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Variations on Prequantization

by Alan Weinstein and Marco Zambon

Abstract

We extend known prequantization procedures for Poisson and presym-
plectic manifolds by defining the prequantization of a Dirac manifold P as
a principal U(1)-bundle Q with a compatible Dirac-Jacobi structure. We
study the action of Poisson algebras of admissible functions on P on various
spaces of locally (with respect to P ) defined functions on Q, via hamiltonian
vector fields. Finally, guided by examples arising in complex analysis and
contact geometry, we propose an extension of the notion of prequantization
in which the action of U(1) on Q is permitted to have some fixed points.

Dedicated to the memory of Professor Shiing-Shen Chern

1 Introduction

Prequantization in symplectic geometry attaches to a symplectic manifold P a
hermitian line bundle K (or the corresponding principal U(1)-bundle Q), with a
connection whose curvature form is the symplectic structure. The Poisson Lie al-
gebra C∞(P ) then acts faithfully on the space Γ(K) of sections of K (or antiequiv-
ariant functions on Q). Imposing a polarization Π cuts down Γ(K) to a smaller,
more “physically appropriate” space ΓΠ(K) on which a subalgebra of C∞(P ) may
still act. By polarizing and looking at the “ladder” of sections of tensor powers
K⊗n (or functions on Q transforming according to all the negative tensor powers
of the standard representation of U(1)), one gets an “asymptotic representation”
of the full algebra C∞(P ). All of this often goes under the name of geometric
quantization, with the last step closely related to deformation quantization.

For systems with constraints or systems with symmetry, the phase space P
may be a presymplectic or Poisson manifold. Prequantization, and sometimes the
full procedure of geometric quantization, has been carried out in these settings by
several authors; their work is cited below.

The principal aim of this paper is to suggest two extensions of the prequan-
tization construction which originally arose in an example coming from contact
geometry. The first, which unifies the presymplectic and Poisson cases and thus
permits the simultaneous application of constraints and symmetry, is to allow P
to be a Dirac manifold. The second is to allow the U(1) action on Q to have fixed
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points when P has a boundary, so that the antiequivariant functions become sec-
tions of a sheaf rather than a line bundle over P . In the course of the paper, we
also make some new observations concerning the Poisson and presymplectic cases.

1.1 Symplectic prequantization

On a symplectic manifold (P, ω), one defines the hamiltonian vector field Xf of
the function f by ω(Xf , ·) = df , and one has the Lie algebra bracket {f, g} =
ω(Xf , Xg) on C∞(P ). A closed 2-form ω is called integral if its de Rham cohomol-
ogy class [ω] ∈ H2(M,R) is integral, i.e. if it is in the image of the homomorphism
i∗ : H2(M,Z) → H2(M,R) associated with the inclusion i : Z → R of coefficient
groups.

When ω is integral, following Kostant [21], we prequantize (P, ω) by choosing
a hermitian line bundle K bundle over P with first Chern class in i−1

∗ [ω]. Then
there is a connection ∇ on K with curvature 2πiω. Associating to each function f
the operator f̂ on Γ(K) defined by1 f̂(s) = −[∇Xf

s+2πifs], we obtain a faithful
Lie algebra representation of C∞(P ) on Γ(K).

The construction above is equivalent to the following, due to Souriau [27]: let
Q be the principal U(1)-bundle associated to K. Denote by σ the connection
form on Q corresponding to ∇ (so dσ = π∗ω, where π : Q → P ), and by E the
infinitesimal generator of the U(1) action on Q. We can identify the sections of K
with functions s̄ : Q→ C which are U(1)-antiequivariant (i.e. s̄(x · t) = s̄(x) · t−1

for x ∈ Q, t ∈ U(1), or equivalently E(s̄) = −2πis̄), and then the operator f̂ on
Γ(K) corresponds to the action of the vector field

−XH
f + π∗fE,(1.1)

where the superscript H denotes the horizontal lift to Q of a vector field on P .
Notice that σ is a contact form on Q and that XH

f −π∗fE is just the hamiltonian
vector field of π∗f with respect to this contact form (viewed as a Jacobi structure;
see Section 3).

1.2 Presymplectic prequantization

Prequantization of a presymplectic manifolds (P, ω) for which ω is integral and
of constant rank2 was introduced by Günther [15] (see also Gotay and Sniatycki
[12] and Vaisman [33]). Günther represents the Lie algebra of functions constant

1Our convention for the Poisson bracket differs by a sign from that of [15] and [21]; con-
sequently our formula for f̂ and Equation (1.1) below differ by a sign too. Our sign has the
property that the map from functions to their hamiltonian vector fields is an antihomomorphism
from Poisson brackets to Lie brackets.

2Unlike many other authors (including some of those cited here), we will use the work
“presymplectic” to describe any manifold endowed with a closed 2-form, even if the form does
not have constant rank.
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along the leaves of kerω by assigning to each such function f the equivalence
class of vector fields on Q given by formula (1.1), where Xf now stands for the
equivalence class of vector fields satisfying ω(Xf , ·) = df .

1.3 Poisson prequantization

Prequantization of Poisson manifolds (P,Λ) was first investigated algebraically by
Huebschmann [16], in terms of line bundles by Vaisman [31], and then in terms of
circle bundles by Chinea, Marrero, and de Leon [5]. When the Poisson cohomology
class [Λ] ∈ H2

Λ(P ) is the image of an integral de Rham class [Ω] under the map
given by contraction with Λ, a U(1)-bundle Q with first Chern class in i−1

∗ [Ω]
may be given a Jacobi structure for which the map that assigns to f ∈ C∞(P )
the hamiltonian vector field (with respect to the Jacobi structure) of −π∗f is a
Lie algebra homomorphism. This gives a (not always faithful) representation of
C∞(P ).

1.4 Dirac prequantization

We will unite the results in the previous two paragraphs by using Dirac manifolds.
These were introduced by Courant [6] and include both Poisson and presymplectic
manifolds as special cases. On the other hand, Jacobi manifolds had already been
introduced by Kirillov [20] and Lichnerowicz [24], including Poisson, conformally
symplectic, and contact manifolds as special cases. All of these generalizations
of Poisson structures were encompassed in the definition by Wade [34] of Dirac-
Jacobi3 manifolds.

To prequantize a Dirac manifold P , we will impose an integrality condition
on P which implies the existence of a U(1)-bundle π : Q→ P with a connection
which will be used to construct a Dirac-Jacobi structure on Q. Prequantization
of (suitable) functions g ∈ C∞(P ) is achieved “Souriau-style” by associating to g
the equivalence class of the hamiltonian vector fields of −π∗g and by letting this
equivalence class act on a suitable subset of the U(1)-antiequivariant functions
on Q, or equivalently by letting π∗g act by the bracket of functions on Q. The
same prequantization representation can be realized as an action on sections of a
hermitian line bundle over P with an L-connection, where L is the Lie algebroid
given by the Dirac manifold P .

We also look at the following very natural example, discovered by Claude
LeBrun. Given a contact manifold M with contact distribution C ⊂ TM , the
nonzero part of its annihilator C◦ is a symplectic submanifold of T ∗M . When
the contact structure is cooriented, we may choose the positive half C◦

+ of this
submanifold. By adjoining to C◦

+ the “the section at infinity of T ∗M” we obtain

3Wade actually calls them E1(M)-Dirac manifolds; we will stick to the terminology “Dirac-
Jacobi”, as introduced in [13].
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a manifold with boundary, on which the symplectic structure on C◦
+ extends to

give a Poisson structure. We call this a “LeBrun-Poisson manifold”. If now we
additionally adjoin the zero section of T ∗M we obtain a Dirac manifold P .

First we will describe the prequantization U(1)-bundle of P , then we will mod-
ify it by collapsing to points the fibers over one of the two boundary components
and by applying a conformal change. At the end, restricting this construction to
the LeBrun-Poisson manifold (which sits as an open set inside P ), we will obtain
a contact manifold in which M sits as a contact submanifold.

1.5 Organization of the paper

In Sections 2 and 3 we collect known facts about Dirac and Dirac-Jacobi manifolds.
In Section 4 we state our prequantization condition and describe the Dirac-Jacobi
structure on the prequantization space of a Dirac manifold. In Section 5 we
study the corresponding prequantization representation, and in Section 6 we derive
the same representation by considering hermitian line bundles endowed with L-
connections. In Section 7 we study the prequantization of LeBrun’s examples, and
in Section 8 we allow prequantization U(1)-bundles to have fixed points, and we
endow them with contact structures. We conclude with some remarks in Section
9.
Acknowledgements: A.W. would like to thank the Institut Mathématique de
Jussieu and École Polytechnique for hospitality while this paper was being pre-
pared. M.Z. is grateful to Xiang Tang for helpful discussions and advice in the
early stages of this work. We would both like to thank the local organizers of
Poisson 2004 for encouraging the writing of this article by insisting on the pub-
lication of a volume of proceedings (as well as for the superb organization of the
meeting itself).

2 Dirac manifolds

We start by recalling some facts from [6].

Definition 2.1 ([6], Def 1.1.1). A Dirac structure on a vector space V is a
maximal isotropic subspace L ⊂ V ⊕ V ∗ with respect to the symmetric pairing

〈X1 ⊕ ξ1, X2 ⊕ ξ2〉+ =
1

2
(iX2ξ1 + iX1ξ2).(2.1)

L necessarily has the same dimension as V , and denoting by ρV and ρV ∗ the
projections of V ⊕ V ∗ onto V and V ∗ respectively, we have

ρV (L) = (L ∩ V ∗)◦ and ρV ∗(L) = (L ∩ V )◦(2.2)

where the symbol ◦ denotes the annihilator. It follows that L induces (and is
equivalent to) a skew bilinear form on ρV (L) or a bivector on V/L∩ V ([6], Prop.
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1.1.4). If (V, L) is a Dirac vector space and i : W → V a linear map, then one
obtains a pullback Dirac structure on W by {Y ⊕ i∗ξ : iY ⊕ ξ ∈ L}; one calls
a map between Dirac vector spaces “backward Dirac map” if it pulls back the
Dirac structure of the target vector space to the one on the source vector space
[3]. Similarly, given a linear map p : V → Z, one obtains a pushforward Dirac
structure on Z by {pX ⊕ ξ : X ⊕ p∗ξ ∈ L}, and one thus has a notion of “forward
Dirac map” as well.

On a manifold M , a maximal isotropic subbundle L ⊂ TM ⊕ T ∗M is called
an almost Dirac structure on M . The appropriate integrability condition was
discovered by Courant ([6], Def. 2.3.1):

Definition 2.2. A Dirac structure on M is an almost Dirac structure L on
M whose space of sections is closed under the Courant bracket on sections of
TM ⊕ T ∗M , which is defined by

[X1 ⊕ ξ1, X2 ⊕ ξ2] =
(
[X1, X2] ⊕ LX1ξ2 − LX2ξ1 +

1

2
d(iX2ξ1 − iX1ξ2)

)
.(2.3)

When an almost Dirac structure L is integrable, (L, ρTM |L, [·, ·]) is a Lie alge-
broid4 ([6], Thm. 2.3.4). The singular distribution ρTM(L) is then integrable in
the sense of Stefan and Sussmann [28] and gives rise to a singular foliation of M .
The Dirac structure induces a closed 2-form (presymplectic form) on each leaf of
this foliation ([6], Thm. 2.3.6). The distribution L∩V , called the characteristic
distribution, is singular in a different way. Its annihilator ρT ∗M(L) is closed in
the cotangent bundle, but the distribution itself is not closed unless it has constant
rank. It is not always integrable, either. (See Example 2.1 and the beginning of
Section 7.)

Next we define hamiltonian vector fields and put a Lie algebra structure on a
subspace of C∞(M).

Definition 2.3. A function f on a Dirac manifold (M,L) is admissible if there
exists a smooth vector field Xf such that Xf ⊕ df is a section of L. A vector
field Xf as above is called a hamiltonian vector field of f . The set of admissible
functions forms a subspace C∞

adm(M) of C∞(M).

If f is admissible then df |L∩TM = 0. The converse holds where the characteris-
tic distribution L∩TM has constant rank, but not in general. In other words, df
can be contained in ρT ∗M(L) without being the image of a smooth section of L; see
Example 2.1. Since any two hamiltonian vector fields of an admissible function
f differ by a characteristic vector field, which annihilates any other admissible
function, we can make the following definition.

4Recall that a Lie algebroid is a vector bundle A over a manifold M together with a Lie
bracket [·, ·] on its space of sections and a bundle map ρ : A → TM (the “anchor”) such that
the Leibniz rule [s1, fs2] = ρs1(f) · s2 + f · [s1, s2] is satisfied for all sections s1, s2 of A and
functions f on M .
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Definition 2.4. The bracket on C∞
adm(M) is given by {f, g} = Xg · f .

This bracket differs by a sign from the one in the original paper of Courant [6],
but it allows us to recover the usual conventions for presymplectic and Poisson
manifolds, as shown below. The main feature of this bracket is the following (see
[6], Prop. 2.5.3):

Proposition 2.1. Let (M,L) be a Dirac manifold. If Xf and Xg are any hamilto-
nian vector fields for the admissible functions f and g, then −[Xf , Xg] is a hamilto-
nian vector field for {f, g}, which is therefore admissible as well. The integrability
of L implies that the bracket satisfies the Jacobi identity, so (C∞

adm(M), {·, ·}) is a
Lie algebra.

We remark that the above can be partially extended to the space C∞
bas(M)

of basic functions, i.e. of functions φ satisfying dφ|L∩TM = 0, which contains
the admissible functions. (This two spaces of functions coincide when L ∩ TM is
regular). Indeed, if h is admissible and φ is basic, then {φ, h} := Xh · φ is well
defined and basic, since the flow of a hamiltonian vector field Xh induces vector
bundle automorphisms of TM ⊕ T ∗M that preserve L ∩ TM (see Section 2.4 in
[6]). If f is an admissible function, then the Jacobiator of f, h, and φ vanishes
(adapt the proof of Prop. 2.5.3 in [6]).

We recall how manifolds endowed with 2-forms or bivectors fit into the frame-
work of Dirac geometry. Let ω be a 2-form on M , ω̃ : TM → T ∗M the bundle
map X 7→ ω(X, ·). Its graph L = {X ⊕ ω̃(X) : X ∈ TM} is an almost Dirac
structure; it is integrable iff ω is closed. If ω is symplectic, i.e. nondegenerate,
then every function f is admissible and has a unique hamiltonian vector field
satisfying ω̃(Xf ) = df ; the bracket is given by {f, g} = ω(Xf , Xg).

Example 2.1. Let ω be the presymplectic form x2
1dx1 ∧ dx2 on M = R2, and let

L be its graph. The characteristic distribution L∩ TM has rank zero everywhere
except along {x1 = 0}, where it has rank two, and it is clearly not integrable
(compare the discussion following Definition 2.2). The differential of f = x2

1 takes
all its values in the range of ρT ∗M , but f is not admissible. This illustrates the
remark following Definition 2.3, i.e. it provides an example of a function which is
basic but not admissible.

Let Λ be a bivector field on M , Λ̃ : T ∗M → TM the corresponding bundle
map ξ 7→ Λ(·, ξ). (Note that the argument ξ is in the second position.) Its graph
L = {Λ̃(ξ) ⊕ ξ : ξ ∈ T ∗M} is an almost Dirac structure which is integrable iff Λ
is a Poisson bivector (i.e. the Schouten bracket [Λ,Λ]S is zero). Every function f
is admissible with a unique hamiltonian vector field Xf = {·, f}, and the bracket
of functions is {f, g} = Λ(df, dg).
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3 Dirac-Jacobi manifolds

Dirac-Jacobi structures were introduced by Wade [34] (under a different name) and
include Jacobi (in particular, contact) and Dirac structures as special cases. Like
Dirac structures, they are defined as maximal isotropic subbundles of a certain
vector bundle.

Definition 3.1. A Dirac-Jacobi structure on a vector space V is a subspace
L̄ ⊂ (V ×R)⊕ (V ∗ ×R) which is maximal isotropic under the symmetric pairing

〈
(X1, f1)⊕ (ξ1, g1) , (X2, f2)⊕ (ξ2, g2)

〉
+

=
1

2
(iX2ξ1 + iX1ξ2 + g1f2 + g2f1).

(3.1)

A Dirac-Jacobi structure on V necessarily satisfies dim L̄ = dimV + 1. Fur-
thermore, Equations (2.2) hold for Dirac-Jacobi structures too:

ρV (L̄) = (L̄ ∩ V ∗)◦ and ρV ∗(L̄) = (L̄ ∩ V )◦.(3.2)

As in the Dirac case, one has notions of pushforward and pullback structures
and as well as forward and backward maps. For example, given a Dirac-Jacobi
structure L̄ on V and a linear map p : V → Z, one obtains a pushforward Dirac-
Jacobi structure on Z by {(pX, f)⊕ (ξ, g) : (X, f)⊕ (p∗ξ, g) ∈ L̄}.

On a manifold M , a maximal isotropic subbundle L̄ ⊂ E1(M) := (TM ×R)⊕
(T ∗M × R) is called an almost Dirac-Jacobi structure on M .

Definition 3.2 ([34], Def. 3.2). A Dirac-Jacobi structure on a manifold
M is an almost Dirac-Jacobi structure L̄ on M whose space of sections is closed
under the extended Courant bracket on sections of E1(M), which is defined by

[(X1, f1)⊕ (ξ1, g1) , (X2, f2)⊕ (ξ2, g2)] =
(
[X1, X2], X1 · f2 −X2 · f1

)
⊕

(
LX1ξ2 − LX2ξ1 +

1

2
d(iX2ξ1 − iX1ξ2)

+ f1ξ2 − f2ξ1 +
1

2
(g2df1 − g1df2 − f1dg2 + f2dg1),

X1 · g2 −X2 · g1 +
1

2
(iX2ξ1 − iX1ξ2 − f2g1 + f1g2)

)
.

(3.3)

By a straightforward computation (see also Section 4 of [13]) this bracket can
be derived from the Courant bracket (2.3), as follows. Denote by U the embedding
Γ(E1(M)) → Γ(T (M × R)⊕ T ∗(M × R)) given by

(X, f)⊕ (ξ, g) 7→ (X + f
∂

∂t
)⊕ et(ξ + gdt),
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where t is the coordinate on the R factor of the manifold M × R. Then U is
a bracket-preserving map from Γ(E1(M)) with the extended bracket (3.3), to
Γ(T (M×R)⊕T ∗(M×R)) with the Courant bracket (2.3) of the manifold M×R.

Furthermore in Section 5 of [17] it is shown that any Dirac-Jacobi manifold
(M, L̄) gives rise to a Dirac structure on M × R given by

˜̄L(x,t) = {(X + f
∂

∂t
) ⊕ et(ξ + gdt) : (X, f)⊕ (ξ, g) ∈ L̄x},

where t is the coordinate on R. This procedure extends the well known symplec-
tization of contact manifolds and Poissonization of Jacobi manifolds, and may be
called “Diracization”.

If L̄ is a Dirac-Jacobi structure, (L̄, ρTM , [·, ·]) is a Lie algebroid ([34], Thm.
3.4), and each leaf of the induced foliation on M has the structure of a precontact
manifold (i.e. simply a 1-form) or of a locally conformal presymplectic manifold
(i.e. a 2-form Ω and a closed 1-form ω satisfying dΩ = ω ∧ Ω). See Section
4.1 for a description of the induced foliation. As in the Dirac case, one can
define hamiltonian vector fields and endow a subset of C∞(M) with a Lie algebra
structure.

Definition 3.3 ([34], Def. 5.1). A function f on a Dirac-Jacobi manifold (M, L̄)
is admissible if there exists a smooth vector field Xf and a smooth function ϕf

such that (Xf , ϕf )⊕ (df, f) is a section of L̄. Pairs (Xf , ϕf ) as above are unique
up to smooth sections of L̄ ∩ (TM × R), and Xf is called a hamiltonian vector
field of f . The set of admissible functions is denoted by C∞

adm(M).

Definition 3.4. The bracket on C∞
adm(M) is given by {f, g} = Xg · f + fϕg

This bracket, which differs by a sign from that in [34], enjoys the same proper-
ties stated in Proposition 2.1 for Dirac manifolds (see [34], Prop. 5.2 and Lemma
5.3).

Proposition 3.1. Let (M, L̄) be a Dirac-Jacobi manifold. If f and g are admis-
sible functions, then

[(Xf , ϕf )⊕ (df, f) , (Xg, ϕg)⊕ (dg, g)] =

([Xf , Xg], Xf · ϕg −Xg · ϕf )⊕ (−d{f, g},−{f, g}),
(3.4)

hence {f, g} is again admissible. The integrability of L̄ implies that the admissible
functions form a Lie algebra.

We call a function ψ on M basic if X · ψ + ψf = 0 for all elements (X, f) ∈
L̄∩ (TM ×R). This is equivalent to requiring (dψ, ψ) ∈ ρT ∗M×R(L̄) at each point
of M , so the basic functions contain the admissible ones. As in the case of Dirac
structures, we have the following properties:
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Lemma 3.1. If ψ is a basic and h an admissible function, then the bracket
{ψ, h} := Xh · ψ + ψh is well-defined and again basic.

Proof. It is clear that the bracket is well defined. To show that Xh · ψ + ψh is
again basic we reduce the problem to the Dirac case. Let (X, f) ∈ L̄x∩ (TM ×R)
Fix a choice of (Xh, ϕh) for the admissible function h. The vector field Xh +ϕh

∂
∂t

on the Diracization (M × R, ˜̄L) (which is just a Hamiltonian vector field of eth)
has a flow φ̃ε, which projects to the flow φε of Xh under pr1 : M × R → M . For
each ε the flow φ̃ε induces a vector bundle automorphism Φε of E1(M), covering
the diffeomorphism φε of M , as follows:

(X, f)⊕ (ξ, g) ∈ E1
x(M) 7→ (φ̃ε)∗(X ⊕ f

∂

∂t
)(x,0) ⊕ (φ̃−1

ε )∗(ξ + gdt)(x,0) · e−pr2(φ̃ε(x,0)),

where we identify Tφ̃ε(x,0)(M×R)⊕T ∗
φ̃ε(x,0)

(M×R) with E1
φε(x)(M) to make sense of

the second term. Since the vector bundle maps induced by the flow φ̃ε preserve the

Dirac structure ˜̄L (see Section 2.4 in [6]), using the definition of the Diracization
˜̄L one sees that Φε preserves L̄, and therefore also L̄∩ (TM ×R). Notice that we
can pull back sections of E1(M) by setting (Φ∗

ε((X, f)⊕ (ξ, g)))x := Φ−1
ε ((X, f)⊕

(ξ, g))φε(x). A computation shows that

(0, 0)⊕ (d(Xh · ψ + ϕhψ) , Xh · ψ + ϕhψ) =
∂

∂ε

∣∣∣
0
Φ∗

ε((0, 0)⊕ (dψ, ψ)),

so that

〈(0, 0)⊕ (d(Xh · ψ + ϕhψ), Xh · ψ + ϕhψ) , (X, f)⊕ (0, 0)〉+ =

∂

∂ε

∣∣∣
0

[
〈(0, 0)⊕ (dψ, ψ)φε(x) , Φε((X, f)⊕ (0, 0))x〉+epr2(φ̃ε(x,0))

]
= 0,

as was to be shown.

Furthermore, the Jacobiator of admissible functions f, h and a basic function
ψ is zero. One can indeed check that Wade’s proof of the Jacobi identity for
admissible functions ([34] Prop. 5.2) applies in this case too. Alternatively, this
follows from the analogous statement for the Diracization M × R, since the map

C∞
adm(M) → C∞

adm(M × R) , g 7→ etg(3.5)

is a well-defined Lie algebra homomorphism5 and maps basic functions to basic
functions.

5For the well-definedness notice that, if (Xg, ϕg)⊕(dg, g) ∈ Γ(L̄), then (Xg +ϕg
∂
∂t )⊕d(etg) ∈

Γ( ˜̄L). Notice that in particular Xg + ϕg
∂
∂t is a hamiltonian vector field for etg. Using this,

the equation et{f, g}M = {etf, etg}M×R follows at once from the definitions of the respective
brackets of functions.
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Now we display some examples of Dirac-Jacobi manifolds.
There is a one-to-one correspondence between Dirac structures on M and

Dirac-Jacobi structures on M contained in TM ⊕ (T ∗M × R): to each Dirac
structure L one associates the Dirac-Jacobi structure {(X, 0) ⊕ (ξ, g) : X ⊕ ξ ∈
L, g ∈ R} ([34], Remark 3.1).

A Jacobi structure on a manifold M is given by a bivector field Λ and a vector
field E satisfying the Schouten bracket conditions [E,Λ]S = 0 and [Λ,Λ]S =
2E ∧ Λ. When E = 0, the Jacobi structure is a Poisson structure. Any skew-
symmetric vector bundle morphism T ∗M × R → TM × R is of the form

(
Λ̃ −E
E 0

)
for a bivector field Λ and a vector field E, where as in Section 2 we have Λ̃ξ =
Λ(·, ξ). Graph

(
Λ̃ −E
E 0

)
⊂ E1(M) is a Dirac-Jacobi structure iff (M,Λ, E) is a

Jacobi manifold ([34], Sect 4.1). In this case all functions are admissible, the
unique hamiltonian vector field of f is6 Xf = Λ̃df − fE, ϕf = E · f and the
bracket is given by {f, g} = Λ(df, dg) + fE · g − gE · f .

Similarly (see [34], Sect. 4.3), any skew-symmetric vector bundle morphism
TM × R → T ∗M × R is of the form

(
Ω̃ σ
−σ 0

)
for a 2-form Ω and a 1-form σ, and

graph
(

Ω̃ σ
−σ 0

)
⊂ E1(M) is a Dirac-Jacobi structure iff Ω = dσ.

Any contact form σ on a manifoldM defines a Jacobi structure (Λ, E) (where E
is the Reeb vector field of σ and Λ̃d̃σ|ker σ = Id; see for example [18], Sect. 2.2), and
graph

(
d̃σ σ
−σ 0

)
is equal to graph

(
Λ̃ −E
E 0

)
. Further, by considering suitably defined

graphs, one sees that locally conformal presymplectic structures and homogeneous
Poisson manifolds (given by a Poisson bivector Λ and a vector field Z satisfying
LZΛ = −Λ) are examples of Dirac-Jacobi structures ([34], Sect. 4).

4 The prequantization spaces

In this section we determine the prequantization condition for a Dirac manifold
(P,L), and we describe its “prequantization space” (i.e. the geometric object that
allows us to find a representation of C∞

adm(P )).
We recall the prequantization of a Poisson manifold (P,Λ) by a U(1)-bundle as

described in [5]. The bundle map Λ̃ : T ∗P → TP extends to a cochain map from
forms to multivector fields, which descends to a map from de Rham cohomology
H•

dR(P,R) to Poisson cohomology H•
Λ(P ) (the latter having the set of p-vector

fields as p-cochains). The prequantization condition, first formulated in this form
in [31], is that [Λ] ∈ H2

Λ(P ) be the image under Λ̃ of an integral de Rham class,
or equivalently that

Λ̃Ω = Λ + LAΛ(4.1)

for some integral closed 2-form Ω and vector field A on P . Assuming this pre-
quantization condition to be satisfied, let π : Q→ P be a U(1)-bundle with first

6Again, this is opposite to the usual sign convention.
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Chern class [Ω], σ a connection on Q with curvature Ω (i.e. dσ = π∗Ω), and E the
generator of the U(1)-action (so that σ(E) = 1 and π∗E = 0). Then (see Thm.
3.1 in [5])

(ΛH + E ∧ AH , E)(4.2)

is a Jacobi structure on Q which pushes down to (Λ, 0) on P via π∗. (The super-
script H denotes horizontal lift, with respect to the connection σ, of multivector
fields on P .) We say that π is a Jacobi map.

It follows from the Jacobi map property of π that assigning to a function f on

P the hamiltonian vector field of−π∗f , which is− ˜(ΛH + E ∧ AH)(π∗df)+(π∗f)E,
defines a Lie algebra homomorphism from C∞(P ) to the operators on C∞(Q).

Now we carry out an analogous construction on a Dirac manifold (P,L). Recall
that L is a Lie algebroid with the restricted Courant bracket and anchor ρTP : L→
TP (which is just the projection onto the tangent component). This anchor gives
a Lie algebra homomorphism from Γ(L) to Γ(TP ) with the Lie bracket of vector
fields. The pullback by the anchor therefore induces a map ρ∗TP : Ω•

dR(P,R) →
Ω•

L(P ), descending to a map from de Rham cohomology to the Lie algebroid
cohomology H2

L(P ). (We recall from [8] that Ω•
L(P ) is the graded differential

algebra of sections of the exterior algebra of L∗.) There is a distinguished class in
H2

L(P ): on TP ⊕ T ∗P , in addition to the natural symmetric pairing (2.1), there
is also an anti-symmetric one given by

〈X1 ⊕ ξ1, X2 ⊕ ξ2〉− =
1

2
(iX2ξ1 − iX1ξ2).(4.3)

Its restriction Υ to L satisfies dLΥ = 0. Our prequantization condition is

[Υ] ∈ ρ∗TP (i∗(H
2(P,Z)))(4.4)

or equivalently

ρ∗TP Ω = Υ + dLβ,(4.5)

where Ω is a closed integral 2-form and β a 1-cochain for the Lie algebroid L, i.e.
a section of L∗.

Remark 4.1. If L is the graph of a presymplectic form ω then Υ = ρ∗TP (ω).
If L is graph(Λ̃) for a Poisson bivector Λ and Ω is a 2-form, then ρ∗TP [Ω] = [Υ]
if and only if Λ̃[Ω] = [Λ].7 This shows that (4.4) generalizes the prequantization
conditions for presymplectic and Poisson structures mentioned in the introduction
and in formula (4.1).

7This is consistent with the fact that, if ω is symplectic, then graph(ω̃) = graph(Λ̃), where
the bivector Λ is defined so that the vector bundle maps ω̃ and Λ̃ are inverses of each other (so
if ω = dx ∧ dy on R2, then Λ = ∂

∂x ∧
∂
∂y ).
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Remark 4.2. The prequantization condition above can not even be formulated
for twisted Dirac structures. We recall the definition of these structures [25]. If φ
is a closed 3-form on a manifold P , adding the term φ(X1, X2, ·) to the Courant
bracket (i.e. to the right hand side of Equation (2.3)) determines a new bracket
[·, ·]φ so that TP ⊕ T ∗P , together with this bracket, the original anchor ρTP

and the symmetric pairing 〈·, ·〉+, form a Courant algebroid. A φ-twisted Dirac
structure L is then a maximal isotropic subbundle which is closed under [·, ·]φ; it is
automatically a Lie algebroid (whose Lie algebroid differential we denote by dφ

L).
The orbits of the Lie algebroid carry 2-forms ΩL given as in the remark following
Definition 2.1, satisfying dΩL = j∗φ where j is the inclusion of a leaf in P and d
is the de Rham differential on the leaves. Since

dφ
LΥ = dφ

Lρ
∗
TP ΩL = ρ∗TPdΩL = ρ∗TP j

∗φ,

we conclude that Υ is usually not dφ
L-closed, so we cannot expect Ω to be closed

in (4.5), and hence we cannot require that it be integral. The correct notion of
prequantization should probably involve a gerbe.

Now, assuming the prequantization condition (4.4) and proceeding as in the
Poisson case, let π : Q → P be a U(1)-bundle with connection form σ having
curvature Ω; denote by E the infinitesimal generator of the U(1)-action.

Theorem 4.1. The subbundle L̄ of E1(Q) given by the direct sum of

{(XH + 〈X ⊕ ξ, β〉E, 0)⊕ (π∗ξ, 0) : X ⊕ ξ ∈ L}

and the line bundles generated by (−E, 0)⊕ (0, 1) and (−AH , 1)⊕ (σ − π∗α, 0) is
a Dirac-Jacobi structure on Q. Here, A⊕ α is an isotropic section of TP ⊕ T ∗P
satisfying β = 2〈A ⊕ α, · 〉+|L. Such a section always exists, and the subbundle
above is independent of the choice of A⊕ α.

Proof. Let C be a maximal isotropic (with respect to 〈·, ·〉+) complement of L in
TP ⊕ T ∗P . Such a complement always exists, since the space of complements at
each point is contractible (an affine space modeled on a space of skew-symmetric
forms). Now extend β to a functional β̃ on TP ⊕ T ∗P by setting β̃|C = 0. There
exists a unique section A⊕ α of TP ⊕ T ∗P satisfying β = 2〈A⊕ α, · 〉+ since the
symmetric pairing is non-degenerate. Since 〈A⊕ α, · 〉+|C = 0 and C is maximal
isotropic we conclude that A⊕ α belongs to C and is hence isotropic itself. This
shows the existence of A⊕ α as above.

Now clearly A ⊕ α + Y ⊕ η satisfies the property stated in the theorem iff
Y ⊕η ⊂ L, and in this case it is isotropic (i.e. 〈A+Y, α+η〉 = 0) iff Y ⊕η ⊂ ker β.
So a section A⊕ α as in the theorem is unique up to sections Y ⊕ η of ker β. By
inspection one sees that replacing A ⊕ α by A ⊕ α + Y ⊕ η in the formula for L̄
defines the same subbundle.
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That L̄ is isotropic with respect to the symmetric pairing on E1(Q) follows from
the fact that L is isotropic, together with the properties of A⊕ α. L̄ is clearly a
subbundle of dimension dimP + 2, so it is an almost Dirac-Jacobi structure.

To show that L̄ is integrable, we use the fact that L̄ is integrable if and only
if 〈[e1, e2], e3〉+ = 0 for all sections ei of L̄ and that 〈[·, ·], ·〉+ is a totally skew-
symmetric tensor if restricted to sections of L̄, i.e. an element of Γ(∧3L̄∗) ([17],
Prop. 2.2). Each section of L̄ can be written as a C∞(Q)-linear combination of
the following three types of sections of L̄: a =: (XH + 〈X ⊕ ξ, β〉E, 0) ⊕ (π∗ξ, 0)
where X ⊕ ξ ∈ Γ(L), b := (−E, 0)⊕ (0, 1) and c := (−AH , 1)⊕ (σ − π∗α, 0). We
will use subscripts to label more than one section of a given type. It is immediate
that brackets of the form [a, b],[b1, b2], and [c1, c2] all vanish, and a computation
shows that 〈[a1, a2], a3〉+ = 0 since L ⊂ TP ⊕ T ∗P is a Dirac structure. Finally
〈[a1, a2], c〉+ = 0 using dσ = π∗Ω and the prequantization condition (4.5), which
when applied to sections X1 ⊕ ξ1 and X2 ⊕ ξ2 of L reads

Ω(X1, X2) = 〈ξ1, X2〉+X1〈β,X2⊕ ξ2〉−X2〈β,X1⊕ ξ1〉− 〈β ,
[
X1⊕ ξ1, X2⊕ ξ2

]
〉.

By skew-symmetry, the vanishing of these expressions is enough to prove the
integrability of L̄.

Remark 4.3. When (P,L) is a Poisson manifold, L̄ is exactly the graph of the
Jacobi structure (4.2), i.e. it generalizes the construction of [5]. If (P,L) is given
by a presymplectic form Ω, then L̄ is the graph of (dσ, σ).

Remark 4.4. The construction of Theorem 4.1 also works for complex Dirac
structures (i.e., integrable maximal isotropic complex subbundles of the complex-
ified bundle TCM⊕T ∗CM). It can be adapted to the setting of generalized complex
structures [14] (complex Dirac structures which are transverse to their complex
conjugate) and generalized contact structures [18] (complex Dirac-Jacobi struc-
tures which are transverse to their complex conjugate) as follows. If (P,L) is a
generalized complex manifold, assume all of the previous notation and the follow-
ing prequantization condition:

ρ∗TP Ω = iΥ + dLβ,(4.6)

where Ω is (the complexification of) a closed integer 2-form and β a 1-cochain for
the Lie algebroid L. Then the direct sum of

{(XH + 〈X ⊕ ξ, β〉E, 0)⊕ (π∗ξ, 0) : X ⊕ ξ ∈ L}

and the complex line bundles generated by (−iE, 0)⊕ (0, 1) and (−AH , i)⊕ (σ −
π∗α, 0) is a generalized contact structure on Q, where A⊕α is the unique section
of the conjugate of L satisfying β = 2〈A⊕ α, · 〉+|L.
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4.1 Leaves of the Dirac-Jacobi structure

Given any Dirac-Jacobi manifold (M, L̄), each leaf of the foliation integrating the
distribution ρTM(L̄) carries one of two kinds of geometric structures [17], as we
describe now. ρ1 : L̄→ R, (X, f)⊕ (ξ, g) 7→ f determines an algebroid 1-cocycle,
and a leaf F̄ of the foliation will be of one kind or the other depending on whether
ker ρ1 is contained in the kernel of the anchor ρTM or not. (This property is
satisfied either at all points of F̄ or at none). As with Dirac structures, the Dirac-
Jacobi structure L̄ determines a field of skew-symmetric bilinear forms ΨF̄ on the
image of ρTM × ρ1.

If ker ρ1 6⊂ ker ρTM on F̄ then ρTM × ρ1 is surjective, hence ΨF̄ determines a
2-form and a 1-form on F̄ . The former is the differential of the latter, so the leaf
F̄ is simply endowed with a 1-form , i.e. it is a precontact leaf. If ker ρ1 ⊂ ker ρTM

on F̄ then the image of ρTQ×ρ1 projects isomorphically onto T F̄ , which therefore
carries a 2-form ΩF̄ . It turns out that ωF̄ (Y ) := −ρ1(e), for any e ∈ L̄ with
ρTM(e) = Y , is a well-defined 1-form on F̄ , and that (F̄ ,ΩF̄ , ωF̄ ) is a locally
conformal presymplectic manifold, i.e. ωF̄ is closed and dΩF̄ = ΩF̄ ∧ ωF̄ .

On our prequantization (Q, L̄) the leaf F̄ through q ∈ Q will carry one or
the other geometric structure depending on whether A is tangent to F , where
F denotes the presymplectic leaf of (P,L) passing through π(q). Indeed one can
check that at q we have ker ρ1 6⊂ ker ρTQ ⇔ A ∈ Tπ(q)F . When ker ρ1 6⊂ ker ρTQ

on a leaf F̄ we hence deduce that F̄ , which is equal to π−1(F ), is a precontact
manifold, and a computation shows that the 1-form is given by the restriction of

σ + π∗(ξA − α)

where ξA is any covector satisfying A⊕ ξA ∈ L.
A leaf F̄ on which ker ρ1 ⊂ ker ρTQ is locally conformal presymplectic, and its

image under π is an integral submanifold of the integrable distribution ρTP (L)⊕
RA (hence a one parameter family of presymplectic leaves). A computation shows
that the locally conformal presymplectic structure is given by

(ωF̄ ,ΩF̄ ) =
(
π∗γ̃ , (σ − π∗α) ∧ π∗γ̃ + π∗Ω̃L

)
.

Here γ̃ is the 1-form on π(F̄ ) with kernel ρTP (L) and evaluating to one on A,
while Ω̃L is the two form on π(F̄ ) which coincides with ΩL (the presymplectic
form on the leaves of (P,L)) on ρTP (L) and annihilates A.

4.2 Dependence of the Dirac-Jacobi structure on choices

Let (P,L) be a prequantizable Dirac manifold , i.e. one for which there exist a
closed integral 2-form Ω and a section of β of L∗ such that

ρ∗TP Ω = Υ + dLβ.(4.7)
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The Dirac-Jacobi manifold (Q, L̄) as defined in Theorem 4.1 depends on three
data: the choice (up to isomorphism) of the U(1)-bundle Q, the choice of con-
nection σ on Q whose curvature has cohomology class i∗c1(Q), and the choice of
β, subject to the condition that Equation (4.7) be satisfied. We will explain here
how the Dirac-Jacobi structure L̄(Q, σ, β) depends on these choices.

First, notice that the value of Ω outside of ρTP (L) does not play a role in
(4.7). In fact, different choices of σ agreeing over ρTP (L) give rise to the same
Dirac-Jacobi structure. This is consistent with the following lemma, which is the
result of a straightforward computation:

Lemma 4.1. For any 1-form γ on P the Dirac-Jacobi structures L̄(Q, σ, β) and
L̄(Q, σ + π∗γ, β + ρ∗TPγ) are equal.

Two Dirac-Jacobi structures on a given U(1)-bundle Q over P give isomorphic
quantizations if they are related by an element of the gauge group C∞(P,U(1))
acting on Q. Noting that the Lie algebroid differential dL descends to a map
C∞(P,U(1)) → Ω1

L(P ) we denote by H1
L(P,U(1)) the quotient of the closed ele-

ments of Ω1
L(P ) by the space dL(C∞(P,U(1)) of U(1)-exact forms.

Now we show:

Proposition 4.1. The set of isomorphism classes of Dirac-Jacobi manifolds pre-
quantizing (P,L) maps surjectively to the space (ρ∗TP ◦ i∗)−1[Υ] of topological types
of compatible U(1)-bundles; the prequantizations of a given topological type are a
principal homogeneous space for H1

L(P,U(1)).

Proof. Make a choice of prequantizing triple (Q, σ, β). With Q and σ fixed, we are
allowed to change β by a dL-closed section of L∗. If we fix only Q, we are allowed
to change σ in such a way that the resulting curvature represents the cohomology
class i∗c1(Q), so we can change σ by π∗γ where γ is a 1-form on P . Now L̄(Q, σ+
π∗γ, β̃) = L̄(Q, σ, β̃ − ρ∗TPγ) by Lemma 4.1, so we obtain one of the Dirac-Jacobi
structures already obtained above. Now, if we replace β by β + dLφ for φ ∈
C∞(P,U(1)), we obtain an isomorphic Dirac-Jacobi structure: in fact L̄(Q, σ, β) is
equal to L̄(Q, σ+π∗dφ, β+dLφ) by Lemma 4.1, which is isomorphic to L̄(Q, σ, β+
dLφ) because the gauge transformation given by φ takes the connection σ to
σ + π∗dφ. So we see that the difference between two prequantizing Dirac-Jacobi
structures on the fixed U(1)-bundle Q corresponds to an element of H1

L(P,U(1)).

In Dirac geometry, a B-field transformation (see for example [25]) is an au-
tomorphism of the Courant algebroid TM ⊕ T ∗M arising from a closed 2-form
B and taking each Dirac structure into another one with an isomorphic Lie alge-
broid. There is a similar construction for Dirac-Jacobi structures. Given any
1-form γ on any manifold M , the vector bundle endomorphism of E1(M) =

(TM×R)⊕(T ∗M×R) that acts on (X, f)⊕(ξ, g) by adding (0, 0)⊕
(

d̃γ γ
−γ 0

)
(X, f)
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preserves the extended Courant bracket and the symmetric pairing. Thus, it maps
each Dirac-Jacobi structure to another one. We call this operation an extended
B-field transformation.

Lemma 4.2. Let γ be a closed 1-form on P . Then L̄(Q, σ + π∗γ, β) is obtained
from L̄(Q, σ, β) by the extended B-field transformation associated to γ.

In the statements that follow, until the end of this subsection, we assume
that the distribution ρTP (L) has constant rank, and we denote by F the regular
distribution integrating it.

Corollary 4.1. Assume that ρTP (L) has constant rank. Then the isomorphism
classes of prequantizing Dirac-Jacobi structures on the fixed U(1)-bundle Q, up to
extended B-field transformations, form a principal homogeneous space for

H1
L(P,U(1))/H1

ρTP (L)(P,U(1)),

where H•
ρTP (L)(P ) denotes the foliated (i.e. tangential de Rham) cohomology of

ρTP (L).

Proof. We saw in the proof of Prop. 4.1 that, if (P,L) is prequantizable, the
prequantizing Dirac-Jacobi structures on a fixed U(1)-bundle Q are given by
L̄(Q, σ, β + β′) where Q, σ, β are fixed and β′ ranges over all dL-closed sections of
L∗. Consider ρ∗TPγ for a closed 1-form γ. Then L̄(Q, σ, β + ρ∗TPγ) = L(Q, σ −
π∗γ, β) by Lemma 4.1, and this is related to L̄(Q, σ, β) by an extended B-field
transformation because of Lemma 4.2. To finish the argument, divide by the
U(1)-exact forms.

We will now give a characterization of the β’s appearing in a prequantization
triple.

Lemma 4.3. Let (P,L) be a Dirac manifold for which ρTP (L) is a regular folia-
tion. Given a section β′ of L∗, write β′ = 〈A′ ⊕ α′, ·〉|L. Then dLβ

′ = ρ∗TP Ω′ for
some 2-form along F iff the vector field A′ preserves the foliation F . In this case,
Ω′ = dα′ −LA′ΩL where ΩL is the presymplectic form on the leaves of F induced
by L.

Proof. For all sections Xi ⊕ ξi of L we have

dLβ
′(X1 ⊕ ξ1, X2 ⊕ ξ2) = dα′(X1, X2) + (LA′ξ2)X1 − (LA′ξ1)X2 + A′ · 〈ξ1, X2〉.

Clearly dLβ
′ is of the form ρ∗TP Ω′ iff L ∩ T ∗P ⊂ ker dLβ

′ (and in this case Ω′

is clearly unique). Using the constant rank assumption to extend appropriately
elements of L∩T ∗P to some neighborhood in P , one sees that this is equivalent to
(LA′ξ)X = 0 for all sections ξ of L ∩ T ∗P = (ρTP (L))◦ and vectors X in ρTP (L),
i.e. to A′ preserving the foliation.

The formula for Ω′ follows from a computation manipulating the above ex-
pression for dLβ

′ by means of the Leibniz rule for Lie derivatives.
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We saw in the proof of Prop. 4.1 that, if (P,L) is prequantizable, the prequan-
tizing Dirac-Jacobi structures on a fixed U(1)-bundleQ are given by L̄(Q, σ, β+β′)
where Q, σ, β are fixed and β′ ranges over all dL-closed sections of L∗. Since
Υ = ρ∗TP ΩL, it follows from (4.7) that dLβ is the pullback by ρTP of some 2-form
along F . So, by the above lemma, β = 〈A ⊕ α, ·〉|L for some vector field A pre-
serving the regular foliation F . Also, β′ = 〈A′ ⊕ α′, ·〉|L where A′ is a vector field
preserving F and dα′ − LA′ΩL = 0, and conversely every dL-closed β′ arises this
way (but choices of A′⊕α′ differing by sections of L will give rise to the same β′).

Example 4.1. Let F be an integrable distribution on a manifold P (tangent to
a regular foliation F), and L = F ⊕ F ◦ the corresponding Dirac structure. By
Lemma 4.3 (or by a direct computation) one sees that the dL-closed sections β
of L∗ are sums of sections of TP/F preserving the foliation and closed 1-forms
along F . By Prop. 4.1, the set of isomorphism classes of prequantizing Dirac-
Jacobi structures maps surjectively to the set ker(ρ∗TP ◦ i∗) of topological types;
the inverse image of a given type is a principal homogeneous space for

{Sections of TP/F preserving the foliation} ×H1
F (P,U(1)),

where the Lie algebroid cohomology H•
F (P ) is the tangential de Rham cohomology

of F (and ker(ρ∗TP ◦ i∗) denotes the kernel in degree two).

5 The prequantization representation

In this section, assuming the prequantization condition (4.5) for the Dirac man-
ifold (P,L) and denoting by (Q, L̄) its prequantization as in Theorem 4.1, we
construct a representation of the Lie algebra C∞

adm(P ). We will do so by first
mapping this space of functions to a set of “equivalence classes of vector fields”
on Q and then by letting these act on C∞

bas(Q,C)P−loc, a sheaf over P . Here
C∞

bas(Q,C) denotes the complex basic8 functions on (Q, L̄), as defined in Section
3, which in the case at hand are exactly the functions whose differentials annihi-
late L̄∩TQ. The subscript “P−loc” indicates that we consider functions which are
defined on subsets π−1(U) of Q, where U ranges over the open subsets9 of P . We
will decompose this representation and make some comments on the faithfulness
of the resulting subrepresentations.

Let L̃ = {(X, 0) ⊕ (ξ, g) : X ⊕ ξ ∈ L, g ∈ R} be the Dirac-Jacobi structure
associated to the Dirac structure L on P . It is immediate that L̃ is the push-
forward of L̄ via π : Q → P , i.e. L̃ = {(π∗Y, f) ⊕ (ξ, g) : (Y, f) ⊕ (π∗ξ, g) ∈ L̄}.

8We use basic instead of admissible functions in order to obtain the same representation as
in Section 6.

9We use P-local instead of global basic functions because the latter could be too small for
certain injectivity statements. See Proposition 5.2 below and the remarks following it, as well
as Section 9.
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From this it follows that if functions f, g on P are admissible then their pullbacks
π∗f, π∗g are also admissible10 and

{π∗f, π∗g} = π∗{f, g}.(5.1)

Proposition 5.1. The map

(C∞
adm(P ), {·, ·}) → Der(C∞

bas(Q,C)P−loc)

g 7→ {π∗g, ·}
(5.2)

determines a representation on C∞
bas(Q,C)P−loc.

Proof. Recall that the expression {π∗g, φ} for φ ∈ C∞
bas(Q,C)P−loc was defined in

Section 3 as −Xπ∗g(φ) − φ · 0 = −Xπ∗g(φ), for any choice Xπ∗g of hamiltonian
vector field for π∗g. The proposition follows from the versions of the following
statements for basic functions (see Lemma 3.1 and the remark following it). First:
the map (5.2) is well-defined since the set of admissible functions on the Dirac-
Jacobi manifold Q is closed under the bracket {·, ·}. Second: it is a Lie algebra
homomorphism because of Equation (5.1) and because the bracket of admissible
functions onQ satisfies the Jacobi identity. Alternatively, for the second statement
we can make use of the relation [−Xπ∗f ,−Xπ∗g] = −X{π∗f,π∗g} (see Proposition
3.1).

Since the Dirac-Jacobi structure on Q is invariant under the U(1) action,
the infinitesimal generator E is a derivation of the bracket. We can decompose
C∞

bas(Q,C)P−loc into the eigenspaces Hn
bas of E corresponding to the eigenvalues

2πin, where n must be an integer, and similarly for Hn
adm. The derivation prop-

erty implies that {Hn
adm, H

n′

bas} ⊆ Hn+n′

bas . The Lie algebra of admissible functions
on P may be identified with the real-valued global functions in H0

adm, which acts
on each Hn

bas by the bracket, i.e. by the representation (5.2). In particular, the
action on H−1

bas is the usual prequantization action. The classical limit is obtained
by letting n→ −∞. Clearly all of the above applies if we restrict the representa-
tion (5.2) to C∞

adm(Q,C)P−loc, i.e. if we replace “Hn
bas” by “Hn

adm” above.

Now we will comment on the faithfulness of the above representations. The
map that assigns to an admissible function g on P the equivalence class of hamil-
tonian vector fields of −π∗g depends on the choices of Ω and β in Equation (4.5) as
well as on the prequantizing U(1) bundle Q and connection σ. In general, there is
no choice for which it is injective, as the following example shows. It follows that
the prequantization representation on Hn

bas or Hn
adm (given by restricting suitably

the representation (5.2)) is generally not faithful for any n.

10To show the smoothness of the hamiltonian vector fields of π∗f and π∗g, we actually have
to use the particular form of L̄.
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Example 5.1. Consider the Poisson manifold (S2 × R+,Λ = tΛS2) where t is
the coordinate on R+ and ΛS2 is the product of the Poisson structure on S2

corresponding to the standard symplectic form ωS2 and the zero Poisson structure
on R+. (This is isomorphic to the Lie-Poisson structure on su(2)∗−{0}.) We first
claim that for all choices of Ω and A in (4.1) (which, as pointed out in Remark
4.1, is equivalent to (4.5)), the ∂

∂t
-component of the vector field A has the form

(ct2 − t) ∂
∂t

for some real constant c.
Indeed, notice that Λ + [−t ∂

∂t
,Λ] = 0, so

Λ̃cp∗ωS2 = ct2ΛS2 = Λ + [A,Λ](5.3)

where A = ct2 ∂
∂t
− t ∂

∂t
. Now any vector field B satisfying [B,Λ] = 0 must map

symplectic leaves to symplectic leaves, and since all leaves have different areas,
B must have no ∂

∂t
-component. Hence any vector field satisfying Equation (5.3)

has the same ∂
∂t

-component as A above. Now any closed 2-form Ω on S2 × R+

is of the form cp∗ωS2 + dβ for some 1-form β, where p : S2 × R+ → S2. Since
Λ̃dβ = −[Λ̃β,Λ] and −Λ̃β has no ∂

∂t
component, our first claim is proved.

Now, for any choice of Q and σ, let g be a function on S2 × R+ such that
Xπ∗g = XH

g + (〈dg,A〉 − g)E vanishes. This means that g is a function of t only,
satisfying (ct2 − t)g′ = g. For any real number c, there exist non-trivial functions
satisfying these conditions, for example g = ct−1

t
, therefore for all choices the

homomorphism g 7→ −Xπ∗g is not injective.
This example also shows that one can not simply omit the vector field A from

the definition of prequantizability, since no choice of c makes A vanish here.

Even though the prequantization representation for functions acting on Hn
adm

and Hn
bas is usually not faithful for any integer n, we still have the following result,

which shows that hamiltonian vector fields do act faithfully.

Proposition 5.2. For each integer n 6= 0, the map that assigns to an equivalence
class of hamiltonian vector fields Xπ∗g the corresponding operator on Hn

adm or Hn
bas

is injective.

Proof. Since Hn
adm ⊂ Hn

bas, it is enough to consider the Hn
adm case. Since the

hamiltonian vector field of any function on Q is determined up to smooth sections
of the singular distribution F := L̄ ∩ TQ = {XH + 〈α,X〉E : X ∈ L ∩ TP}, we
have to show that, if a U(1)-invariant vector field Y on Q annihilates all functions
in Hn

adm, then Y must be a section of F .
We start by characterizing the functions in Hn

adm on neighborhoods where a
constant rank assumption holds:

Lemma 5.1. Let U be an open set in P on which the rank of L∩ TP is constant
and Ū = π−1(U). Then a function φ on Ū is admissible iff φ is constant along
the leaves of F . Further ∩φ∈Hn

adm
ker dφ = F .
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Proof. We have

φ admissible ⇔ (dφ, φ) ⊂ ρT ∗Q×R(L̄) ⇔ dφ ⊂ ρT ∗Q(L̄),(5.4)

where the first equivalence follows from the formula for L̄, the remark following
Definition 2.3 and the fact that dim(L ∩ TP ) is constant. For any Dirac-Jacobi
structure one has ρT ∗Q(L̄) = (L̄ ∩ TQ)◦, so the first statement follows.

Now consider the regular foliation of Ū with leaves equal to U(1) · F , where F
ranges over the leaves of F |Ū 11. Fix p ∈ Ū and choose a submanifold S through p
which is transverse to the foliation U(1) · F . Given any covector ξ ∈ T ∗pS we can
find a function φ on S with differential ξ at p, and we extend φ to Ū so that it is
constant on the leaves of F and equivariant with respect to the n-th power of the
standard U(1) action on C. Then φ will lie in Hn

adm and dpφ will be equal to ξ on
TpS, equal to 2πin on Ep, and will vanish on Fp. Since we can construct such a
function φ ∈ Hn

adm for any choice of ξ, it is clear that a vector at p annihilated by
all functions in Hn

adm must lie in Fp, so ∩φ∈Hn
adm

ker dφ ⊂ F . The other inclusion
is clear.

Now we make use of the fact that for any open subset V of P there exists a
nonempty open subset U ⊂ V on which dim(L ∩ TP ) is constant12, and prove
Proposition 5.2.

End of proof of Proposition 5.2. Suppose now the U(1)-invariant vector field Y
on Q annihilates all functions in Hn

adm but is not a section of F . Then Y /∈ F at
all points of some open set Ū . By the remark above, we can assume that on Ū
dim(L∩ TP )H = dimF is constant. By Lemma 5.1 on Ū the vector field Y must
be contained in F , a contradiction.

If we modified the representation (5.2) to act on global admissible or basic
functions, the injectivity statement of Proposition 5.2 could fail, as the following
example shows.

Example 5.2. Let P be (T2×R, dε), where ε = x3(dx1+x3dx2) with (x1, x2) and
x3 standard coordinates on the torus and R respectively. This is a regular presym-
plectic manifold, so by Lemma 5.1 all basic functions on any prequantization Q are
admissible. P is clearly prequantizable, and we can choose Ω = 0 and β = −ρ∗TP ε
in the prequantization condition (4.5). Therefore Q is the trivial U(1) bundle
over P , with trivial connection σ = dθ (where θ is the standard fiber coordinate).
The distribution F on Q, as defined at the beginning of the proof of Proposition
5.2, is one dimensional, spanned by 2x3

∂
∂x1

− ∂
∂x2

− x2
3

∂
∂θ

. The coefficients 2x3,

11The distribution F = L̄ ∩ TQ is clearly involutive; see Definition 3.2.
12Indeed, if q is a point of V where dim(L∩TP ) is minimal among all points of V , in a small

neighborhood of q dim(L ∩ TP ) can not decrease, nor it can increase because L ∩ TP is an
intersection of subbundles.
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−1, and −x2
3 are linearly independent over Z unless x3 is a quadratic algebraic

integer, so the closures of the leaves of F will be of the form T2×{x3}×U(1) for a
dense set of x3’s. Therefore C∞

adm(Q,C) = C∞
bas(Q,C) consists exactly of complex

functions depending only on x3. For similar reasons, the admissible functions on
P are exactly those depending only on x3. But the vector field Xπ∗g on Q associ-
ated to such a function g has no ∂

∂x3
component, so it acts trivially on C∞

adm(Q,C).

Next we illustrate how the choices involved in the prequantization representa-
tion affect injectivity.

Example 5.3. Let P = S2 ×R× S1, with coordinate t on the R-factor and s on
the S1-factor. Endow P with the Poisson structure Λ which is the product of the
zero Poisson structure on R × S1 and the inverse of an integral symplectic form
ωS2 on S2. This Poisson manifold is prequantizable; in Equation (4.1) we can
choose Ω = p∗ωS2 (where p : P → S2) and as A any vector field that preserves
the Poisson structure. Each g ∈ C∞(P ) is prequantized by the action of the
negative of its hamiltonian vector field Xπ∗g = (Λ̃dg)H + (A(g)− g)E. Therefore
the kernel of the prequantization representation is given by functions of t and s
satisfying A(g) = g. It is clear that if A is tangent to the symplectic leaves the
representation will be faithful. If A is not tangent to the symplectic leaves, then
A(g) = g is an honest first order differential equation. However, even in this case
the representation might be faithful: it is faithful if we choose A = ∂

∂t
, but not if

A = ∂
∂s

.

Remark 5.1. Let (P,Λ) be a Poisson manifold such that its symplectic foliation
F has constant rank, and assume that (P,Λ) is prequantizable (i.e. (4.1), or
equivalently (4.5), is satisfied). It follows from the discussion following Lemma 4.3
that, after we fix a prequantizing U(1)-bundle Q, the prequantizing Dirac-Jacobi
structures on Q are given by L̄(Q, σ,A) where σ is fixed and A is unique up to
vector fields A′ preserving F such that LA′ΩL = 0, i.e. up to vector fields whose
flows are symplectomorphisms between the symplectic leaves. If the topology and
geometry of the symplectic leaves of P “varies” sufficiently from one leaf to another
(as in Example 5.1 above), then the projection of the A’s as above to TP/TF
will all coincide. Therefore the kernels of the prequantization representations
(5.2), which associate to g ∈ C∞(P ) the negative of the hamiltonian vector field
Xπ∗g = (Λ̃dg)H + (A(g) − g)E, will coincide for all representations arising from
prequantizing Dirac-Jacobi structures over Q.

We end this section with two remarks linked to Kostant’s work [22].

Remark 5.2. Kostant ([22], Theorem 0.1) has observed that the prequantization
of a symplectic manifold can be realized by the Poisson bracket of a symplectic
manifold two dimensions higher, i.e. that prequantization is “classical mechanics
two dimensions higher”. In the general context of Dirac manifolds we have seen in
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(5.2) that prequantization is given by a Jacobi bracket13; we will now show that
Kostant’s remark applies in this context too.

Let (P,L) be a prequantizable Dirac manifold, (Q, L̄) its prequantization and

(Q×R, ˜̄L) the “Diracization” of (Q, L̄). To simplify the notation, we will denote
pullbacks of functions (to Q or Q×R) under the obvious projections by the same
symbol. Using the homomorphism (3.5) we can re-write the representation (5.2)
of C∞

adm(P ) on C∞
adm(Q,C)P−loc (or C∞

bas(Q,C)P−loc) as

g 7→ e−t{etg, et·}Q×R = {etg, ·}Q×R,

i.e. g acts by the Poisson bracket on Q× R.

Remark 5.3. Kostant [22] also shows that a prequantizable symplectic manifold
(P,Ω) can be recovered by reduction from the symplectization (Q×R, d(etσ)) of
its prequantization (Q, σ). More precisely, the inverse of the natural U(1) action
on Q × R is hamiltonian with momentum map et, and symplectic reduction at
t = 0 delivers (P,Ω). We will show now how to extend this construction14 to
prequantizable Dirac manifolds.

Let (P,L), (Q, L̄) and (Q × R, ˜̄L) be as in Remark 5.2. Since −E ⊕ det ∈ ˜̄L
we see that et is a “momentum map” for the inverse U(1) action on Q × R, and
by Dirac reduction [2] at the regular value 1 we obtain L: indeed, the pullback of
˜̄L to Q× {0} is easily seen to be {(XH + (〈X ⊕ ξ, β〉 − g)E)⊕ π∗ξ : X ⊕ ξ ∈ L},
and its pushforward via π : Q→ P is exactly L.

6 The line bundle approach

In this section we will prequantize a Dirac manifold P by letting its admissible
functions act on sections of a hermitian line bundle K over P . This approach
was first taken by Kostant for symplectic manifolds and was extended by Hueb-
schmann [16] and Vaisman [31] to Poisson manifolds. The construction of this
section generalizes Vaisman’s and turns out to be equivalent to the one we de-
scribed in Sections 4 and 5.

Definition 6.1. [11] Let (A, [·, ·], ρ) be a Lie algebroid over the manifold M and
K a real vector bundle over M . An A-connection on the vector bundle K →M is
a map D : Γ(A)× Γ(K) → Γ(K) which is C∞(M)-linear in the Γ(A) component
and satisfies

De(h · s) = h ·Des+ ρe(h) · s,
13The bracket on functions on the prequantization (Q, L̄) of a Dirac manifold makes C∞adm(Q)

into a Jacobi algebra. See Section 5 of [34], which applies because the constant functions are
admissible for the Dirac-Jacobi structure L̄.

14Kostant calls the procedure of taking the symplectization of the prequantization “symplectic
induction”; the term seems to be used here in a different sense from that in [19].
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for all e ∈ Γ(A), s ∈ Γ(K) and h ∈ C∞(M). The curvature of the A-connection
is the map Λ2A∗ → End(K) given by

RD(e1, e2)s = De1De2s−De2De1s−D[e1,e2]s.

If K is a complex vector bundle, we define an A-connection on K as above,
but with C∞(M) extended to the complex-valued smooth functions.

Remark 6.1. When A = TM the definitions above specialize to the usual notions
of covariant derivative and curvature. Moreover, given an ordinary connection ∇
on K, we can pull it back to a A-connection by setting De = ∇ρe.

With this definition we can easily adapt Vaisman’s construction [31] [32], ex-
tending it from the case where L = T ∗P is the Lie algebroid of a Poisson manifold
to the case where L is a Dirac structure. We will act on locally defined, basic
sections.

Lemma 6.1. Let (P,L) be a Dirac manifold and K a hermitian line bundle over
P endowed with an L-connection D. Then RD = 2πiΥ, where Υ = 〈·, ·〉−|L, iff
the correspondence

ĝs = −(DXg⊕dgs+ 2πigs)

defines a Lie algebra representation of C∞
adm(P ) on {s ∈ Γ(K)loc : DY⊕0s =

0 for Y ∈ L ∩ TP}, where Xg is any choice of hamiltonian vector field for g.

Proof. If ĝ and s are as above, then clearly ĝs is a well-defined section of K. We
will now show that ĝs ∈ {s ∈ Γ(K)loc : DY⊕0s = 0 for Y ∈ L ∩ TP}, so that
the above “representation” is well-defined. The case where Y ∈ L ∩ TpP can be
locally extended to a smooth section of L ∩ TP is easy, whereas the techniques
(see Section 2.5 of [11]) needed for general case are much more involved.

The section Xg ⊕ dg of L induces a flow φt on P (which is just the flow of
the vector field Xg) and a one-parameter family of bundle automorphisms Φt on
TP ⊕ T ∗P which (see Section 2.4 in [6]) preserves L, and which takes L-paths
to L-paths15. Further, Φt acts on the sections s of the line bundle K too, as
follows: (Φ∗

t s)p is the parallel translation of sφt(p) along the L-path Φ•(Xg ⊕
dg)p = (Xg ⊕ dg)φ•(p). Now (D(Xg⊕dg)s)p = ∂

∂t
|0(Φ∗

t s)p, and (D(Y⊕0)DXg⊕dgs)p =
∂
∂t
|0(D(Y⊕0)Φ

∗
t s)p. For every t, since φt preserves L ∩ TP , we have

0 = (D(φt∗Y⊕0)s)φt(p) =
∂

∂ε

∣∣∣
0
\\ ε

0sφt(γ(ε))(6.1)

where Γ is an L-path starting at (Y ⊕ 0) ∈ Lp, γ is its base path, and \\ ε
0 is

parallel translation along the L-path Φt(Γ(•)). (This notation denotes the path

15For any algebroid A over P an A-path is a defined as a path Γ(t) in A such that the anchor
maps Γ(t) to the velocity of the base path π(Γ(t)).
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ε 7→ Φt(Γ(ε)).) Now we parallel translate the element (6.1) of Kφt(p) to p using
the L-path Φ•(Xg ⊕ dg)p, and compare the result with

(D(Y⊕0)Φ
∗
t s)p =

∂

∂ε

∣∣∣
0
\\ ε

0 \\ t
0sφt(γ(ε)),(6.2)

where the parallel translation is taken first along Φ•(Xg ⊕ dg)γ(ε) and then along
Γ(•).

The difference between (6.2) and the parallel translation to p of (6.1) lies only
in the order in which the parallel translations are taken. Now applying ∂

∂t
|0 to

this difference (and recalling that Φt(Xg ⊕ dg)p = (Xg ⊕ dg)φt(p)) we obtain the
evaluation at p of

DΦtΓ(ε)D(Xg⊕dg)s−D(Xg⊕dg)DΦtΓ(ε)s,

which by the definition of curvature is just

(D[ΦtΓ(ε),Xg⊕dg]s)p + Υ(Y ⊕ 0, (Xg ⊕ dg)p)s.

The second term vanishes because Y ∈ L∩ TpP , and using the fact that Φt is the
flow generated by Xg one sees that the Courant bracket in the first term is also
zero. Altogether we have proven that (D(Y⊕0)DXg⊕dgs)p vanishes, and from this
is follows easily that the “representation” in the statement of the lemma is well
defined.

Since

[f̂ , ĝ] = DXf⊕dfDXg⊕dg −DXg⊕dgDXf⊕df + 2πi(Xf (g)−Xg(f)),

using −[Xf ⊕ df,Xg ⊕ dg] = X{f,g} ⊕ d{f, g} ([6], Prop. 2.5.3) we see that the

condition on RD holds iff [f̂ , ĝ] = {̂f, g}.

Now assume that the prequantization condition (4.5) is satisfied, i.e. that
there exists a closed integral 2-form Ω and a Lie algebroid 1-cochain β for such
that

ρ∗TP Ω = Υ + dLβ.

Then we can construct an L-connection D satisfying the property of the previous
lemma:

Lemma 6.2. Let (A, [·, ·], ρ) be a Lie algebroid over the manifold M , Ω a closed
integral 2-form on M , and ∇ a connection (in the usual sense) on a hermitian
line bundle K with curvature R∇ = 2πiΩ. If ρ∗Ω = Υ + dLβ for a 2-cocycle Υ
and a 1-cochain β on A, then the A-connection D defined by

De = ∇ρe − 2πi〈e, β〉

has curvature RD = 2πiΥ.
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Proof. An easy computation shows

RD(e1, e2) = R∇(ρe1, ρe2) + 2πi(−ρe1〈e2, β〉+ ρe2〈e1, β〉+ 〈[e1, e2], β〉),

which using ρ∗Ω = Υ + dLβ reduces to 2πiΥ(e1, e2).

Altogether we obtain that

ĝ = −[∇Xg − 2πi(〈Xg ⊕ dg, β〉 − g)]

determines a representation of C∞
adm(P ) on {s ∈ Γ(K)loc : ∇Y s−2πi〈Y ⊕0, β〉s =

0 for Y ∈ L ∩ TP}. Notice that, when P is symplectic, we recover Kostant’s
prequantization mentioned in the introduction. Now let Q → P be the U(1)-
bundle corresponding to K, with the connection form σ corresponding to ∇. If
s̄ is the U(1)-antiequivariant complex valued function on Q corresponding to the
section s ofK, thenXH(s̄) corresponds to∇Xs and E(s̄) to−2πis. HereX ∈ TP ,
XH ∈ kerσ its horizontal lift to Q, and E is the infinitesimal generator of the
U(1) action on Q (so σ(E) = 1). Translating the above representation to the
U(1)-bundle picture, we see that ĝ = −[XH

g + (〈Xg ⊕ dg, β〉 − g)E] defines a
representation of C∞

adm(P ) on

{s̄ ∈ C∞(Q,C)P−loc : s̄ is U(1)-antiequivariant and

(Y H + 〈Y ⊕ 0, β〉E)s̄ = 0 for Y ∈ L ∩ TP},

which is nothing else than H−1
bas as defined in Section 5. Since XH

g + (〈Xg ⊕
dg, β〉 − g)E is the hamiltonian vector field of π∗g (with respect to the Dirac-
Jacobi structure L̄ on Q as in Theorem 4.1), we see that this is exactly our
prequantization representation given by Equation (5.2) restricted to H−1

bas.

6.1 Dependence of the prequantization on choices: the
line bundle point of view

In Subsection 4.2 we gave a classification the Dirac-Jacobi structures induced on
the prequantization of a given Dirac manifold, and hence also a classification of
the corresponding prequantization representations. Now we will see that the line
bundle point of view allows for an equivalent but clearer classification.

Recall that, given a Dirac manifold satisfying the prequantization condition
(4.5), we associated to it a hermitian line bundle K and a representation as in
Lemma 6.1, where the L-connection D is given as in Lemma 6.2

Proposition 6.1. Fix a line bundle K over P with (ρ∗TP ◦ i∗)c1(K) = [Υ]. Then
all the hermitian L-connections of K with curvature 2πiΥ are given by the L-
connections constructed in Lemma 6.2. Therefore there is a surjective map from
the set of isomorphism classes of prequantization representations of (P,L) to the
space (ρ∗TP ◦ i∗)−1[Υ] of topological types; the set with a given type is a principal
homogeneous space for H1

L(P,U(1)).



212 A. Weinstein and M. Zambon

Proof. Exactly as in the case of ordinary connections one shows that the difference
of two hermitian L-connections on K is a section of L∗, whose dL-derivative is the
difference of the curvatures. Fix a choice of L-connection D as in Lemma 6.2, say
given by D(X⊕ξ) = ∇X − 2πi〈X ⊕ ξ, β〉. Another L-connection D′ with curvature
2πiΥ is given by D′

(X⊕ξ) = ∇X − 2πi〈X ⊕ ξ, β + β′〉 for some dL-closed section
β′ of L∗, hence it arises as in Lemma 6.2. This shows the first claim of the
proposition. Since, as we have just seen, the L-connections with given curvature
differ by dL-closed sections of L∗ and since U(1)-exact sections of L∗ give rise to
gauge equivalences of hermitian line bundles with connections, the second claim
follows as well.

Using Lemma 4.1 it is easy to see that choices of (σ, β) giving rise to the same
L-connection (as in Lemma 6.2) also give rise to the same Dirac-Jacobi structure
L̄, in accord with the results of Section 4.2. Given this, it is natural to try to
express the Dirac-Jacobi structure L̄ intrinsically in terms of the L-connection to
which it corresponds; this is subject of work in progress.

7 Prequantization of Poisson and Dirac struc-

tures associated to contact manifolds

We have already mentioned in Remark 5.3 the symplectization construction, which
associates to a manifold M with contact form σ the manifold M × R with sym-
plectic form d(etσ). The construction may also be expressed purely in terms of
the cooriented contact distribution C annihilated by σ. In fact, given any contact
distribution, its nonzero annihilator C◦ is a (locally closed) symplectic subman-
ifold of T ∗M . When C is cooriented, we can select the positive component C◦

+.
Either of these symplectic manifolds is sometimes known as the symplectization
of (M,C). It is a bundle over M for which a trivialization (which exists in the
cooriented case) corresponds to the choice of a contact form σ and gives a symplec-
tomorphism between this “intrinsic” symplectization and (M × R, d(etσ)). The
contact structure on M may be recovered from its symplectization along with the
conformally symplectic R action generated by ∂/∂t.

One may partially compactify C◦
+ (we stick to the cooriented case for simplic-

ity) at either end to get a manifold with boundary diffeomorphic to M . The first,
and simplest way, is simply to take its closure C◦

0,+ in the cotangent bundle by
adjoining the zero section. The result is a presymplectic manifold with boundary,
diffeomorphic to M × [0,∞) with the exact 2-form d(sσ) = ds∧ σ+ sdσ, where s
is the exponential of the coordinate t in R. For positive s, this is symplectic; the
characteristic distribution of C◦

0,+ lives along the boundary M×{0}, where it may
be identified with the contact distribution C. This is highly nonintegrable even
though d(sσ) is closed, so we have another example of the phenomenon alluded
to in the discussion after Definition 2.2.
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We also note that the basic functions on C◦
0,+ are just those which are constant

on M × {0}. One can prove that all of these functions are admissible as well,
even though the characteristic distribution is singular. It would be interesting to
characterize the Dirac structures for which these two classes of functions coincide.

To compactify the other end of C◦
+, we begin by identifying C◦

+ with the
positive part of its dual (TM/C)+, using the “inversion” map j which takes φ ∈
C◦

+ to the unique element X ∈ (TM/C)+ for which φ(X) = 1. We then form
the union C◦

+,∞ of C◦
+ with the zero section in TM/C and give it the topology

and differentiable structure induced via j from the closure of (TM/C)+. It was
discovered by LeBrun [23] that the Poisson structure on C◦

+ corresponding to its
symplectic structure extends smoothly to C◦

+,∞. We call C◦
+,∞ with this Poisson

structure the LeBrun-Poisson manifold corresponding to the contact manifold
(M,C).

To analyze the LeBrun-Poisson structure more closely, we introduce the in-
verted coordinate r = 1/s, which takes values in [0,∞) on C◦

+,∞. In suitable
local coordinates on M , the contact form σ may be written as du+

∑
pidq

i. On
the symplectization, we have the form d(r−1(du +

∑
pidq

i)). The corresponding
Poisson structure turns out to be

Λ = r

[(
r
∂

∂r
+

∑
pi
∂

∂pi

)
∧ ∂

∂u
+

∑ ∂

∂qi
∧ ∂

∂pi

]
.

From this formula we see not only that Λ is smooth at r = 0 but also that its
linearization

r
∑ ∂

∂qi
∧ ∂

∂pi

at the origin (which is a “typical” point, since M looks the same everywhere)
encodes the contact subspace in terms of the symplectic leaves in the tangent
Poisson structure.

We may take the union of the two compactifications above to get a manifold
C◦

0,+,∞ diffeomorphic to M times a closed interval. It is presymplectic at the 0 end
and Poisson at the ∞ end, so it can be treated globally only as a Dirac manifold.
In what follows, we will simply denote this Dirac manifold as (P,L).

To prequantize (P,L), we first notice that its Dirac structure is “exact” in the
sense that the cohomology class [Υ] occurring in the condition (4.4) is zero. In
fact, on the presymplectic end, L is isomorphic to TP , and Υ is identified with
the form d(sσ), so we can take the cochain β to be the section of L∗ which is
identified with −sσ. To pass to the other end, we compute the projection of this
section of L∗ into TP and find that it is just the Euler vector field A = s ∂

∂s
.

In terms of the inverse coordinate r, A = −r ∂
∂r

. (The reader may check that
the Poisson differential of this vector field is −Λ, either by direct computation or
using the degree 1 homogeneity of Λ with respect to r.) On the Poisson end, L∗

is isomorphic to TP , so −r ∂
∂r

defines a smooth continuation of β to all of P .
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Continuing with the prequantization, we can take the 2-form Ω to be zero and
the U(1)-bundle Q to be the product P × U(1) with the trivial connection dθ,
where θ is the (2π-periodic) coordinate on U(1). On the presymplectic end, the
Dirac-Jacobi structure is defined by the 1-form σ = sσ + θ, which is a contact
form when s 6= 0.

On the Poisson end, we get the Jacobi structure (ΛH + E ∧ AH , E) which in
coordinates becomes

(7.1)

(
r

[(
r
∂

∂r
+

∑
pi
∂

∂pi

)
∧ ∂

∂u
+

∑ ∂

∂qi
∧ ∂

∂pi

− ∂

∂θ
∧ ∂

∂r

]
,
∂

∂θ

)
.

8 Prequantization by circle actions with fixed

points

Inspired by a construction of Englǐs [10] in the complex setting, we modify the
prequantization in the previous section by “pinching” the boundary component
M × U(1) at the Poisson end and replacing it by a copy of M . To do this, we
identify U(1) with the unit circle in the plane R2 with coordinates (x, y). In
addition, we make a choice of contact form on M so that P is identified with
M × [0,∞], with the coordinate r on the second factor. Next we choose a smooth
nonnegative real valued function f : [0,∞] → R such that, for some ε > 0,
f(r) = r on [0, ε] and f(r) is constant on [2ε,∞]. Let Q′ be the submanifold of
P × R2 defined by the equation x2 + y2 = f(r).

Radial projection in the (x, y) plane determines a map F : Q → Q′ which is
smooth, and in fact a diffeomorphism, where r > 0. The boundary M × U(1) of
Q is projected smoothly to M × (0, 0) in Q′, but F itself is not smooth along the
boundary. We may still use F to transport the Jacobi structure on Q to the part of
Q′ where r > 0. For small r, we have x =

√
r cos θ and y =

√
r sin θ, so r = x2+y2,

r ∂
∂r

= 1
2
(x ∂

∂x
+ y ∂

∂y
), and ∂

∂θ
= x ∂

∂y
− y ∂

∂x
. Using these substitutions to write

the Jacobi structure (7.1) with polar coordinates (r, θ) replaced by rectangular
coordinates (x, y), we see immediately that the structure extends smoothly to a
Jacobi structure on the Poisson end of Q′ and to a Dirac-Jacobi structure on all
of Q′, and that the projection Q′ → P , like Q → P pushes the Dirac-Jacobi
structure on Q′ to the Dirac structure on P . (Thus, the projection is a “forward
Dirac-Jacobi map”; see the beginning of Section 3.) The essential new feature of
Q′ is that the vector field E ′ = x ∂

∂y
− y ∂

∂x
of the Jacobi structure on Q′ vanishes

along the locus x = y = 0 where the projection is singular.
The vanishing of E ′ at some points means that the Jacobi structure on Q′ does

not arise from a contact form, even on the Poisson end, where r < ∞. However,
it turns out that we can turn it into a contact structure by making a conformal
change, i.e. by multiplying the bivector by 1/f and replacing E ′ by E ′/f +X1/f .
The resulting Jacobi structure still extends smoothly over Q′, and now comes from
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a contact structure over the Poisson end; the price we pay is that the projection
to P is now a conformal Jacobi map rather than a Jacobi map.

Remark 8.1. Looking back at the construction above, we see that we have em-
bedded any given contact manifold M as a codimension 2 submanifold in another
contact manifold. Our construction depended only on the choice of a contact form.
On the other hand, Eliashberg and Polterovich [9] construct a similar embedding
in a canonical way, without the choice of a contact form. It is not hard to show
that the choice of a contact form defines a canonical isomorphism between our
contact manifold and theirs.

Example 8.1. LetM be the unit sphere in Cn, with the contact structure induced
from the Cauchy-Riemann structure on the boundary of the disc D2n. It turns
out that a neighborhood U of M in the disc can be mapped diffeomorphically to
a neighborhood V of M at the Poisson end in its LeBrun-Poisson manifold P so
that the symplectic structure on the interior of V pulls back to the symplectic
structure on U coming from the Kähler structure on the open disc, viewed as
complex hyperbolic space. If we now pinch the end of the prequantization Q, as
above, the part of the contact manifold Q′ lying over V can be glued to the usual
prequantization of the open disc so as to obtain a compact contact manifold Q′′

projecting by a “conformal Jacobi map” to the closed disc. The fibres of the map
are the orbits of a U(1)-action which is principal over the open disc. In fact, Q′′

is just the unit sphere in Cn+1 with its usual contact structure. All this is the
symplectic analogue of the complex construction by Englǐs [10], who enlarges a
bounded pseudoconvex domain D in Cn to one in Cn+1 with a U(1) action on its
boundary which degenerates just over the boundary of D.

The “moral” of the story in this section is that, in prequantizing a Poisson
manifold P whose Poisson structure degenerates along a submanifold, one might
want to allow the prequantization bundle to be a Jacobi manifold Q whose vector
field E generates a U(1) action having fixed points and for which the quotient
projection Q→ P is a Jacobi map.

9 Final remarks and questions

We conclude with some suggestions for further research along the lines initiated
in this paper.

9.1 Cohomological prequantization

Cohomological methods have already been used in geometric quantization of sym-
plectic manifolds: rather than the space of global polarized sections, which may
be too small or may have other undesirable properties, one looks at the higher
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cohomology of the sheaf of local polarized sections. (An early reference on this
approach is [26].) When we deal with Dirac (e.g. presymplectic) manifolds, it
may already be interesting to introduce cohomology at the prequantization stage.
There are two ways in which this might be done.

The first approach, paralleling that which is done with polarizations, is to
replace the Lie algebra of global admissible functions on a Dirac manifold P by
the cohomology of the sheaf of Lie algebras of local admissible functions. Similarly,
one would replace the sheaf of P -local functions on Q by its cohomology. The
first sheaf cohomology should then act on the second.

The other approach, used by Cattaneo and Felder [4] for the deformation quan-
tization of coisotropic submanifolds of Poisson manifolds, would apply to Dirac
manifolds P whose characteristic distribution is regular. Here, one introduces
the “longitudinal de Rham complex” of differential forms along the leaves of the
characteristic foliation on P . The zeroth cohomology of this foliation is just the
admissible functions, so it is natural to consider the full cohomology, or even the
complex itself. It turns out that, if one chooses a transverse distribution to the
characteristic distribution, the transverse Poisson structure induces the structure
of an L∞ algebra on the longitudinal de Rham complex. Carrying out a similar
construction on a prequantization Q should result in an L∞ representation of this
algebra.

9.2 Noncommutative prequantization

If the characteristic distribution of a Dirac structure P is regular, we may consider
the groupoid algebra associated to the characteristic foliation as a substitute for
the admissible functions. By adding some extra structure, as in [1][29][36], we can
make this groupoid algebra into a noncommutative Poisson algebra. This means
that the Poisson bracket is not a Lie algebra structure, but rather a class with
degree 2 and square 0 in the Hochschild cohomology of the groupoid algebra. It
should be interesting to define a notion of representation for an algebra with such
a cohomology class, and to construct such representations from prequantization
spaces. Such a construction should be related to the algebraic quantization of
Dirac manifolds introduced in [30].
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