [4, p. 278], readily imply

(2.11) Ψ(h) =
∫

Kω

ψ̃(h; u)αj(u)du.

Indeed, as 〈αj(u)−1vs, vr〉 is the entry in the matrix corresponding to αj(u)−1

at position r, s, the sum
∑n

s=1〈αj(u)−1vs, vr〉Ψ(h)sr is nothing but the entry in the
matrix corresponding to αj(u)−1Ψ(h) at position r, r.
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But αj(u)−1Ψ(h) = Ψ(h(u, 1)), hence

(2.12) ψ̃(h; u) = n Tr Ψ(h(u, 1)).

In particular, the function Kω 3 u 7−→ ψ̃(h(u−1, 1); u) is constant for all h ∈ H ′.
From (2.8) and (2.12) it follows that ψ̃(h(1, `); 1) = ψ̃(h; 1) for all h ∈ H ′, all
` ∈ Lj. Therefore,

(2.13) ϕ(k, [t]) :=
∑

`∈Lω/Lj

ψ̃(k, t `; 1)

is a function on K × L/Lω, and we claim that this ϕ has the desired properties.
At a point (b, t) ∈ H ′ = K o L one finds for an i ∈ J :

[(γ̃ ◦ ρ)(Riϕ)] (b, t) =
∫

Kω

ϕ(btst−1, [t])αi(s)ds

=
∑

`∈Lω/Lj

∫

Kω

ds ψ̃((b, t)(s, `); 1)αi(s)ds.

We introduce artificially another integration

ψ̃((b, t)(s, `); 1) =
∫

Kω

du ψ̃((b, t)(s, `)(u−1, 1); u).

As (s, `)(u−1, 1) = (s ` u−1`−1, `), with the new integration variable s′ = s `u−1`−1 ∈
Kω one gets

[(γ̃ ◦ ρ)(Riϕ)](b, t) =
∑

`∈Lω/Lj

∫

Kω

ds
∫

Kω

du ψ̃((b, t)(s, `); u)αi(s)αi(` u `−1).

If i 6= j, then the representation `−1ai, ` ∈ Lω, is not equivalent to αj, hence
by the construction of ψ̃, (2.10), and the orthogonality relations the integral∫
Kω

du ψ̃(h; u) (`−1αi) (u) vanishes for all h ∈ H ′. Therefore, (γ̃ ◦ ρ)(Riϕ) is equal
to zero.

If i = j, for the same reason the above integral over u vanishes if ` is outside
Lj. Thus, we obtain

[(γ̃ ◦ ρ)(Rjϕ)](b, t) =
∫

Kω

ds
∫

Kω

du ψ̃((b, t)(s, 1); u)αj(s)αj(u).

The integration over u can be carried out using (2.11),

[(γ̃ ◦ ρ)(Rjϕ)](b, t) =
∫

Kω

dsαj(s)Ψ((b, t)(s, 1)).

But the integrand is constant, hence [(γ̃◦ρ)(Rjϕ)](b, t) = Ψ(b, t) = [(γ̃◦ρ)(Φ)](b, t)
as desired.
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Corollary 2.14. Given j ∈ J , for each G–finite kernel function Φ ∈ C∆,Lj ,Kω ,Kω

(G,B(Vj)) there exists a G–finite function f ∈ L1(K, Q) such that the operator
(`πj)(f) = πj(f

`) is given by the kernel Φ(`,−,−), and that (`πi)(f) = 0 for all
` ∈ L, i ∈ J , i 6= j.

Proof. First of all, by (2.9) there exists an ϕ ∈ C(K × L/Lω), considered as a
subspace of L1(K, C(L/Lω)), with the corresponding properties as stated in the
Corollary. As the map Πi∈JRi : C(K × L/Lω) → Πi∈JC∆,Li,Kω ,Kω

(G,B(Vi)) is
injective (“uniqueness of the Fourier transform”) and G–equivariant, the function
ϕ has necessarily to be G–finite, whence it is “contained” in L1(K, Q)(G), see
(1.10).

Corollary 2.15. If i, j ∈ J and `1, `2 ∈ L have the property that `1πi is not equiv-
alent to `2πj then there exists a (G–finite) f ∈ L1(K, Q) such that (`1πi)(f) = 0,
but (`2πj)(f) 6= 0. In view of (1.20), see also (1.21), this means that the canon-
ical map from the set of equivalence classes of irreducible involutive represen-
tions of L1(K, Q) onto Priv∗L1(K, Q) is a bijection. Thus, a parametrization of
Priv∗L1(K, Q) is obtained.

Proof. If i 6= j, then, in view of Corollary 0.1, one only has to note the evident fact
that there is a G–finite vector Φ ∈ C∆,Lj ,Kω ,Kω

(G,B(Vj)) with Φ(`2,−,−) 6≡ 0.
If i = j, then `−1

2 `1 6∈ LjK by (1.20). Choose Φ ∈ C∆,Lj ,Kω ,Kω
(G,B(Vj))

(G) such
that Φ(`2,−,−) 6≡ 0. Next choose a representative function µ inR(G/LjKn(K×
K)), i.e., a G–finite function which is constant on LjKn(K×K)–cosets, such that
µ(`2, 1, , 1) = 1, but µ(`1, 1, 1) = 0. This can be done because (`1, 1, 1)(LjK n
(K × K)) 6= (`2, 1, 1)(LjK n (K × K)). Then µΦ ∈ C∆,Lj ,Kω ,Kω

(G,B(Vj))
(G)

satisfies (µΦ)(`2,−,−) 6= 0, but (µΦ)(`1,−,−) = 0. By (2.14) there exists f ∈
L1(K,Q) such that the operator (`πj)(f) is represented by the kernel function
(µΦ)(`,−,−).

Corollary 2.16. The L–orbits in Priv∗L1(K, Q) are open and closed with respect
to the Jacobson topology.

Proof. Any L–orbit is of the form Ωj := {ker `πj | ` ∈ L} for a certain j ∈ J . To
show that Ωj is open, take the kernel of Ω′

j := {ker `πi | i ∈ J , i 6= j′, ` ∈ L}, i.e.,
I ′j := {f ∈ L1(K,Q) | (`πi)(f) = 0 for all ` ∈ L, i ∈ J , i 6= j}.

Then, by definition, the hull of I ′j is closed, and h(I ′j) contains Ω′
j. On the

other hand, for any ` ∈ L, by (2.14) there exists f ∈ I ′j such that (`πj)(f) 6= 0,
which implies that h(I ′j) = Ω′

j, whence Ωj is open.
To show that Ωj is closed, take the kernel of Ωj, i.e., Ij := {f ∈ L1(K, Q) |

(`πj)(f) = 0 for all ` ∈ L}. Clearly, the closed set h(Ij) contains Ωj. On the
other hand, if ` ∈ L, i ∈ J , i 6= j, then by (2.14) there exists f ∈ L1(K,Q) such
that (`πi)(f) 6= 0, but (`′πj)(f) = 0 for all `′ ∈ L. This means that f ∈ Ij, and
ker `πi 6∈ h(Ij), whence Ωj = h(Ij) is closed.
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Remark 2.17. We did not claim anything on the internal (Jacobson) topology
of the various L–orbits in Priv∗L1(K,Q). Presumably, if one assumes that Q
is regular, i.e., the Gelfand topology coincides with the Jacobson topology on the
structure space Q∧, then those orbits carry their natural topology, which would im-
ply that Priv∗L1(K, Q) is homeomorphic to Priv∗C∗(K, C(L/Lω)), i.e., L1(K,Q)
is ∗–regular in the sense of [1], where originally this class of groups/algebras was
denoted by [Ψ]. But I must admit that I did not study this circle of questions seri-
ously. Certainly G–finite functions are too algebraic in nature in order to separate
arbitrary closed sets in Priv∗C∗(K, C(L/Lω)) from points.

The consideration in this section can also be used to “compute” the C∗–hull
of L1(K, Q), which is the same as the C∗–hull of L1(K, C(L/Lω)). Given j ∈ J
and chosen intertwining operators Xj(`), ` ∈ Lj, as in (2.2), we define unitary
operators Yj(`) on Hj, compare (1.17), by

(2.18) (Yj(`)ξ)(k) = Xj(`)ξ(`
−1k`)

for ` ∈ Lj, k ∈ K, ξ ∈ Hj satisfying

(`πj)(f) = πj(f
`) = Yj(`)

∗πj(f)Yj(`)

for f ∈ L1(K, Q) or in C∗(K, C(L/Lω)).

Using these operators we define a space of continuous functions from L into
the algebra K(Hj) of compact operators on Hj as follows.

2.19. CLjK(L,K(Hj)) consists of all continuous functions T : L → K(Hj) satisfy-
ing

T (` `′) = Yj(`
′)∗T (`)Yj(`

′) for `′ ∈ Lj, and
T (` k) = π′j(k)∗T (`)π′j(k) for k ∈ K.

Observe that each Yj(`
′) normalizes π′j(K). Each Φ ∈ C∆,Lj ,Kω ,Kω

(G,B(Vj))
yields an element TΦ ∈ CLjK(L,K(Hj)) via

(2.20) (TΦ(`)ξ) (a) =
∫

K/Kω

Φ(`, a, b)ξ(b)db

for a ∈ K, ξ ∈ Hj = L2
Kω

(K,Vj).
As a matter of fact, if Φ = Rjϕ, ϕ ∈ C(K × L/Lω), one has

(2.21) TRjϕ(`) = (`πj)(ϕ).

There is an action νj of the group G = Ln (K ×K) on CLjK(L,K(Hj)) given by

(2.22) (νj(`, k1, k2)T )(`′) = π′j(`
′−1` k1`

−1`′)T (`−1`′)π′j(`
′−1` k−1

2 `−1`′)
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for (`, k1, k2) ∈ G, `′ ∈ L.
The map Φ 7−→ TΦ of (2.20) is G-equivariant, i.e.,

(2.23) Tτj(g)Φ = νj(g)TΦ.

Furthermore, it is a matter of routine to check that this map is in fact dense
(and injective) if both spaces are equipped with the uniform norm.

By means of (2.9) we conclude that the map

(2.24) C(K × L/Lω) 3 ϕ 7−→ TRjϕ ∈ CLjK(L,K(Hj))

has a dense image. Moreover, this map is multiplicative, if the multiplication
in CLjK (L,K(Hj)) is defined pointwise, and if C(K × L/Lω) is considered as a
subalgebra of the crossed product L1(K, C(L/Lω)).

Finally, we define the space (C∗–algebra) D consisting of all functions ψ
on J × L such that the value ψ(j, `) is contained in K(Hj), in fact ψ(j,−) ∈
CLjK(L,K(Hj)), and that ψ vanishes at infinity, i.e., for all ε > 0 there exists a
finite subset Jε ⊂ J such that

(2.25) ‖ψ(j, `)‖K(Hj) < ε for all ` ∈ L, j ∈ J r Jε.

On D, a norm is defined by

‖ψ‖ = sup
(j,`)∈J×L

‖ψ(j, `)‖K(Hj).

The operations on D are defined pointwise, in particular the multiplication.
The previous discussion and (2.9) imply:

Proposition 2.26. The map C(K × L/Lω) 3 ϕ 7−→ ψ ∈ D, ψ(j, `) = TRjϕ(`),
extends to an isomorphism from C∗(K, C(L/Lω)) onto D. ¤

Using once more the Lemma of the introduction, resp. its consequence (1.10)
we obtain:

Corollary 2.27. The map L1(K, Q) 3 f 7−→ ψ ∈ D, ψ(j, `) = (`πj)(f), yields an
isomorphism from L1(K, Q)(G) onto D(G), where the action of G on the various
pieces CLjK(L,K(Hj)) of D is given in (2.22). ¤

3 Invariant projectors of finite rank, applications
to the ideal theory in L1(K, Q)

The first purpose of this section is to show that each (`πj)(L1(K, Q)) contains
projectors of finite rank, in fact realized by L–invariant functions. Further, we
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show that Priv∗L1(K, Q) = PrivL1(K,Q), that L1(K,Q) has the Wiener property,
and that L–orbits are sets of synthesis.

A basic ingredient of the proofs is the fact that a certain subgroup of the
unitary group U(Hj), j ∈ J , is actually compact.

It is easy to check that for any j ∈ J the subset

(3.1) Uj := {t Yj(`)π
′
j(k) | t ∈ T, ` ∈ Lj, k ∈ K}

of the unitary group U(Hj) is a subgroup, in fact, the Yj(`) normalize π′j(K), as
we observed earlier.

Lemma 3.2. Uj is compact w.r.t. the strong operator topology.

Proof. Let a sequence (or net) tnYj(`n)πj(kn) be given. W.l.o.g. we may assume
that (`n) converges to `0, and that (kn) converges to k0. Choosing, as in (2.3),
a function c on a neighborhood of `0, with values in T, one can arrange that
` 7−→ c(`)Yj(`) is (locally) continuous w.r.t. the strong operator topology.

As tnYj(`n)πj(kn) = (c(`n)−1tn)c(`n)Yj(`n)πj(kn), passing once more to a sub-
net we can get that (c(`n)−1tn) converges in T to t0. But then the subnet converges
to t0Yj(`0)πj(k0).

As a further application of (2.14) (and of the previous lemma which shows
that Hj decomposes into an orthogonal sum of finite–dimensional Uj–invariant
subspaces) we obtain the following theorem.

Theorem 3.3. Given j ∈ J for each Uj–invariant finite–dimensional subspace
F of Hj there exists an L–fixed G–finite vector p = pj,F in L1(K, Q) such that
(`πj)(p) = πj(p) is the orthogonal projection on F, and (`πi)(p) = 0 for all ` ∈ L,
i ∈ J , i 6= j. Moreover, p∗ = p and p ∗ p = p.

Proof. Denote by p : Hj → Hj the orthogonal projection onto F. From the Uj–
invariance of F it follows that the constant map L 3 ` 7−→ p ∈ K(Hj) is contained
in CLjK(L,K(Hj)). Hence the function ψp on J × L given by

(3.4) ψp(i, `) = δij p

is contained in the C∗–algebra D. Actually, ψp is a G–finite vector. The details
of the proof of this statement are left to the reader. We just remark the following
crucial fact. Define a representation of K in F by restricting π′j, i.e.,

(3.5) π̃j(k) = π′j(k)
∣∣∣
F
, k ∈ K.

Then there is a subgroup LF of L of finite index such that ` π̃j is unitarily equiv-
alent to π̃j for all ` ∈ LF.

Corollary (2.27) delivers a (unique) element p in L1(K, Q)(G) with (`πi)(p) =
ψp(i, `) for all i ∈ J , ` ∈ L.
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Retaining the previous notations, we consider the corner ψpDψp in D, which
clearly can be identified with

(3.6) CLjK(L,K(Hj)) ∩ C(L,B(F)) =: CLjK(L,B(F)),

i.e., with the space of all continuous functions L → B(F) satisfying the transfor-
mation properties w.r.t. LjK analogous to (2.19); of course, π′j has to be replaced
by π̃j.

All the irreducible representations of CLjK(L,B(F)) are given by evaluation at
points ` ∈ L, in particular, they live in F, and CLjK(L,B(F))∧ can be identified
with L/LjK.

The map

(3.7) p ∗ L1(K, Q) ∗ p 3 f 7−→ (` 7−→ (`πj)(f)) ∈ CLjK(L,B(F)) = ψpDψp

yields a dense embedding of p∗L1(K, Q)∗p into the C∗–algebra ψPDψp. Further,
this map is L–equivariant if we let L act on CLjK(L,B(F)) by left translations. In
particular, the L–finite vectors in the two spaces coincide. We are going to show
that the map of (3.7) is actually the C∗–completion of p∗L1(K,Q)∗p. The proof
of this rests on the fact that

(3.8) L1(K, Q) is symmetric

as a “compact extension” of the symmetric algebra Q by [9, Theorem 1]. Here
a few words on symmetric Banach algebras are in order, for more information
see [2, 11, 14]. (There are also more recent contributions, for instance by Pták,
but we do not need these results.) In [11] such algebras are called completely
symmetric, in [2] hermitean. An involutive Banach algebra A is called symmetric
if for all a ∈ A the spectrum of a∗a is contained in [0,∞). By the theorem
of Shirali–Ford, see [2, p. 226], this is equivalent to the fact that all hermitean
elements, i.e., a∗ = a, have a real spectrum. The latter property is evidently
conserved by adding a unit to the algebra. This observation is here important
because we wish to use some results of [11], which were there only formulated for
algebras with unit. Also we note that closed involutive subalgebras of symmetric
algebras are symmetric (the spectra of hermitean elements in the subalgebra can
be “computed” by means of [2, Prop. 14, p. 25]. In particular, the subalgebra
p ∗ L1(K,Q) ∗ p of L1(K, Q) is symmetric.

Proposition 3.9. The C∗–hull of p ∗ L1(K, Q) ∗ p is ψpD ψp
∼= CLjK(L,B(F)).

Proof. We have to show that each irreducible involutive representation θ of p ∗
L1(K,Q) ∗ p in some Hilbert space K can be lifted along the map of (3.7). By
the symmetry of L1(K,Q) the representation θ can be extended to an irreducible
involutive representation µ of L1(K,Q) in some Hilbert space H ⊃ K, compare [11,
Thm. 1, p. 311, Ch. V, § 23], i.e., restricting µ to p∗L1(K, Q)∗p and K yields the
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original θ. By (1.20) there exist i ∈ J and ` ∈ L such that H = Hi and µ = `πi.
Since (`πi)(p ∗ L1(K, Q) ∗ p) = 0 for i 6= j, we have to have i = j. Moreover, K

is contained in F = (`πj)(p). As (`πj)(L1(K, Q)) is dense in K(Hj), we conclude
that (`πj)(p ∗ L1(K, Q) ∗ p) = p(`πj)(L1(K,Q))p, which may be considered as a
subspace of B(F), has in fact to coincide with B(F). It follows that K = F, and
θ = `πj|p∗L1(K,Q)∗p,F which clearly implies what we had to show.

The construction of the element p can be made more explicit in terms of kernel
functions. Actually, the following considerations will be a little more general giving
the kernel functions for all elements in CLjK(L,B(F)) (still j and F are fixed).

For k ∈ K define B(k) : F → Vj by B(k)ξ = ξ(k). This map is well–
defined as F consists of continuous functions, because F is finite–dimensional and
invariant under π′j(K). The latter invariance and the transformation property of
the members of Hj = L2

Kω
(K,Vj) yield

(3.10) B(ku) = αj(u)−1B(k), B(ak) = B(k)π̃j(a)−1

for all a, k ∈ K, u ∈ Kω.
In particular, the operator B(k) depends continuously on k ∈ K.
Moreover, the invariance of F under Yj(`), ` ∈ Lj, leads to

(3.11) B(`−1k `) = Xj(`)
∗B(k)Yj(`), ` ∈ Lj.

For the definition of Yj(`) see (2.18).
With the family B(k) of operators we also have their adjoints B(k)∗ : Vj → F,

and it is easy to check that the projection p : Hj → F may be written as

(3.12) p ξ =
∫

K/Kω

B(k)∗ξ(k)dk.

This means that p is given by the kernel function

(3.13) F (a, b) = B(a)B(b)∗, a, b ∈ K.

The above transformation laws for B imply

(3.14) F (ka, kb) = F (a, b), F (`−1a`, `−1b`) = Xj(`)
∗F (a, b)Xj(`)

for a, b, k ∈ K, ` ∈ Lj.
From (3.14) it follows that the function Φ : G → B(Vj) defined by Φ(`, a, b) =

F (a, b) is contained in C∆,Lj ,Kω ,Kω
(G,B(Vj)), see (2.4). Thus, the function Φ yields

ψp ∈ CLjK(L,B(F)), which is nothing but the constant function with value IdF,
and we are looking for ϕ ∈ C(K × L/Lω) with Rjϕ = Φ. More generally, we take
any A ∈ CLjK(L,B(F)), and form ΦA : G → B(Vj),

(3.15) ΦA(`, a, b) = B(a)A(`)B(b)∗.
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The operator given by this kernel, i.e., ξ 7−→ (a 7−→ ∫
K/Kω

Φ(`, a, b)ξ(b)db) is
just A(`). By a straightforward computation it follows from (3.10), (3.11) and
the definition of CLjK(L,B(Vj)), see (3.6), that ΦA ∈ C∆,Lj ,Kω ,Kω

(G,B(Vj)). Of
course, in general ΦA is not a G–finite vector; it is if the left L–translates of A
are sitting in a finite–dimensional subspace, as it happens for instance in the case
A ≡ IdF, which corresponds to the projector ψp. To find a ϕA ∈ C(K × L/Lω)
with RjϕA = ΦA we use the recipe of (2.10) – (2.13). Again, for short we define
Ψ : H ′ → B(Vj) by

Ψ = (γ̃ ◦ ρ)(Φ), Ψ(k, `) = ΦA(`, `−1k`, 1) = B(`−1k`)A(`)B(1)∗,

and get

ϕA(k, [t]) =
∑

`∈Lω/Lj

n Tr Ψ(k, t `)(3.16)

=
∑

`∈Lω/Lj

n Tr (B(`−1t−1k t `)A(t `)B(1)∗),

where n = dim Vj.
In particular, if p′ ∈ L1(K, C(L/Lω)) denotes the element corresponding to

p ∈ L1(K, Q), then p′ is a continuous function on K × L/Lω given by p′(k, [t]) =∑
`∈Lω/Lj n Tr(B(`−1t−1k t `)B(1)∗). Our previous discussion yields the following

result.

Proposition 3.17. The subalgebra p′ ∗L1(K, C(L/Lω)) ∗ p′ is equal to p′ ∗ C(K ×
L/Lω) ∗ p′ and isomorphic to the C∗–algebra CLjK(L,B(F)). ¤

Next, we are going to show that Priv∗ L1(K, Q) = PrivL1(K, Q), where
PrivL1(K, Q) denotes the collection of primitive ideals in L1(K,Q). Recall that
for any (complex) algebra A a primitive ideal is, by definition, the annihilator of
a simple left A–module E. Simple means that A ξ = E for all non–zero ξ ∈ E;
for a little more information on this notion see for instance the first pages of [12].

It is a general fact for symmetric Banach algebras A that PrivA is contained
in Priv∗A, because each simple module E can be “unitarized”, see [11, Cor. 1,
p. 307], i.e., there exists an irreducible involutive representation π in some Hilbert
space and a non–zero A–intertwining operator E → H, necessarily with dense
image, which implies that the annihilator of E is equal to ker π.

On the other hand, if π is an irreducible involutive representation of an in-
volutive Banach algebra A in H such that π(A) contains at least one non–zero
operator of finite rank, then one may form the two–sided ideal Iπ := {a ∈ A |
π(a) is of finite rank }; and, according to the arguments of [3, Théorème 2], the
(dense) subspace H′ := IπH of H is a simple A–module, whose annihilator equals
ker π.

Since the above assumptions are met by L1(K,Q) we obtain the following
proposition. For this, it is not necessary to use the above constructed L–invariant
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projections, because in fact all G–finite vectors in L1(K, Q) yield finite rank op-
erators when represented irreducibly.

Proposition 3.18. PrivL1(K, Q) = Priv∗ L1(K, Q). ¤
3.19. For each i ∈ J we choose and fix a Ui–invariant, for the definition of Ui

see (3.2), finite–dimensional subspace Fi of Hi, to which we find pi ∈ L1(K,Q)
according to (3.3).

Next, we prove the Wiener property of L1(K, Q); for more information on this
notion see [8, 10].

Theorem 3.20. If I is a proper closed two–sided ideal in L1(K, Q) then there
exist ` ∈ L and j ∈ J such that I is contained in kerL1(K,Q) `πj.

Proof. For short, put A := L1(K, Q). Suppose to the contrary that for any `, j the
image (`πj)(I) is non–zero. Then the closure of (`πj)(I) in K(Hj) is a non–trivial
ideal, hence equal to K(Hj).

For any i ∈ J , fixed for the moment, consider the (closed) ideal pi ∗ I ∗ pi =
I ∩ pi ∗ A ∗ pi in Ai := pi ∗ A ∗ pi. For any ` ∈ L the image (`πi)(pi ∗ I ∗ pi) is
dense in B(Fi), hence equal to B(Fi). In particular, there exists g` ∈ pi ∗ I ∗ pi

with (`πi)(g`) = IdFi
;f` := g∗` ∗ g` has the same properties.

By continuity there exists a neighborhood W` of ` such that 〈(`′πi)(f`)ξ, ξ〉 ≥
1
2

< ξ, ξ > for all ξ ∈ Fi, `′ ∈ W`. Using the compactness of L we find a finite
cover (Wµ)1≤µ≤m of L and positive elements fµ in pi ∗ I ∗ pi with 〈(`πi)(fµ)ξ, ξ〉 ≥
1
2

< ξ, ξ > for all ξ ∈ Fi, ` ∈ Wµ. The element f :=
∑m

µ=1 fµ ∈ pi ∗ I ∗ pi has the
property that

(3.21) 〈(`πi)(f)ξ, ξ〉 ≥ 1

2
< ξ, ξ > for all ` ∈ L, ξ ∈ Fi.

We claim that f is invertible in the algebra Ai with unit pi. Suppose to the
contrary that 0 is in the spectrum of f . Then 0 is in the left and in the right
spectrum of f as (Aif)∗ = f ∗Ai = fAi, f being hermitean. By [11, Ch. V,
§ 23, p. 311, V.] there exist an irreducible involutive representation θ of Ai in
some Hilbert space K, and a non–zero η ∈ K with θ(f)η = 0. Observe that
Ai is symmetric as a closed involutive subalgebra of A. Above, (3.7) and (3.9),
we computed the irreducible representations of Ai. Hence, we may suppose that
K = Fi and θ = `πi|Ai,Fi

for some ` ∈ L. The equation θ(f)η = 0 contradicts
(3.21).

Since f ∈ pi∗I∗pi is invertible in Ai it follows that pi ∈ I (for all i ∈ J), hence
P := {∑i∈J A ∗ pi ∗ A}− ⊆ I. The image of the two–sided ideal P in the C∗–hull
C∗(A) = C∗(K, C(L/Lω)) is dense, because there are no (irreducible) involutive
representations annihilating P (all C∗–algebras have the Wiener property). Again,
by (1.10) and the Lemma in the introduction, observe that P is G–invariant,
P(G) = C∗(K, C(L, Lω))(G) = A(G). But A(G) is dense in A, whence A = P =
I.
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The proof that L–orbits are sets of synthesis follows the same trail.

Theorem 3.22. Let I be a closed two–sided ideal in A = L1(K, Q). Suppose that
the hull h(I), i.e., h(I) := {P ∈ Priv∗A | P ⊇ I}, is equal to {kerA `πj | ` ∈ L}
for a certain j ∈ J . Then I =

⋂
`∈L kerA `πj.

Proof. Clearly, I is contained in
⋂

`∈L kerA `πj. Fix, for the moment, i ∈ J , i 6= j.
By the definition of h(I), for each ` ∈ L there exists g ∈ I with (`πi)(g) 6= 0.
Again, consider the ideal pi ∗ I ∗ pi = I ∩ pi ∗ A ∗ pi in Ai = pi ∗ A ∗ pi.

As above one finds an element f ∈ pi ∗ I ∗ pi with 〈(`πi)(f)ξ, ξ〉 ≥ 1
2

< ξ, ξ >
for all ` ∈ L, ξ ∈ Fi, from which one concludes again that f is invertible in Ai,
whence pi ∈ I.

Therefore, the G–invariant ideal P :=
{∑

i∈J
i6=j
A ∗ pi ∗ A

}−
is contained in I.

Consider the closure P ′ of the image of P in C∗(A) = C∗(K, C(L/Lω)), which is
also G–invariant, and invariant under the involution. Since all closed subsets of
the primitive spectrum of any C∗–algebra are “sets of synthesis” we conclude that

P ′ = ⋂

`∈L

kerC∗(A) `πj.

We have the dense G–equivariant injections

P −→ P ′, and⋂

`∈L

kerA `π′j −→ P ′.

Again, by (1.10) and the Lemma in the introduction, the collections of their
respective G–finite vectors coincide. In particular, P(G) = {⋂`∈L kerA `πj}(G). But
{⋂`∈L kerA `πj}(G) is dense in

⋂
`∈L kerA `πj, whence P =

⋂
`∈L kerA `πj ⊆ I.

For illustration and later applications we consider the special case that L is a
direct product L = S×K, where S is a compact abelian Lie group, not necessarily
connected. As we will see, in this case the collection of groups Lj, j ∈ J , is finite,
and a little more can be said on the structure of the C∗–algebras CLjK(L,B(Fj)).

One has two projections pr1 : L → S, pr2 : L → K. With the subgroup Lω of
L there are associated four canonical subgroups, namely

Sω = Lω ∩ S, Kω = K ∩ Lω, S ′ = pr1(Lω) = S ∩ LωK,(3.23)
K ′ = pr2(Lω) = K ∩ SLω.

The subgroup Kω is normal in K ′, hence Sω×Kω is normal in S ′×K ′. The image
of Lω in S ′/Sω ×K ′/Kω under the canonical map µ : S ′ ×K ′ → S ′/Sω ×K ′/Kω

is the graph of a certain isomorphism
(3.24)
κ : S ′/Sω → K ′/Kω, and Lω is its pre–image, Lω = µ−1{(s, κ(s)) | s ∈ S ′/Sω}.
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In particular, also K ′/Kω is a compact abelian Lie group. The connected compo-
nent (S ′/Sω)◦ of S ′/Sω will be written as S◦/Sω with a certain subgroup S◦ of S ′

of finite index. Likewise, we have (K ′/Kω)◦ = K◦/Kω, and clearly κ map S◦/Sω

onto K◦/Kω.
If j ∈ J is given, the subgroup Lj is of finite index in Lω, and Lj contains

Sω × Lω, hence

(3.25) Lj = µ−1{(s, κ(s)) | s ∈ Sj/Sω}

for a certain group Sj, Sω ⊂ Sj ⊂ S ′. As Lj is of finite index in Lω, the group Sj

has to contain S◦. Thus, we see that {Li | i ∈ J} is a finite collection. Moreover,
we define Kj by κ(Sj/Sω) = Kj/Kω. The group Kj can also be described as the
stabilizer in K ′ of αj ∈ K∧

ω . Next we choose a measurable projective extension α̃j

of αj to Kj with a measurable cocycle mj : Kj/Kω ×Kj/Kω → T,

(3.26) α̃j : Kj −→ B(Vj), α̃j(x)α̃j(y) = mj(x, y)α̃j(x y).

The cocycles on compact abelian Lie groups are very well known; replacing mj

by a cohomologous one (and modifying α̃j accordingly), we may assume that mj

lives on the finite group Kj/K◦. In particular, α̃j is then continuous.
The representation α̃j delivers an mj–projective representation Zj of Kj/Kω

in Hj = L2
Kω

(K,Vj) by

(3.27) (Zj(a)ξ)(k) = α̃j(a)ξ(ka)

for k ∈ K and a ∈ Kj (or a ∈ Kj/Kω, clearly Zj is constant on Kω–cosets), and
hence also a representation Aj of the isomorphic copy Sj/Sω,

(3.28) Aj(s) = χ(s)Zj(κ(s))

for s ∈ Sj/Sω with a certain unitary character χ on Sj/Sω to be determined
later. Also Aj is projective, the cocycle m′

j on Sj/Sω being given by m′
j(s, t) =

mj(κ(s), κ(t)).
The intertwining operators Xj(`), Yj(`), ` ∈ Lj in Vj resp. Hj, see (2.2), (2.18),

can now be specified to be

(3.29) Xj(`) = α̃j(b)χ(s) if ` = (s, b) ∈ Lj, (Yj(`)ξ)(k) = Xj(`)ξ(`
−1k `).

The crucial properties of the representation Aj are the following.

3.30. For any s ∈ Sj/Sω and any k ∈ K the operators Aj(s) and π′j(k) commute.
If ` = (s, b) ∈ Lj and a ∈ K, whence ` a = (s, b a), then

Yj(`)π
′
j(a) = Aj(s)π

′
j(b a).
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The straightforward computations are omitted. This implies that the functions
f ∈ CLjK(L,K(Hj)), see (2.19), can alternatively be described as those functions
which are constant on Sω–cosets, and which satisfy

(3.31) f(`(s, k)) = π′j(k)∗Aj(s)
∗f(`)Aj(s)π

′
j(k) for ` ∈ L, k ∈ K, s ∈ Sj.

Finally, we choose, as above, a finite–dimensional Uj–invariant, see (3.1), subspace
Fj of Hj, which we now assume to be irreducible. Uj-invariant means, by (3.30),
to be invariant under Aj(S

j/Sω) and under π′j(K). As these two groups commute,
Fj decomposes into a tensor product,

3.32. Fj = Pj ⊗ Qj, where Pj is an irreducible Sj/Sω–space, and Qj is an
irreducible K–space.

Since the cocycle m′
j lives on Sj/S◦, the operators Aj(s), s ∈ S◦/Sω, are

scalar on Pj. Adapting the above χ to the chosen subspace Fj we can arrange
that Aj(S

◦/Sω) is trivial on Pj.
As we have seen earlier, (3.9), the C∗–hull of pj∗ L1(K, Q)∗pj is CLjK(L,B(Fj)),

which is given analogous to (3.31), compare (2.19), (3.6). The functions in the
latter algebra are determined by their restriction to S, i.e., CLjK(L,B(Fj)) can be
identified with

CSj(S,B(Pj ⊗Qj))(3.33)
= {f : S → B(Pj ⊗Qj) | f is continuous, f(st) =

Aj(t)
∗ ⊗ IdQj

◦ f(s) ◦ Aj(t)⊗ IdQj
for s ∈ S, t ∈ Sj}

∼= CSj(S,B(Pj))⊗ B(Qj),

where CSj(S,B(Pj)) has the obvious meaning. A tensor ϕ⊗ B is mapped to the
function s 7−→ ϕ(s) ⊗ B. Actually, the functions in CSj(S,B(Pj)) are constant
on S◦–cosets, i.e., this space may be written as CSj/S◦(S/S◦,B(Pj)). One should
note that

3.34. the S–isotypical components in CSj/S◦(S/S◦,B(Pj))⊗B(Qj), S acts by left
translations, are clearly finite–dimensional, whence they coincide with the S–
isotypical components in pj ∗ L1(K,Q) ∗ pj.

Also, the L–action on CLjK(L,B(Fj)) can easily be transferred into the new
picture. An ` = (t, k) ∈ S ×K acts on the tensor ϕ⊗B ∈ CSj/S◦(S/S◦,B(Pj))⊗
B(Qj) by `(ϕ⊗B) = ϕ′ ⊗B′, where ϕ′(s) = ϕ(t−1s), B′ = π̃j(k) ◦B ◦ π̃j(k)∗.
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