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Lagrangian subalgebras in g X g,

where g is a real simple Lie algebra of real rank one

by Eugene Karolinsky and Sasha Lyapina

Abstract

We classify Lagrangian subalgebras in g X g, where g is a real simple
Lie algebra of real rank 0 or 1. We also apply our results to classification
of quasi-Poisson homogeneous spaces.

1 Introduction

Let G be a (quasi-) Poisson Lie group, g = Lie G the corresponding Lie (quasi-)
bialgebra, D(g) the double corresponding to g. A subalgebra [ C D(g) is called
Lagrangian if [ is a maximal isotropic subspace with respect to the natural scalar
product in D(g). Denote by A the set of all Lagrangian subalgebras in D(g). Let
M be a G-homogeneous space. It follows from [2] and [6] that a (quasi-) Poisson
G-homogeneous structure on M is equivalent to a G-equivariant map M — A,
m +— [, such that [, Ng = g,,, where g,, is the Lie algebra of the stabilizer
subgroup of G at m. Thus in order to describe the set of (quasi-) Poisson G-
homogeneous spaces up to local isomorphism it is enough to describe G-conjugacy
classes of Lagrangian subalgebras in D(g).

Let g be a Lie algebra equipped with an invariant non-degenerate symmetric
bilinear form (-, -)4, and G a corresponding connected Lie group. Consider D(g) =
g X g with the scalar product given by

(1.1) (21, 22), (41, 92)) = 5 (1, 41)5 = (%2, 92)g) ,

N | —

where x1,s,y1,y2 € g. The structure of A in the case g is complex simple was
studied in [3, 5]. In this paper we describe orbits of diagonal G-action on A for
the case g is a real simple Lie algebra of real rank 0 (i.e. compact) or 1.

In Section 1 we discuss a structure of Lagrangian subalgebras in g x g for an
arbitrary Lie algebra g with an invariant non-degenerate symmetric bilinear form
(,-)g- In Section 2 the case of compact connected Lie group G is considered.
First, we describe G-orbits of Lagrangian subalgebras in g x g (see Subsection
2.1). In Subsection 2.2 we give a description of the corresponding quasi-Poisson
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homogeneous G-spaces. Section 3 is devoted to simple Lie algebras g of real rank
one. We classify G-orbits on the set of all Lagrangian subalgebras in g x g (see
Theorem 4.3 for the main result).

We are grateful to the referee for valuable comments that helped to improve
the paper.

2 Generalities on Lagrangian subalgebras in gxg

Let G be a connected Lie group, and g = Lie GG is equipped with a non-degenerate
invariant symmetric bilinear form (-,-),. Let us consider the Lie algebra g x g
equipped with the invariant symmetric bilinear form (1.1).

Definition 2.1. A Lie subalgebra [ C g x g is said to be Lagrangian if dim[ =
dim g, and [ is isotropic, i.e. (x,y) =0 for all x,y € L.

Definition 2.2. A Lie subalgebra ¢ C g is called coisotropic if ¢* C «¢.

If a subalgebra ¢ C g is coisotropic, then ¢t is an ideal in ¢, and (-, -) ¢ induces
a non-degenerate invariant symmetric bilinear form on ¢/ct.

Proposition 2.1. The set of Lagrangian subalgebras in g X g is in a natural
G-equivariant bijection with the set of all triples (¢1, ¢, @), where ¢; and ¢y are
coisotropic subalgebras in g, and ¢ : ¢ /¢t — co/cy is an isomorphism preserving
the form (-, -)g.

Proof. Let | C g x g be a Lagrangian subalgebra. Consider the projections p; :
gxg— g,1=1,2,given by p1(2,y) = 2, pa(z,y) =y, (x,y) € gxg. Set ¢; = pi([),
Because of maximality of [, we see that ¢; and ¢y are coisotropic subalgebras. Let
us consider the map ¢ : ¢;/ci — ¢o/cy given by p(x + ¢f) = y + ¢; for any
(x,y) € I. Then ¢ is a well-defined isomorphism of vector spaces. Moreover, ¢ is
an isomorphism of Lie algebras, because [ is a subalgebra. Further, the subalgebra
[ is Lagrangian, therefore ¢ preserves the bilinear form. Thus we get the triple
(¢1, 2, ) with the required properties.
Conversely, starting from a triple (¢y, ¢2, ) one can define

[:{(l’,y)|l’€ 1, ye Ca, gO(ZL’—FC%) :y—FCé_}

It can be easily checked that [ is an isotropic subalgebra. Further, dim[ =
dim ¢; /¢ + dim ¢ + dim ¢ = dim ¢; + dim ¢; = dim g, thus [ is maximal.

Let [ be a Lagrangian subalgebra and (cq, ¢2, ) be the corresponding triple.
Under the construction above the natural (diagonal) action of G on the set of
Lagrangian subalgebras turns into ¢ - (¢1,¢2,¢) = (Adg-¢;,Adg- ¢, Adgopo
Adg™). O
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3 Compact case

Let G be a connected compact semisimple Lie group, g = LieG, and (-,-)4 a
(positive or negative) definite invariant symmetric bilinear form on g. Denote by
Aut g the group of all automorphisms of g preserving the form (-, -),.

3.1 Lagrangian subalgebras

The aim of this section is to describe G-conjugacy classes of Lagrangian subalge-
bras in g x g. We use Proposition 2.1. Since (-, -)4 is definite, the only coisotropic
subalgebra of g is g itself. Thus any Lagrangian subalgebra of g x g is of the
form [, = {(z, p(x)) |z € g}, where ¢ € Autg. Therefore to obtain a description
of G-orbits in the set of Lagrangian subalgebras in g x g it is enough to classify
Int g-conjugacy classes of Autg. For reader’s convenience we present here the
well-known answer to the latter question.

Let gc be the complexification of g and 7 the conjugation of gc w.r.t. g. We
identify automorphisms of g with automorphisms of gc commuting with 7.

Let f;,e;, h; be a standard generating system of gc such that 7(e;) = —f;.
Consider the Cartan subalgebra b spanned by hq,...,h,, where r = rankgc.
Let A be the set of simple roots of gc corresponding to hy,...,h,. Let II :
Autgec — AutA be the canonical homomorphism. For any o € AutA, set
O, =1{0 € I"Y(0) |67 = 76}.

Let o € Aut gc be defined by 7(e;) = €53, 0(fi) = fo(i), 0(hi) = ho(). Clearly,
0 €0,. Set H=1{exp(adz)|x € h}. Let us identify H and (C*)?, i.e. h € H is
identified with the set {h, }aea of eigenvalues of h on the root spaces g,. Choose
a system A’ of representatives of the o-orbits in A. Set

H ={he€ H|hr =7h, and h, =1 for any o & A'}.

Theorem 3.1. If0 € ©,, then there exists a unique h € H' such that g0g~* = oh
for some g € Int g. O

3.2 Quasi-Poisson homogeneous G-spaces

Our further investigations are based on the correspondence between (quasi-) Pois-
son homogeneous spaces and Lagrangian subalgebras (see [2] and [6] for details).

Let us consider the Manin quasi-triple (g x g, ga, 9-a), where g X g is equipped
with the invariant symmetric bilinear form (1.1), ga = {(z,z) |z € g}, and g_a =
{(z,—z) |z € g}.! The corresponding Lie quasi-bialgebra structure on g is given
by § = 0, ¢ = —[Q"2,Q%], where Q € S?g corresponds to (-, ), (see details in
[1, 6]). In this case the quasi-Poisson structure on G is given by 7g = 0 and ¢
aforesaid.

!'Notice that g_a is not a subalgebra in g x g. It is easy to see that there is no subalgebra
which is a Lagrangian complement of ga in g X g.
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Theorem 3.2. The set of G-conjugacy classes in Autg, where each class is
equipped with the quasi-Poisson structure given by

(3.1) m(0) = ((ro)« © (lo)s — (l)« @ (19):)(2),

0 € Autg, is the complete system of representatives of quasi-Poisson G-homoge-
neous spaces up to local isomorphism.

Proof. Let 6 € Autg. Consider the Lagrangian subalgebra [ C g X g defined
by lg = {(z,0(z))|x € g}. Then l[pNgr ~ g’ = {x € g|0(x) = z}. Consider
Hy={g€ G| Adg-0-Adg~! = 6}. Tt is clear that Hy normalizes [y, and Lie Hy =
g?. By Theorem 3.2 in [6] we can conclude that the pair (Is, Hy) corresponds to
the quasi-Poisson homogeneous space O(f) which is the G-conjugacy class of 6 in
Aut g. To finish the proof one has to show that the corresponding quasi-Poisson
structure on O(#) is given by (3.1). This can be calculated straightforwardly. O

4 Rank one case

Let g be a simple Lie algebra of real rank one, G a connected Lie group such that
LieG = g. Let (-, -)4 be a non-degenerate invariant symmetric bilinear form on g.
Denote by Aut g the group of all automorphisms in g preserving the form (-, -),.
Consider g x g equipped with the invariant symmetric bilinear form (1.1). We
are going to describe the set of GG-conjugacy classes of Lagrangian subalgebras in
g xg.

By Proposition 2.1, there is a bijection between the set of all Lagrangian
subalgebras and the set of triples (¢1, ¢2, ), where ¢y, ¢co are coisotropic subalgebras
in g, and ¢ : ¢;/¢i — ca/cy is an isomorphism preserving the form (-, -)g.

First, consider the triples of the form (g, g, ), where ¢ € Autg. The corre-
sponding G-conjugacy classes of such triples are parameterized by orbits of the
Int g-action on Aut g by conjugation. Let us denote a set of representatives of
Int g-orbits in Autg by ®(g). The corresponding Lagrangian subalgebras are
graphs of automorphisms in ®(g).

Further, we consider the case when the coisotropic subalgebras in the triples
are proper subalgebras in g.

Proposition 4.1. Any proper coisotropic subalgebra ¢ C g is contained in a maz-
imal parabolic subalgebra in g.

Proof. Consider a maximal subalgebra q of g such that ¢ C g. According to
Theorem 3.1 in [8], either the radical of q is compact or q is a maximal parabolic
subalgebra. In the first case, q is not coisotropic, neither is any of its subalgebras.
Indeed, assume that g- C g. Then q* is a solvable ideal of q (because g can be
embedded into a suitable general linear algebra, and the restriction of the form
(X,Y) = Tr XY vanishes on gqt). Thus g* is contained in the radical of q. Note
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that any invariant bilinear form on g, being proportional to the Killing form,
vanishes on qt. Therefore g is not compact, and we get a contradiction. [

Let g = €®p be a Cartan decomposition, f the Cartan involution, a a maximal
subalgebra of p. Recall that rankg g = dim a. Denote by © the Cartan involution
on G.

In the case of real rank one algebras all maximal parabolic subalgebras in g
are G-conjugate to q = g+ = go D gr D gon (see [4] for details). We also set
g- =0(q) = goDg_»Dg o, Here g1y, g+oy are the root subspaces in g (perhaps,
gion = 0). Set n = gy @ goy and n_ = O(n) = g_» D g_ox. Obviously, = =n
and gt = n_. Therefore q/q* ~ q_/q* ~ go. It is known that gy = a @& m, where
m = 3¢(a) (the centralizer of ain &, see [9, §5.4.1]). Clearly, (-, -)4 is non-degenerate
on go. Let m = dimm.

Lemma 4.1. Any coisotropic subalgebra in g is G-conjugate to ¢ = ¢ @ qt, where
o 4S a coisotropic subalgebra in go.

Proof. Let ¢ be a coisotropic subalgebra in g. By Proposition 4.1 and the fact
that any proper parabolic subalgebra is G-conjugate to ¢, we may assume that
¢ C q. Since g+ C ¢ C ¢ C g, we can consider ¢y = ¢/q+ C go. Obviously, ¢ is a
coisotropic subalgebra in gg. O]

Denote by 3(m) the center of m. It is not hard to show that dimj(m) <
rankg g = 1. (In fact, the inequality dim 3(m) < rankg g holds for any real simple
Lie algebra g.) Set m’ = [m, m]. We have m = m’ @ 3(m).

Lemma 4.2. Any coisotropic subalgebra of go has dimension m or m + 1. In
the case 3(m) = 0 the only coisotropic subalgebra in go is go itself. In the case
dim3(m) = 1 there exist exactly two m-dimensional coisotropic subalgebras ¢+ in
go. Namely, ¢ = m' @ uy, where uy is spanned by xy £ a, xo spans 3(m), and
a € a satisfies (a,a)q + (xo, o) g = 0.

Proof. Note that the restriction of (-,-)4 onto go = a @ m is of signature (1,m)
(in particular, a and m are orthogonal w.r.t. (-,-)4). Therefore any coisotropic
subspace of go has dimension m or m + 1 (i.e. is equal to go in the latter case).
Now consider any one-dimensional isotropic subspace u # 0 in gg. Let a € a and
xo € m be such that u is spanned by a + x¢; in particular, (a + g, a+ x¢) = 0 and
2o # 0, a # 0. Put ¢ = ut. It is clear that ¢ is a coisotropic subspace. Further, ¢
is a subalgebra if and only if 2y € 3(m). This observation completes the proof. [

Lemmas 4.1 and 4.2 imply the following

Proposition 4.2. Any coisotropic subalgebra in g is either parabolic or is G-
conjugate to cx @ q*. The latter case is possible only for 3(m) # 0. ]
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Theorem 4.1. Any triple (ci, co, ) with ¢; and ¢y proper parabolic is G-conjugate
to exactly one triple of the form (q,q4+,¢), where ¢l = £1, Y|;m) = £1 (in the
case 3(m) # 0) and plw € O(W').

Proof. Any pair (c¢q,¢y) of proper parabolic subalgebras in g is G-conjugate to a
pair of the form (q,c). Further, we continue to conjugate (q,c¢) by elements of
Ng(q). Clearly, the Ng(q)-orbits on the set of all proper parabolic subalgebras
are parameterized by Ng(q)\G/Na(q).

Consider the Iwasawa decomposition g = €@ a @ n. Let G = KAN be the
Iwasawa decomposition of G, where K C (G is a maximal compact subgroup,
A = exp(a), and N = exp(n) (see VIL.2 in [7]). Set M = Zk(a). Let W =
Ni(a)/Zk(a) be the Weyl group. In our case |W| = 2. We have the Bruhat
decomposition MAN\G/MAN = W.

Lemma 4.3. Ng(q) = MAN.

Proof. To show that M AN C Ng(q) it is enough to prove that M acts on q by
inner automorphisms. Indeed, by Theorem 7.66 in [7] the group M is connected
unless dimn = 1. The condition dimn = 1 is equivalent to the condition g =
s[(2,R). In the latter case M = {£FE} acts trivially on q.

Further, by the Bruhat decomposition we have G = MAN U MANwM AN,
where &0 € Ng(a) represents the nontrivial element of W. It is evident that
MANWMAN does not normalize q. Hence we get Ng(q) = MAN. O

Therefore there are exactly two G-orbits in the set of pairs (cy, ¢3), and their
representatives are (q,q) and (q,q-). Each triple (cy, ¢a, ) is G-conjugate to a
triple of the form (q,q,¢) or (q,q—,¥).

Now let us describe Ng(q)-conjugacy classes of orthogonal automorphisms
©:q/q9t — q/q9t. We have q/qt ~ go = m @ a. Since ¢ preserves (-, -), we have
o(a) = a, (m) = m. Since dima = 1, we have ¢|, = 1. In the case dim3(m) = 1
we have ¢|;m) = *1. We consider ¢ as the pair (¢lq, ¢|m) = (£1, ¢|m) (or the
triple (¢]a; @[5m), lw) = (£1, £1, ¢|w) in the case dimz(m) = 1).

Since Ad A = exp(ada), we see that A acts on m identically. Therefore A
acts on ¢ trivially. Now consider action of n € N. Since AdN = exp(adn),
we conclude that Adn carries a & m to a @ m & n leaving the a & m component
unchanged. Thus N acts on ¢ trivially as well. Finally, arguing as in the proof
of Lemma 4.3, we see that M acts by inner automorphisms on g,.

Now consider the case of a triple (q,q_, ¢).
Lemma 4.4. The normalizer of the pair (q,q-) in G is M A.

Proof. Clearly, the normalizer of this pair is Ng(q) N Ng(q-). By Lemma 4.3, we
have Ng(q) = MAN. Similarly, No(q-) = MAN_, where N_ = ©ON. Further,
MAN N N_ = {1} (see Lemma 7.64 in [7]). Thus Ng(q) N Ng(q-) = MAN N
MAN_ = MA. O
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By the above computation, we see that only the M-part of the normalizer of
(q,9-) can act non-trivially on ¢, and this action is by inner automorphisms of
m. This completes the proof of the theorem. n

Theorem 4.2. Let 3(m) # 0. Each triple (¢1, co, @) with ¢; and ¢ non-parabolic is
G-congugate to exactly one triple of the form (c,®q+, cﬁ%q#, @), where p € ®(m’),
and 057577 € {+7 _}

Proof. By Proposition 4.1 we know that ¢; C ¢, ¢o C (o, where g1, g2 are proper
parabolic subalgebras in g. Using the same argument as in the proof of Theorem
4.1, we may assume, up to G-conjugation, that (qi, qz2) is equal to (q,q) or (g,q_).
By Lemma 4.2, we may assume that (¢1,¢2) = (¢o ® 4™, ¢3 @ q5), where a, 3,7 €

{+7 _}'
Lemma 4.5. Ng(cy @ qt) = MAN.

Proof. The same argument as in Lemma 4.3 shows that M AN C Ng(cx @ qt).
Conversely, let Ad,(c @ q*) = cx @ q* for some g € G. It is easy to see that ¢y
is reductive and g is nilpotent. Thus Ad, q* = g*. Since Ad, preserves (-, -), we

have Ad,q =g and g € Ng(q) = MAN. O

The proof of the theorem can now be finished along the lines of the proof of
Theorem 4.1. O

Now let us summarize our investigations:

Theorem 4.3. Any Lagrangian subalgebra in g x g is G-conjugate to exactly one
subalgebra of the following list:

L. [={(z,0(x)) |z € g}, where § € ®(g);

2. 1= {(2.¢(2)) |2 € g0} & (q4,0) & (0, %), where gl = £1, ¢y = £1 (in
the case 3(m) # 0), and p|w € O(M');

3 (case 3(m) # 0 only). = {(z,¢(z))|z € m'} & (ua & q-,0) & (0,u3 & q7),
where a, 3,7 € {+, =}, ¢ € (W), and uy are defined in Lemma 4.2. O

Remark. It rarely happens that ga has a Lagrangian complement in gx g. Indeed,
if [ is the graph of € Aut g, then [Nga = g4 # 0. For [ described in parts 2 and
3 of Theorem 4.3 we see that [N ga D (m’)X, which is non-zero for m’ # 0 (cf. [4,
§3.3.4]). It is not hard to check that the only real rank one algebras with m’ = 0 are
g =5l(2,R) (here m = 0), g = su(1,2), and g = s((2, C)g (in the latter cases m =
R). Using Theorem 4.3 it is clear that for g = s[(2,R) there is a unique up to G-
conjugation Lagrangian complement a_x @ (q*+,0) @ (0, q*), while for g = su(1,2)
or g = sl(2,C)g there are three G-conjugacy classes of Lagrangian complements
with representatives a_n @ m_a @ (q,0) @ (0,q%), (uy ®q+,0) & (0,u_ & qt),
(u- @ g, 0) @ (0,uy S gl).
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