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Lagrangian subalgebras in g× g,

where g is a real simple Lie algebra of real rank one

by Eugene Karolinsky and Sasha Lyapina

Abstract

We classify Lagrangian subalgebras in g × g, where g is a real simple
Lie algebra of real rank 0 or 1. We also apply our results to classification
of quasi-Poisson homogeneous spaces.

1 Introduction

Let G be a (quasi-) Poisson Lie group, g = Lie G the corresponding Lie (quasi-)
bialgebra, D(g) the double corresponding to g. A subalgebra l ⊂ D(g) is called
Lagrangian if l is a maximal isotropic subspace with respect to the natural scalar
product in D(g). Denote by Λ the set of all Lagrangian subalgebras in D(g). Let
M be a G-homogeneous space. It follows from [2] and [6] that a (quasi-) Poisson
G-homogeneous structure on M is equivalent to a G-equivariant map M → Λ,
m 7→ lm such that lm ∩ g = gm, where gm is the Lie algebra of the stabilizer
subgroup of G at m. Thus in order to describe the set of (quasi-) Poisson G-
homogeneous spaces up to local isomorphism it is enough to describe G-conjugacy
classes of Lagrangian subalgebras in D(g).

Let g be a Lie algebra equipped with an invariant non-degenerate symmetric
bilinear form 〈·, ·〉g, and G a corresponding connected Lie group. Consider D(g) =
g× g with the scalar product given by

(1.1) 〈(x1, x2), (y1, y2)〉 =
1

2
(〈x1, y1〉g − 〈x2, y2〉g) ,

where x1, x2, y1, y2 ∈ g. The structure of Λ in the case g is complex simple was
studied in [3, 5]. In this paper we describe orbits of diagonal G-action on Λ for
the case g is a real simple Lie algebra of real rank 0 (i.e. compact) or 1.

In Section 1 we discuss a structure of Lagrangian subalgebras in g× g for an
arbitrary Lie algebra g with an invariant non-degenerate symmetric bilinear form
〈·, ·〉g. In Section 2 the case of compact connected Lie group G is considered.
First, we describe G-orbits of Lagrangian subalgebras in g × g (see Subsection
2.1). In Subsection 2.2 we give a description of the corresponding quasi-Poisson
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homogeneous G-spaces. Section 3 is devoted to simple Lie algebras g of real rank
one. We classify G-orbits on the set of all Lagrangian subalgebras in g × g (see
Theorem 4.3 for the main result).

We are grateful to the referee for valuable comments that helped to improve
the paper.

2 Generalities on Lagrangian subalgebras in g×g

Let G be a connected Lie group, and g = Lie G is equipped with a non-degenerate
invariant symmetric bilinear form 〈·, ·〉g. Let us consider the Lie algebra g × g

equipped with the invariant symmetric bilinear form (1.1).

Definition 2.1. A Lie subalgebra l ⊂ g × g is said to be Lagrangian if dim l =
dim g, and l is isotropic, i.e. 〈x, y〉 = 0 for all x, y ∈ l.

Definition 2.2. A Lie subalgebra c ⊂ g is called coisotropic if c⊥ ⊂ c.

If a subalgebra c ⊂ g is coisotropic, then c⊥ is an ideal in c, and 〈·, ·〉g induces
a non-degenerate invariant symmetric bilinear form on c/c⊥.

Proposition 2.1. The set of Lagrangian subalgebras in g × g is in a natural
G-equivariant bijection with the set of all triples (c1, c2, ϕ), where c1 and c2 are
coisotropic subalgebras in g, and ϕ : c1/c

⊥
1 → c2/c

⊥
2 is an isomorphism preserving

the form 〈·, ·〉g.

Proof. Let l ⊂ g × g be a Lagrangian subalgebra. Consider the projections pi :
g×g → g, i = 1, 2, given by p1(x, y) = x, p2(x, y) = y, (x, y) ∈ g×g. Set ci = pi(l).
Because of maximality of l, we see that c1 and c2 are coisotropic subalgebras. Let
us consider the map ϕ : c1/c

⊥
1 → c2/c

⊥
2 given by ϕ(x + c⊥1 ) = y + c⊥2 for any

(x, y) ∈ l. Then ϕ is a well-defined isomorphism of vector spaces. Moreover, ϕ is
an isomorphism of Lie algebras, because l is a subalgebra. Further, the subalgebra
l is Lagrangian, therefore ϕ preserves the bilinear form. Thus we get the triple
(c1, c2, ϕ) with the required properties.

Conversely, starting from a triple (c1, c2, ϕ) one can define

l = {(x, y) |x ∈ c1, y ∈ c2, ϕ(x + c⊥1 ) = y + c⊥2 }.

It can be easily checked that l is an isotropic subalgebra. Further, dim l =
dim c1/c

⊥
1 + dim c⊥1 + dim c⊥2 = dim c1 + dim c⊥2 = dim g, thus l is maximal.

Let l be a Lagrangian subalgebra and (c1, c2, ϕ) be the corresponding triple.
Under the construction above the natural (diagonal) action of G on the set of
Lagrangian subalgebras turns into g · (c1, c2, ϕ) = (Ad g · c1, Ad g · c2, Ad g ◦ ϕ ◦
Ad g−1).
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3 Compact case

Let G be a connected compact semisimple Lie group, g = Lie G, and 〈·, ·〉g a
(positive or negative) definite invariant symmetric bilinear form on g. Denote by
Aut g the group of all automorphisms of g preserving the form 〈·, ·〉g.

3.1 Lagrangian subalgebras

The aim of this section is to describe G-conjugacy classes of Lagrangian subalge-
bras in g× g. We use Proposition 2.1. Since 〈·, ·〉g is definite, the only coisotropic
subalgebra of g is g itself. Thus any Lagrangian subalgebra of g × g is of the
form lϕ = {(x, ϕ(x)) |x ∈ g}, where ϕ ∈ Aut g. Therefore to obtain a description
of G-orbits in the set of Lagrangian subalgebras in g × g it is enough to classify
Int g-conjugacy classes of Aut g. For reader’s convenience we present here the
well-known answer to the latter question.

Let gC be the complexification of g and τ the conjugation of gC w.r.t. g. We
identify automorphisms of g with automorphisms of gC commuting with τ .

Let fi, ei, hi be a standard generating system of gC such that τ(ei) = −fi.
Consider the Cartan subalgebra h spanned by h1, . . . , hr, where r = rank gC.
Let ∆ be the set of simple roots of gC corresponding to h1, . . . , hr. Let Π :
Aut gC → Aut ∆ be the canonical homomorphism. For any σ ∈ Aut ∆, set
Θσ = {θ ∈ Π−1(σ) | θτ = τθ}.

Let σ̃ ∈ Aut gC be defined by σ̃(ei) = eσ(i), σ̃(fi) = fσ(i), σ̃(hi) = hσ(i). Clearly,
σ̃ ∈ Θσ. Set H = {exp(ad x) |x ∈ h}. Let us identify H and (C∗)∆, i.e. h ∈ H is
identified with the set {hα}α∈∆ of eigenvalues of h on the root spaces gα. Choose
a system ∆′ of representatives of the σ-orbits in ∆. Set

H ′ = {h ∈ H |hτ = τh, and hα = 1 for any α 6∈ ∆′}.

Theorem 3.1. If θ ∈ Θσ, then there exists a unique h ∈ H ′ such that gθg−1 = σ̃h
for some g ∈ Int g.

3.2 Quasi-Poisson homogeneous G-spaces

Our further investigations are based on the correspondence between (quasi-) Pois-
son homogeneous spaces and Lagrangian subalgebras (see [2] and [6] for details).

Let us consider the Manin quasi-triple (g×g, g∆, g−∆), where g×g is equipped
with the invariant symmetric bilinear form (1.1), g∆ = {(x, x) |x ∈ g}, and g−∆ =
{(x,−x) |x ∈ g}.1 The corresponding Lie quasi-bialgebra structure on g is given
by δ = 0, ϕ = −[Ω12, Ω23], where Ω ∈ S2g corresponds to 〈·, ·〉g (see details in
[1, 6]). In this case the quasi-Poisson structure on G is given by πG = 0 and ϕ
aforesaid.

1Notice that g−∆ is not a subalgebra in g × g. It is easy to see that there is no subalgebra
which is a Lagrangian complement of g∆ in g× g.
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Theorem 3.2. The set of G-conjugacy classes in Aut g, where each class is
equipped with the quasi-Poisson structure given by

(3.1) π(θ) = ((rθ)∗ ⊗ (lθ)∗ − (lθ)∗ ⊗ (rθ)∗)(Ω),

θ ∈ Aut g, is the complete system of representatives of quasi-Poisson G-homoge-
neous spaces up to local isomorphism.

Proof. Let θ ∈ Aut g. Consider the Lagrangian subalgebra lθ ⊂ g × g defined
by lθ = {(x, θ(x)) |x ∈ g}. Then lθ ∩ g∆ ' gθ = {x ∈ g | θ(x) = x}. Consider
Hθ = {g ∈ G | Ad g ·θ ·Ad g−1 = θ}. It is clear that Hθ normalizes lθ, and Lie Hθ =
gθ. By Theorem 3.2 in [6] we can conclude that the pair (lθ, Hθ) corresponds to
the quasi-Poisson homogeneous space O(θ) which is the G-conjugacy class of θ in
Aut g. To finish the proof one has to show that the corresponding quasi-Poisson
structure on O(θ) is given by (3.1). This can be calculated straightforwardly.

4 Rank one case

Let g be a simple Lie algebra of real rank one, G a connected Lie group such that
Lie G = g. Let 〈·, ·〉g be a non-degenerate invariant symmetric bilinear form on g.
Denote by Aut g the group of all automorphisms in g preserving the form 〈·, ·〉g.
Consider g × g equipped with the invariant symmetric bilinear form (1.1). We
are going to describe the set of G-conjugacy classes of Lagrangian subalgebras in
g× g.

By Proposition 2.1, there is a bijection between the set of all Lagrangian
subalgebras and the set of triples (c1, c2, ϕ), where c1, c2 are coisotropic subalgebras
in g, and ϕ : c1/c

⊥
1 → c2/c

⊥
2 is an isomorphism preserving the form 〈·, ·〉g.

First, consider the triples of the form (g, g, ϕ), where ϕ ∈ Aut g. The corre-
sponding G-conjugacy classes of such triples are parameterized by orbits of the
Int g-action on Aut g by conjugation. Let us denote a set of representatives of
Int g-orbits in Aut g by Φ(g). The corresponding Lagrangian subalgebras are
graphs of automorphisms in Φ(g).

Further, we consider the case when the coisotropic subalgebras in the triples
are proper subalgebras in g.

Proposition 4.1. Any proper coisotropic subalgebra c ⊂ g is contained in a max-
imal parabolic subalgebra in g.

Proof. Consider a maximal subalgebra q of g such that c ⊂ q. According to
Theorem 3.1 in [8], either the radical of q is compact or q is a maximal parabolic
subalgebra. In the first case, q is not coisotropic, neither is any of its subalgebras.
Indeed, assume that q⊥ ⊂ q. Then q⊥ is a solvable ideal of q (because g can be
embedded into a suitable general linear algebra, and the restriction of the form
〈X, Y 〉 = Tr XY vanishes on q⊥). Thus q⊥ is contained in the radical of q. Note
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that any invariant bilinear form on g, being proportional to the Killing form,
vanishes on q⊥. Therefore q⊥ is not compact, and we get a contradiction.

Let g = k⊕p be a Cartan decomposition, θ the Cartan involution, a a maximal
subalgebra of p. Recall that rankR g = dim a. Denote by Θ the Cartan involution
on G.

In the case of real rank one algebras all maximal parabolic subalgebras in g

are G-conjugate to q = q+ = g0 ⊕ gλ ⊕ g2λ (see [4] for details). We also set
q− = θ(q) = g0⊕g−λ⊕g−2λ. Here g±λ, g±2λ are the root subspaces in g (perhaps,
g±2λ = 0). Set n = gλ ⊕ g2λ and n− = θ(n) = g−λ ⊕ g−2λ. Obviously, q⊥ = n

and q⊥− = n−. Therefore q/q⊥ ' q−/q⊥− ' g0. It is known that g0 = a⊕m, where
m = zk(a) (the centralizer of a in k, see [9, §5.4.1]). Clearly, 〈·, ·〉g is non-degenerate
on g0. Let m = dim m.

Lemma 4.1. Any coisotropic subalgebra in g is G-conjugate to c = c0⊕q⊥, where
c0 is a coisotropic subalgebra in g0.

Proof. Let c be a coisotropic subalgebra in g. By Proposition 4.1 and the fact
that any proper parabolic subalgebra is G-conjugate to q, we may assume that
c ⊂ q. Since q⊥ ⊂ c⊥ ⊂ c ⊂ q, we can consider c0 = c/q⊥ ⊂ g0. Obviously, c0 is a
coisotropic subalgebra in g0.

Denote by z(m) the center of m. It is not hard to show that dim z(m) ≤
rankR g = 1. (In fact, the inequality dim z(m) ≤ rankR g holds for any real simple
Lie algebra g.) Set m′ = [m, m]. We have m = m′ ⊕ z(m).

Lemma 4.2. Any coisotropic subalgebra of g0 has dimension m or m + 1. In
the case z(m) = 0 the only coisotropic subalgebra in g0 is g0 itself. In the case
dim z(m) = 1 there exist exactly two m-dimensional coisotropic subalgebras c± in
g0. Namely, c± = m′ ⊕ u±, where u± is spanned by x0 ± a, x0 spans z(m), and
a ∈ a satisfies 〈a, a〉g + 〈x0, x0〉g = 0.

Proof. Note that the restriction of 〈·, ·〉g onto g0 = a ⊕ m is of signature (1, m)
(in particular, a and m are orthogonal w.r.t. 〈·, ·〉g). Therefore any coisotropic
subspace of g0 has dimension m or m + 1 (i.e. is equal to g0 in the latter case).
Now consider any one-dimensional isotropic subspace u 6= 0 in g0. Let a ∈ a and
x0 ∈ m be such that u is spanned by a+x0; in particular, 〈a+x0, a+x0〉 = 0 and
x0 6= 0, a 6= 0. Put c = u⊥. It is clear that c is a coisotropic subspace. Further, c

is a subalgebra if and only if x0 ∈ z(m). This observation completes the proof.

Lemmas 4.1 and 4.2 imply the following

Proposition 4.2. Any coisotropic subalgebra in g is either parabolic or is G-
conjugate to c± ⊕ q⊥. The latter case is possible only for z(m) 6= 0.
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Theorem 4.1. Any triple (c1, c2, ϕ) with c1 and c2 proper parabolic is G-conjugate
to exactly one triple of the form (q, q±, ϕ), where ϕ|a = ±1, ϕ|z(m) = ±1 (in the
case z(m) 6= 0) and ϕ|m′ ∈ Φ(m′).

Proof. Any pair (c1, c2) of proper parabolic subalgebras in g is G-conjugate to a
pair of the form (q, c). Further, we continue to conjugate (q, c) by elements of
NG(q). Clearly, the NG(q)-orbits on the set of all proper parabolic subalgebras
are parameterized by NG(q)\G/NG(q).

Consider the Iwasawa decomposition g = k ⊕ a ⊕ n. Let G = KAN be the
Iwasawa decomposition of G, where K ⊂ G is a maximal compact subgroup,
A = exp(a), and N = exp(n) (see VII.2 in [7]). Set M = ZK(a). Let W =
NK(a)/ZK(a) be the Weyl group. In our case |W | = 2. We have the Bruhat
decomposition MAN\G/MAN = W .

Lemma 4.3. NG(q) = MAN .

Proof. To show that MAN ⊂ NG(q) it is enough to prove that M acts on q by
inner automorphisms. Indeed, by Theorem 7.66 in [7] the group M is connected
unless dim n = 1. The condition dim n = 1 is equivalent to the condition g =
sl(2, R). In the latter case M = {±E} acts trivially on q.

Further, by the Bruhat decomposition we have G = MAN ∪ MANω̃MAN ,
where ω̃ ∈ NK(a) represents the nontrivial element of W . It is evident that
MANω̃MAN does not normalize q. Hence we get NG(q) = MAN .

Therefore there are exactly two G-orbits in the set of pairs (c1, c2), and their
representatives are (q, q) and (q, q−). Each triple (c1, c2, ϕ) is G-conjugate to a
triple of the form (q, q, ϕ) or (q, q−, ϕ).

Now let us describe NG(q)-conjugacy classes of orthogonal automorphisms
ϕ : q/q⊥ → q/q⊥. We have q/q⊥ ' g0 = m ⊕ a. Since ϕ preserves 〈·, ·〉, we have
ϕ(a) = a, ϕ(m) = m. Since dim a = 1, we have ϕ|a = ±1. In the case dim z(m) = 1
we have ϕ|z(m) = ±1. We consider ϕ as the pair (ϕ|a, ϕ|m) = (±1, ϕ|m) (or the
triple (ϕ|a, ϕ|z(m), ϕ|m′) = (±1,±1, ϕ|m′) in the case dim z(m) = 1).

Since Ad A = exp(ad a), we see that A acts on m identically. Therefore A
acts on ϕ trivially. Now consider action of n ∈ N . Since Ad N = exp(ad n),
we conclude that Ad n carries a ⊕ m to a ⊕ m ⊕ n leaving the a ⊕ m component
unchanged. Thus N acts on ϕ trivially as well. Finally, arguing as in the proof
of Lemma 4.3, we see that M acts by inner automorphisms on g0.

Now consider the case of a triple (q, q−, ϕ).

Lemma 4.4. The normalizer of the pair (q, q−) in G is MA.

Proof. Clearly, the normalizer of this pair is NG(q)∩NG(q−). By Lemma 4.3, we
have NG(q) = MAN . Similarly, NG(q−) = MAN−, where N− = ΘN . Further,
MAN ∩ N− = {1} (see Lemma 7.64 in [7]). Thus NG(q) ∩ NG(q−) = MAN ∩
MAN− = MA.
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By the above computation, we see that only the M -part of the normalizer of
(q, q−) can act non-trivially on ϕ, and this action is by inner automorphisms of
m. This completes the proof of the theorem.

Theorem 4.2. Let z(m) 6= 0. Each triple (c1, c2, ϕ) with c1 and c2 non-parabolic is
G-conjugate to exactly one triple of the form (cα⊕q⊥, cβ⊕q⊥γ , ϕ), where ϕ ∈ Φ(m′),
and α, β, γ ∈ {+,−}.

Proof. By Proposition 4.1 we know that c1 ⊂ q1, c2 ⊂ q2, where q1, q2 are proper
parabolic subalgebras in g. Using the same argument as in the proof of Theorem
4.1, we may assume, up to G-conjugation, that (q1, q2) is equal to (q, q) or (q, q−).
By Lemma 4.2, we may assume that (c1, c2) = (cα ⊕ q⊥, cβ ⊕ q⊥γ ), where α, β, γ ∈
{+,−}.

Lemma 4.5. NG(c± ⊕ q⊥) = MAN .

Proof. The same argument as in Lemma 4.3 shows that MAN ⊂ NG(c± ⊕ q⊥).
Conversely, let Adg(c± ⊕ q⊥) = c± ⊕ q⊥ for some g ∈ G. It is easy to see that c±
is reductive and q⊥ is nilpotent. Thus Adg q⊥ = q⊥. Since Adg preserves 〈·, ·〉, we
have Adg q = q and g ∈ NG(q) = MAN .

The proof of the theorem can now be finished along the lines of the proof of
Theorem 4.1.

Now let us summarize our investigations:

Theorem 4.3. Any Lagrangian subalgebra in g× g is G-conjugate to exactly one
subalgebra of the following list:

1. l = {(x, θ(x)) |x ∈ g}, where θ ∈ Φ(g);
2. l = {(x, ϕ(x)) |x ∈ g0} ⊕ (q⊥, 0)⊕ (0, q⊥±), where ϕ|a = ±1, ϕ|z(m) = ±1 (in

the case z(m) 6= 0), and ϕ|m′ ∈ Φ(m′);
3 (case z(m) 6= 0 only). l = {(x, ϕ(x)) |x ∈ m′} ⊕ (uα ⊕ q⊥, 0) ⊕ (0, uβ ⊕ q⊥γ ),

where α, β, γ ∈ {+,−}, ϕ ∈ Φ(m′), and u± are defined in Lemma 4.2.

Remark. It rarely happens that g∆ has a Lagrangian complement in g×g. Indeed,
if l is the graph of θ ∈ Aut g, then l∩ g∆ = gθ

∆ 6= 0. For l described in parts 2 and
3 of Theorem 4.3 we see that l ∩ g∆ ⊃ (m′)ϕ

∆, which is non-zero for m′ 6= 0 (cf. [4,
§3.3.4]). It is not hard to check that the only real rank one algebras with m′ = 0 are
g = sl(2, R) (here m = 0), g = su(1, 2), and g = sl(2, C)R (in the latter cases m =
R). Using Theorem 4.3 it is clear that for g = sl(2, R) there is a unique up to G-
conjugation Lagrangian complement a−∆⊕ (q⊥, 0)⊕ (0, q⊥−), while for g = su(1, 2)
or g = sl(2, C)R there are three G-conjugacy classes of Lagrangian complements
with representatives a−∆ ⊕ m−∆ ⊕ (q⊥, 0) ⊕ (0, q⊥−), (u+ ⊕ q⊥, 0) ⊕ (0, u− ⊕ q⊥−),
(u− ⊕ q⊥, 0)⊕ (0, u+ ⊕ q⊥−).
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