Travaux mathématiques, Volume 16 (2005), 229–236, © Université du Luxembourg

Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$, where \mathfrak{g} is a real simple Lie algebra of real rank one

by Eugene Karolinsky and Sasha Lyapina

Abstract

We classify Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$, where \mathfrak{g} is a real simple Lie algebra of real rank 0 or 1. We also apply our results to classification of quasi-Poisson homogeneous spaces.

1 Introduction

Let G be a (quasi-) Poisson Lie group, $\mathfrak{g} = \text{Lie } G$ the corresponding Lie (quasi-) bialgebra, $D(\mathfrak{g})$ the double corresponding to \mathfrak{g} . A subalgebra $\mathfrak{l} \subset D(\mathfrak{g})$ is called Lagrangian if \mathfrak{l} is a maximal isotropic subspace with respect to the natural scalar product in $D(\mathfrak{g})$. Denote by Λ the set of all Lagrangian subalgebras in $D(\mathfrak{g})$. Let M be a G-homogeneous space. It follows from [2] and [6] that a (quasi-) Poisson G-homogeneous structure on M is equivalent to a G-equivariant map $M \to \Lambda$, $m \mapsto \mathfrak{l}_m$ such that $\mathfrak{l}_m \cap \mathfrak{g} = \mathfrak{g}_m$, where \mathfrak{g}_m is the Lie algebra of the stabilizer subgroup of G at m. Thus in order to describe the set of (quasi-) Poisson Ghomogeneous spaces up to local isomorphism it is enough to describe G-conjugacy classes of Lagrangian subalgebras in $D(\mathfrak{g})$.

Let \mathfrak{g} be a Lie algebra equipped with an invariant non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$, and G a corresponding connected Lie group. Consider $D(\mathfrak{g}) = \mathfrak{g} \times \mathfrak{g}$ with the scalar product given by

(1.1)
$$\langle (x_1, x_2), (y_1, y_2) \rangle = \frac{1}{2} \left(\langle x_1, y_1 \rangle_{\mathfrak{g}} - \langle x_2, y_2 \rangle_{\mathfrak{g}} \right),$$

where $x_1, x_2, y_1, y_2 \in \mathfrak{g}$. The structure of Λ in the case \mathfrak{g} is complex simple was studied in [3, 5]. In this paper we describe orbits of diagonal *G*-action on Λ for the case \mathfrak{g} is a real simple Lie algebra of real rank 0 (i.e. compact) or 1.

In Section 1 we discuss a structure of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ for an arbitrary Lie algebra \mathfrak{g} with an invariant non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$. In Section 2 the case of compact connected Lie group G is considered. First, we describe G-orbits of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ (see Subsection 2.1). In Subsection 2.2 we give a description of the corresponding quasi-Poisson

homogeneous G-spaces. Section 3 is devoted to simple Lie algebras \mathfrak{g} of real rank one. We classify G-orbits on the set of all Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ (see Theorem 4.3 for the main result).

We are grateful to the referee for valuable comments that helped to improve the paper.

2 Generalities on Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$

Let G be a connected Lie group, and $\mathfrak{g} = \text{Lie } G$ is equipped with a non-degenerate invariant symmetric bilinear form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$. Let us consider the Lie algebra $\mathfrak{g} \times \mathfrak{g}$ equipped with the invariant symmetric bilinear form (1.1).

Definition 2.1. A Lie subalgebra $\mathfrak{l} \subset \mathfrak{g} \times \mathfrak{g}$ is said to be *Lagrangian* if dim $\mathfrak{l} = \dim \mathfrak{g}$, and \mathfrak{l} is *isotropic*, i.e. $\langle x, y \rangle = 0$ for all $x, y \in \mathfrak{l}$.

Definition 2.2. A Lie subalgebra $\mathfrak{c} \subset \mathfrak{g}$ is called *coisotropic* if $\mathfrak{c}^{\perp} \subset \mathfrak{c}$.

If a subalgebra $\mathfrak{c} \subset \mathfrak{g}$ is coisotropic, then \mathfrak{c}^{\perp} is an ideal in \mathfrak{c} , and $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ induces a non-degenerate invariant symmetric bilinear form on $\mathfrak{c}/\mathfrak{c}^{\perp}$.

Proposition 2.1. The set of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ is in a natural *G*-equivariant bijection with the set of all triples $(\mathfrak{c}_1, \mathfrak{c}_2, \varphi)$, where \mathfrak{c}_1 and \mathfrak{c}_2 are coisotropic subalgebras in \mathfrak{g} , and $\varphi : \mathfrak{c}_1/\mathfrak{c}_1^{\perp} \to \mathfrak{c}_2/\mathfrak{c}_2^{\perp}$ is an isomorphism preserving the form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$.

Proof. Let $\mathfrak{l} \subset \mathfrak{g} \times \mathfrak{g}$ be a Lagrangian subalgebra. Consider the projections $p_i : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}, i = 1, 2$, given by $p_1(x, y) = x$, $p_2(x, y) = y$, $(x, y) \in \mathfrak{g} \times \mathfrak{g}$. Set $\mathfrak{c}_i = p_i(\mathfrak{l})$. Because of maximality of \mathfrak{l} , we see that \mathfrak{c}_1 and \mathfrak{c}_2 are coisotropic subalgebras. Let us consider the map $\varphi : \mathfrak{c}_1/\mathfrak{c}_1^{\perp} \to \mathfrak{c}_2/\mathfrak{c}_2^{\perp}$ given by $\varphi(x + \mathfrak{c}_1^{\perp}) = y + \mathfrak{c}_2^{\perp}$ for any $(x, y) \in \mathfrak{l}$. Then φ is a well-defined isomorphism of vector spaces. Moreover, φ is an isomorphism of Lie algebras, because \mathfrak{l} is a subalgebra. Further, the subalgebra \mathfrak{l} is Lagrangian, therefore φ preserves the bilinear form. Thus we get the triple $(\mathfrak{c}_1, \mathfrak{c}_2, \varphi)$ with the required properties.

Conversely, starting from a triple $(\mathfrak{c}_1, \mathfrak{c}_2, \varphi)$ one can define

$$\mathfrak{l} = \{(x,y) \mid x \in \mathfrak{c}_1, \ y \in \mathfrak{c}_2, \ \varphi(x + \mathfrak{c}_1^{\perp}) = y + \mathfrak{c}_2^{\perp} \}.$$

It can be easily checked that \mathfrak{l} is an isotropic subalgebra. Further, dim $\mathfrak{l} = \dim \mathfrak{c}_1/\mathfrak{c}_1^{\perp} + \dim \mathfrak{c}_1^{\perp} + \dim \mathfrak{c}_2^{\perp} = \dim \mathfrak{c}_1 + \dim \mathfrak{c}_2^{\perp} = \dim \mathfrak{g}$, thus \mathfrak{l} is maximal.

Let \mathfrak{l} be a Lagrangian subalgebra and $(\mathfrak{c}_1, \mathfrak{c}_2, \varphi)$ be the corresponding triple. Under the construction above the natural (diagonal) action of G on the set of Lagrangian subalgebras turns into $g \cdot (\mathfrak{c}_1, \mathfrak{c}_2, \varphi) = (\operatorname{Ad} g \cdot \mathfrak{c}_1, \operatorname{Ad} g \cdot \mathfrak{c}_2, \operatorname{Ad} g \circ \varphi \circ \operatorname{Ad} g^{-1}).$

230

3 Compact case

Let G be a connected compact semisimple Lie group, $\mathfrak{g} = \text{Lie } G$, and $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ a (positive or negative) definite invariant symmetric bilinear form on \mathfrak{g} . Denote by Aut \mathfrak{g} the group of all automorphisms of \mathfrak{g} preserving the form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$.

3.1 Lagrangian subalgebras

The aim of this section is to describe *G*-conjugacy classes of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$. We use Proposition 2.1. Since $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ is definite, the only coisotropic subalgebra of \mathfrak{g} is \mathfrak{g} itself. Thus any Lagrangian subalgebra of $\mathfrak{g} \times \mathfrak{g}$ is of the form $\mathfrak{l}_{\varphi} = \{(x, \varphi(x)) \mid x \in \mathfrak{g}\}$, where $\varphi \in \operatorname{Aut} \mathfrak{g}$. Therefore to obtain a description of *G*-orbits in the set of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ it is enough to classify Int \mathfrak{g} -conjugacy classes of Aut \mathfrak{g} . For reader's convenience we present here the well-known answer to the latter question.

Let $\mathfrak{g}_{\mathbb{C}}$ be the complexification of \mathfrak{g} and τ the conjugation of $\mathfrak{g}_{\mathbb{C}}$ w.r.t. \mathfrak{g} . We identify automorphisms of \mathfrak{g} with automorphisms of $\mathfrak{g}_{\mathbb{C}}$ commuting with τ .

Let f_i, e_i, h_i be a standard generating system of $\mathfrak{g}_{\mathbb{C}}$ such that $\tau(e_i) = -f_i$. Consider the Cartan subalgebra \mathfrak{h} spanned by h_1, \ldots, h_r , where $r = \operatorname{rank} \mathfrak{g}_{\mathbb{C}}$. Let Δ be the set of simple roots of $\mathfrak{g}_{\mathbb{C}}$ corresponding to h_1, \ldots, h_r . Let Π : Aut $\mathfrak{g}_{\mathbb{C}} \to \operatorname{Aut} \Delta$ be the canonical homomorphism. For any $\sigma \in \operatorname{Aut} \Delta$, set $\Theta_{\sigma} = \{\theta \in \Pi^{-1}(\sigma) \mid \theta \tau = \tau \theta\}.$

Let $\tilde{\sigma} \in \operatorname{Aut} \mathfrak{g}_{\mathbb{C}}$ be defined by $\tilde{\sigma}(e_i) = e_{\sigma(i)}, \tilde{\sigma}(f_i) = f_{\sigma(i)}, \tilde{\sigma}(h_i) = h_{\sigma(i)}$. Clearly, $\tilde{\sigma} \in \Theta_{\sigma}$. Set $H = \{\exp(\operatorname{ad} x) \mid x \in \mathfrak{h}\}$. Let us identify H and $(\mathbb{C}^*)^{\Delta}$, i.e. $h \in H$ is identified with the set $\{h_{\alpha}\}_{\alpha \in \Delta}$ of eigenvalues of h on the root spaces \mathfrak{g}_{α} . Choose a system Δ' of representatives of the σ -orbits in Δ . Set

 $H' = \{h \in H \mid h\tau = \tau h, \text{ and } h_{\alpha} = 1 \text{ for any } \alpha \notin \Delta' \}.$

Theorem 3.1. If $\theta \in \Theta_{\sigma}$, then there exists a unique $h \in H'$ such that $g\theta g^{-1} = \widetilde{\sigma}h$ for some $g \in \text{Int } \mathfrak{g}$.

3.2 Quasi-Poisson homogeneous *G*-spaces

Our further investigations are based on the correspondence between (quasi-) Poisson homogeneous spaces and Lagrangian subalgebras (see [2] and [6] for details).

Let us consider the Manin quasi-triple $(\mathfrak{g} \times \mathfrak{g}, \mathfrak{g}_{\Delta}, \mathfrak{g}_{-\Delta})$, where $\mathfrak{g} \times \mathfrak{g}$ is equipped with the invariant symmetric bilinear form (1.1), $\mathfrak{g}_{\Delta} = \{(x, x) \mid x \in \mathfrak{g}\}$, and $\mathfrak{g}_{-\Delta} = \{(x, -x) \mid x \in \mathfrak{g}\}$.¹ The corresponding Lie quasi-bialgebra structure on \mathfrak{g} is given by $\delta = 0$, $\varphi = -[\Omega^{12}, \Omega^{23}]$, where $\Omega \in S^2\mathfrak{g}$ corresponds to $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ (see details in [1, 6]). In this case the quasi-Poisson structure on G is given by $\pi_G = 0$ and φ aforesaid.

¹Notice that $\mathfrak{g}_{-\Delta}$ is not a subalgebra in $\mathfrak{g} \times \mathfrak{g}$. It is easy to see that there is no subalgebra which is a Lagrangian complement of \mathfrak{g}_{Δ} in $\mathfrak{g} \times \mathfrak{g}$.

Theorem 3.2. The set of G-conjugacy classes in $\operatorname{Aut} \mathfrak{g}$, where each class is equipped with the quasi-Poisson structure given by

(3.1)
$$\pi(\theta) = ((r_{\theta})_* \otimes (l_{\theta})_* - (l_{\theta})_* \otimes (r_{\theta})_*)(\Omega),$$

 $\theta \in \operatorname{Aut} \mathfrak{g}$, is the complete system of representatives of quasi-Poisson G-homogeneous spaces up to local isomorphism.

Proof. Let $\theta \in \operatorname{Aut} \mathfrak{g}$. Consider the Lagrangian subalgebra $\mathfrak{l}_{\theta} \subset \mathfrak{g} \times \mathfrak{g}$ defined by $\mathfrak{l}_{\theta} = \{(x, \theta(x)) \mid x \in \mathfrak{g}\}$. Then $\mathfrak{l}_{\theta} \cap \mathfrak{g}_{\Delta} \simeq \mathfrak{g}^{\theta} = \{x \in \mathfrak{g} \mid \theta(x) = x\}$. Consider $H_{\theta} = \{g \in G \mid \operatorname{Ad} g \cdot \theta \cdot \operatorname{Ad} g^{-1} = \theta\}$. It is clear that H_{θ} normalizes \mathfrak{l}_{θ} , and Lie $H_{\theta} = \mathfrak{g}^{\theta}$. By Theorem 3.2 in [6] we can conclude that the pair $(\mathfrak{l}_{\theta}, H_{\theta})$ corresponds to the quasi-Poisson homogeneous space $O(\theta)$ which is the *G*-conjugacy class of θ in Aut \mathfrak{g} . To finish the proof one has to show that the corresponding quasi-Poisson structure on $O(\theta)$ is given by (3.1). This can be calculated straightforwardly. \Box

4 Rank one case

Let \mathfrak{g} be a simple Lie algebra of real rank one, G a connected Lie group such that Lie $G = \mathfrak{g}$. Let $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ be a non-degenerate invariant symmetric bilinear form on \mathfrak{g} . Denote by Aut \mathfrak{g} the group of all automorphisms in \mathfrak{g} preserving the form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$. Consider $\mathfrak{g} \times \mathfrak{g}$ equipped with the invariant symmetric bilinear form (1.1). We are going to describe the set of G-conjugacy classes of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$.

By Proposition 2.1, there is a bijection between the set of all Lagrangian subalgebras and the set of triples $(\mathfrak{c}_1, \mathfrak{c}_2, \varphi)$, where $\mathfrak{c}_1, \mathfrak{c}_2$ are coisotropic subalgebras in \mathfrak{g} , and $\varphi : \mathfrak{c}_1/\mathfrak{c}_1^{\perp} \to \mathfrak{c}_2/\mathfrak{c}_2^{\perp}$ is an isomorphism preserving the form $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$.

First, consider the triples of the form $(\mathfrak{g}, \mathfrak{g}, \varphi)$, where $\varphi \in \operatorname{Aut} \mathfrak{g}$. The corresponding *G*-conjugacy classes of such triples are parameterized by orbits of the Int \mathfrak{g} -action on $\operatorname{Aut} \mathfrak{g}$ by conjugation. Let us denote a set of representatives of Int \mathfrak{g} -orbits in $\operatorname{Aut} \mathfrak{g}$ by $\Phi(\mathfrak{g})$. The corresponding Lagrangian subalgebras are graphs of automorphisms in $\Phi(\mathfrak{g})$.

Further, we consider the case when the coisotropic subalgebras in the triples are proper subalgebras in \mathfrak{g} .

Proposition 4.1. Any proper coisotropic subalgebra $\mathfrak{c} \subset \mathfrak{g}$ is contained in a maximal parabolic subalgebra in \mathfrak{g} .

Proof. Consider a maximal subalgebra \mathfrak{q} of \mathfrak{g} such that $\mathfrak{c} \subset \mathfrak{q}$. According to Theorem 3.1 in [8], either the radical of \mathfrak{q} is compact or \mathfrak{q} is a maximal parabolic subalgebra. In the first case, \mathfrak{q} is not coisotropic, neither is any of its subalgebras. Indeed, assume that $\mathfrak{q}^{\perp} \subset \mathfrak{q}$. Then \mathfrak{q}^{\perp} is a solvable ideal of \mathfrak{q} (because \mathfrak{g} can be embedded into a suitable general linear algebra, and the restriction of the form $\langle X, Y \rangle = \operatorname{Tr} XY$ vanishes on \mathfrak{q}^{\perp}). Thus \mathfrak{q}^{\perp} is contained in the radical of \mathfrak{q} . Note

that any invariant bilinear form on \mathfrak{g} , being proportional to the Killing form, vanishes on \mathfrak{q}^{\perp} . Therefore \mathfrak{q}^{\perp} is not compact, and we get a contradiction.

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition, θ the Cartan involution, \mathfrak{a} a maximal subalgebra of \mathfrak{p} . Recall that rank_R $\mathfrak{g} = \dim \mathfrak{a}$. Denote by Θ the Cartan involution on G.

In the case of real rank one algebras all maximal parabolic subalgebras in \mathfrak{g} are *G*-conjugate to $\mathfrak{q} = \mathfrak{q}_+ = \mathfrak{g}_0 \oplus \mathfrak{g}_\lambda \oplus \mathfrak{g}_{2\lambda}$ (see [4] for details). We also set $\mathfrak{q}_- = \theta(\mathfrak{q}) = \mathfrak{g}_0 \oplus \mathfrak{g}_{-\lambda} \oplus \mathfrak{g}_{-2\lambda}$. Here $\mathfrak{g}_{\pm\lambda}, \mathfrak{g}_{\pm2\lambda}$ are the root subspaces in \mathfrak{g} (perhaps, $\mathfrak{g}_{\pm2\lambda} = 0$). Set $\mathfrak{n} = \mathfrak{g}_\lambda \oplus \mathfrak{g}_{2\lambda}$ and $\mathfrak{n}_- = \theta(\mathfrak{n}) = \mathfrak{g}_{-\lambda} \oplus \mathfrak{g}_{-2\lambda}$. Obviously, $\mathfrak{q}^\perp = \mathfrak{n}$ and $\mathfrak{q}_-^\perp = \mathfrak{n}_-$. Therefore $\mathfrak{q}/\mathfrak{q}^\perp \simeq \mathfrak{q}_-/\mathfrak{q}_-^\perp \simeq \mathfrak{g}_0$. It is known that $\mathfrak{g}_0 = \mathfrak{a} \oplus \mathfrak{m}$, where $\mathfrak{m} = \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a})$ (the centralizer of \mathfrak{a} in \mathfrak{k} , see [9, §5.4.1]). Clearly, $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ is non-degenerate on \mathfrak{g}_0 . Let $m = \dim \mathfrak{m}$.

Lemma 4.1. Any coisotropic subalgebra in \mathfrak{g} is *G*-conjugate to $\mathfrak{c} = \mathfrak{c}_0 \oplus \mathfrak{q}^{\perp}$, where \mathfrak{c}_0 is a coisotropic subalgebra in \mathfrak{g}_0 .

Proof. Let \mathfrak{c} be a coisotropic subalgebra in \mathfrak{g} . By Proposition 4.1 and the fact that any proper parabolic subalgebra is *G*-conjugate to \mathfrak{q} , we may assume that $\mathfrak{c} \subset \mathfrak{q}$. Since $\mathfrak{q}^{\perp} \subset \mathfrak{c}^{\perp} \subset \mathfrak{c} \subset \mathfrak{q}$, we can consider $\mathfrak{c}_0 = \mathfrak{c}/\mathfrak{q}^{\perp} \subset \mathfrak{g}_0$. Obviously, \mathfrak{c}_0 is a coisotropic subalgebra in \mathfrak{g}_0 .

Denote by $\mathfrak{z}(\mathfrak{m})$ the center of \mathfrak{m} . It is not hard to show that $\dim \mathfrak{z}(\mathfrak{m}) \leq \operatorname{rank}_{\mathbb{R}} \mathfrak{g} = 1$. (In fact, the inequality $\dim \mathfrak{z}(\mathfrak{m}) \leq \operatorname{rank}_{\mathbb{R}} \mathfrak{g}$ holds for any real simple Lie algebra \mathfrak{g} .) Set $\mathfrak{m}' = [\mathfrak{m}, \mathfrak{m}]$. We have $\mathfrak{m} = \mathfrak{m}' \oplus \mathfrak{z}(\mathfrak{m})$.

Lemma 4.2. Any coisotropic subalgebra of \mathfrak{g}_0 has dimension m or m + 1. In the case $\mathfrak{z}(\mathfrak{m}) = 0$ the only coisotropic subalgebra in \mathfrak{g}_0 is \mathfrak{g}_0 itself. In the case $\dim \mathfrak{z}(\mathfrak{m}) = 1$ there exist exactly two m-dimensional coisotropic subalgebras \mathfrak{c}_{\pm} in \mathfrak{g}_0 . Namely, $\mathfrak{c}_{\pm} = \mathfrak{m}' \oplus \mathfrak{u}_{\pm}$, where \mathfrak{u}_{\pm} is spanned by $x_0 \pm a$, x_0 spans $\mathfrak{z}(\mathfrak{m})$, and $a \in \mathfrak{a}$ satisfies $\langle a, a \rangle_{\mathfrak{g}} + \langle x_0, x_0 \rangle_{\mathfrak{g}} = 0$.

Proof. Note that the restriction of $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ onto $\mathfrak{g}_0 = \mathfrak{a} \oplus \mathfrak{m}$ is of signature (1, m)(in particular, \mathfrak{a} and \mathfrak{m} are orthogonal w.r.t. $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$). Therefore any coisotropic subspace of \mathfrak{g}_0 has dimension m or m + 1 (i.e. is equal to \mathfrak{g}_0 in the latter case). Now consider any one-dimensional isotropic subspace $\mathfrak{u} \neq 0$ in \mathfrak{g}_0 . Let $a \in \mathfrak{a}$ and $x_0 \in \mathfrak{m}$ be such that \mathfrak{u} is spanned by $a + x_0$; in particular, $\langle a + x_0, a + x_0 \rangle = 0$ and $x_0 \neq 0, a \neq 0$. Put $\mathfrak{c} = \mathfrak{u}^{\perp}$. It is clear that \mathfrak{c} is a coisotropic subspace. Further, \mathfrak{c} is a subalgebra if and only if $x_0 \in \mathfrak{z}(\mathfrak{m})$. This observation completes the proof. \Box

Lemmas 4.1 and 4.2 imply the following

Proposition 4.2. Any coisotropic subalgebra in \mathfrak{g} is either parabolic or is *G*-conjugate to $\mathfrak{c}_{\pm} \oplus \mathfrak{q}^{\perp}$. The latter case is possible only for $\mathfrak{z}(\mathfrak{m}) \neq 0$.

Theorem 4.1. Any triple $(\mathbf{c}_1, \mathbf{c}_2, \varphi)$ with \mathbf{c}_1 and \mathbf{c}_2 proper parabolic is *G*-conjugate to exactly one triple of the form $(\mathbf{q}, \mathbf{q}_{\pm}, \varphi)$, where $\varphi|_{\mathfrak{a}} = \pm 1$, $\varphi|_{\mathfrak{z}(\mathfrak{m})} = \pm 1$ (in the case $\mathfrak{z}(\mathfrak{m}) \neq 0$) and $\varphi|_{\mathfrak{m}'} \in \Phi(\mathfrak{m}')$.

Proof. Any pair $(\mathbf{c}_1, \mathbf{c}_2)$ of proper parabolic subalgebras in \mathbf{g} is *G*-conjugate to a pair of the form (\mathbf{q}, \mathbf{c}) . Further, we continue to conjugate (\mathbf{q}, \mathbf{c}) by elements of $N_G(\mathbf{q})$. Clearly, the $N_G(\mathbf{q})$ -orbits on the set of all proper parabolic subalgebras are parameterized by $N_G(\mathbf{q}) \setminus G/N_G(\mathbf{q})$.

Consider the Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Let G = KAN be the Iwasawa decomposition of G, where $K \subset G$ is a maximal compact subgroup, $A = \exp(\mathfrak{a})$, and $N = \exp(\mathfrak{n})$ (see VII.2 in [7]). Set $M = Z_K(\mathfrak{a})$. Let $W = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$ be the Weyl group. In our case |W| = 2. We have the Bruhat decomposition $MAN \setminus G/MAN = W$.

Lemma 4.3. $N_G(q) = MAN$.

Proof. To show that $MAN \subset N_G(\mathfrak{q})$ it is enough to prove that M acts on \mathfrak{q} by inner automorphisms. Indeed, by Theorem 7.66 in [7] the group M is connected unless dim $\mathfrak{n} = 1$. The condition dim $\mathfrak{n} = 1$ is equivalent to the condition $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$. In the latter case $M = \{\pm E\}$ acts trivially on \mathfrak{q} .

Further, by the Bruhat decomposition we have $G = MAN \cup MAN\widetilde{\omega}MAN$, where $\widetilde{\omega} \in N_K(\mathfrak{a})$ represents the nontrivial element of W. It is evident that $MAN\widetilde{\omega}MAN$ does not normalize \mathfrak{q} . Hence we get $N_G(\mathfrak{q}) = MAN$.

Therefore there are exactly two *G*-orbits in the set of pairs $(\mathbf{c}_1, \mathbf{c}_2)$, and their representatives are (\mathbf{q}, \mathbf{q}) and $(\mathbf{q}, \mathbf{q}_-)$. Each triple $(\mathbf{c}_1, \mathbf{c}_2, \varphi)$ is *G*-conjugate to a triple of the form $(\mathbf{q}, \mathbf{q}, \varphi)$ or $(\mathbf{q}, \mathbf{q}_-, \varphi)$.

Now let us describe $N_G(\mathfrak{q})$ -conjugacy classes of orthogonal automorphisms $\varphi: \mathfrak{q}/\mathfrak{q}^{\perp} \to \mathfrak{q}/\mathfrak{q}^{\perp}$. We have $\mathfrak{q}/\mathfrak{q}^{\perp} \simeq \mathfrak{g}_0 = \mathfrak{m} \oplus \mathfrak{a}$. Since φ preserves $\langle \cdot, \cdot \rangle$, we have $\varphi(\mathfrak{a}) = \mathfrak{a}, \varphi(\mathfrak{m}) = \mathfrak{m}$. Since dim $\mathfrak{a} = 1$, we have $\varphi|_{\mathfrak{a}} = \pm 1$. In the case dim $\mathfrak{z}(\mathfrak{m}) = 1$ we have $\varphi|_{\mathfrak{z}(\mathfrak{m})} = \pm 1$. We consider φ as the pair $(\varphi|_{\mathfrak{a}}, \varphi|_{\mathfrak{m}}) = (\pm 1, \varphi|_{\mathfrak{m}})$ (or the triple $(\varphi|_{\mathfrak{a}}, \varphi|_{\mathfrak{z}(\mathfrak{m})}, \varphi|_{\mathfrak{m}'}) = (\pm 1, \pm 1, \varphi|_{\mathfrak{m}'})$ in the case dim $\mathfrak{z}(\mathfrak{m}) = 1$).

Since $\operatorname{Ad} A = \exp(\operatorname{ad} \mathfrak{a})$, we see that A acts on \mathfrak{m} identically. Therefore A acts on φ trivially. Now consider action of $n \in N$. Since $\operatorname{Ad} N = \exp(\operatorname{ad} \mathfrak{n})$, we conclude that $\operatorname{Ad} n$ carries $\mathfrak{a} \oplus \mathfrak{m}$ to $\mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n}$ leaving the $\mathfrak{a} \oplus \mathfrak{m}$ component unchanged. Thus N acts on φ trivially as well. Finally, arguing as in the proof of Lemma 4.3, we see that M acts by inner automorphisms on \mathfrak{g}_0 .

Now consider the case of a triple $(\mathfrak{q}, \mathfrak{q}_{-}, \varphi)$.

Lemma 4.4. The normalizer of the pair (q, q_{-}) in G is MA.

Proof. Clearly, the normalizer of this pair is $N_G(\mathfrak{q}) \cap N_G(\mathfrak{q}_-)$. By Lemma 4.3, we have $N_G(\mathfrak{q}) = MAN$. Similarly, $N_G(\mathfrak{q}_-) = MAN_-$, where $N_- = \Theta N$. Further, $MAN \cap N_- = \{1\}$ (see Lemma 7.64 in [7]). Thus $N_G(\mathfrak{q}) \cap N_G(\mathfrak{q}_-) = MAN \cap MAN_- = MA$.

By the above computation, we see that only the *M*-part of the normalizer of $(\mathfrak{q}, \mathfrak{q}_{-})$ can act non-trivially on φ , and this action is by inner automorphisms of \mathfrak{m} . This completes the proof of the theorem.

Theorem 4.2. Let $\mathfrak{z}(\mathfrak{m}) \neq 0$. Each triple $(\mathfrak{c}_1, \mathfrak{c}_2, \varphi)$ with \mathfrak{c}_1 and \mathfrak{c}_2 non-parabolic is G-conjugate to exactly one triple of the form $(\mathfrak{c}_{\alpha} \oplus \mathfrak{q}^{\perp}, \mathfrak{c}_{\beta} \oplus \mathfrak{q}^{\perp}_{\gamma}, \varphi)$, where $\varphi \in \Phi(\mathfrak{m}')$, and $\alpha, \beta, \gamma \in \{+, -\}$.

Proof. By Proposition 4.1 we know that $\mathbf{c}_1 \subset \mathbf{q}_1$, $\mathbf{c}_2 \subset \mathbf{q}_2$, where $\mathbf{q}_1, \mathbf{q}_2$ are proper parabolic subalgebras in \mathbf{g} . Using the same argument as in the proof of Theorem 4.1, we may assume, up to *G*-conjugation, that $(\mathbf{q}_1, \mathbf{q}_2)$ is equal to (\mathbf{q}, \mathbf{q}) or $(\mathbf{q}, \mathbf{q}_-)$. By Lemma 4.2, we may assume that $(\mathbf{c}_1, \mathbf{c}_2) = (\mathbf{c}_\alpha \oplus \mathbf{q}^\perp, \mathbf{c}_\beta \oplus \mathbf{q}_\gamma^\perp)$, where $\alpha, \beta, \gamma \in \{+, -\}$.

Lemma 4.5. $N_G(\mathfrak{c}_{\pm} \oplus \mathfrak{q}^{\perp}) = MAN.$

Proof. The same argument as in Lemma 4.3 shows that $MAN \subset N_G(\mathfrak{c}_{\pm} \oplus \mathfrak{q}^{\perp})$. Conversely, let $\operatorname{Ad}_g(\mathfrak{c}_{\pm} \oplus \mathfrak{q}^{\perp}) = \mathfrak{c}_{\pm} \oplus \mathfrak{q}^{\perp}$ for some $g \in G$. It is easy to see that \mathfrak{c}_{\pm} is reductive and \mathfrak{q}^{\perp} is nilpotent. Thus $\operatorname{Ad}_g \mathfrak{q}^{\perp} = \mathfrak{q}^{\perp}$. Since Ad_g preserves $\langle \cdot, \cdot \rangle$, we have $\operatorname{Ad}_g \mathfrak{q} = \mathfrak{q}$ and $g \in N_G(\mathfrak{q}) = MAN$.

The proof of the theorem can now be finished along the lines of the proof of Theorem 4.1. $\hfill \Box$

Now let us summarize our investigations:

Theorem 4.3. Any Lagrangian subalgebra in $\mathfrak{g} \times \mathfrak{g}$ is G-conjugate to exactly one subalgebra of the following list:

1. $\mathfrak{l} = \{(x, \theta(x)) \mid x \in \mathfrak{g}\}, \text{ where } \theta \in \Phi(\mathfrak{g});$

2. $\mathfrak{l} = \{(x,\varphi(x)) \mid x \in \mathfrak{g}_0\} \oplus (\mathfrak{q}^{\perp}, 0) \oplus (0, \mathfrak{q}_{\pm}^{\perp}), \text{ where } \varphi|_{\mathfrak{a}} = \pm 1, \varphi|_{\mathfrak{z}(\mathfrak{m})} = \pm 1 \text{ (in the case } \mathfrak{z}(\mathfrak{m}) \neq 0), \text{ and } \varphi|_{\mathfrak{m}'} \in \Phi(\mathfrak{m}');$

3 (case $\mathfrak{z}(\mathfrak{m}) \neq 0$ only). $\mathfrak{l} = \{(x, \varphi(x)) \mid x \in \mathfrak{m}'\} \oplus (\mathfrak{u}_{\alpha} \oplus \mathfrak{q}^{\perp}, 0) \oplus (0, \mathfrak{u}_{\beta} \oplus \mathfrak{q}_{\gamma}^{\perp}), where \alpha, \beta, \gamma \in \{+, -\}, \varphi \in \Phi(\mathfrak{m}'), and \mathfrak{u}_{\pm} are defined in Lemma 4.2. \square$

Remark. It rarely happens that \mathfrak{g}_{Δ} has a Lagrangian complement in $\mathfrak{g} \times \mathfrak{g}$. Indeed, if \mathfrak{l} is the graph of $\theta \in \operatorname{Aut} \mathfrak{g}$, then $\mathfrak{l} \cap \mathfrak{g}_{\Delta} = \mathfrak{g}_{\Delta}^{\theta} \neq 0$. For \mathfrak{l} described in parts 2 and 3 of Theorem 4.3 we see that $\mathfrak{l} \cap \mathfrak{g}_{\Delta} \supset (\mathfrak{m}')_{\Delta}^{\varphi}$, which is non-zero for $\mathfrak{m}' \neq 0$ (cf. [4, §3.3.4]). It is not hard to check that the only real rank one algebras with $\mathfrak{m}' = 0$ are $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$ (here $\mathfrak{m} = 0$), $\mathfrak{g} = \mathfrak{su}(1, 2)$, and $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})_{\mathbb{R}}$ (in the latter cases $\mathfrak{m} = \mathbb{R}$). Using Theorem 4.3 it is clear that for $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$ there is a unique up to Gconjugation Lagrangian complement $\mathfrak{a}_{-\Delta} \oplus (\mathfrak{q}^{\perp}, 0) \oplus (0, \mathfrak{q}_{-}^{\perp})$, while for $\mathfrak{g} = \mathfrak{su}(1, 2)$ or $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})_{\mathbb{R}}$ there are three G-conjugacy classes of Lagrangian complements with representatives $\mathfrak{a}_{-\Delta} \oplus \mathfrak{m}_{-\Delta} \oplus (\mathfrak{q}^{\perp}, 0) \oplus (0, \mathfrak{q}_{-}^{\perp})$, $(\mathfrak{u}_{+} \oplus \mathfrak{q}^{\perp}, 0) \oplus (0, \mathfrak{u}_{-} \oplus \mathfrak{q}_{-}^{\perp})$, $(\mathfrak{u}_{-} \oplus \mathfrak{q}^{\perp}, 0) \oplus (0, \mathfrak{u}_{+} \oplus \mathfrak{q}_{-}^{\perp})$.

References

- A. Alekseev, Y. Kosmann-Schwarzbach, Manin pairs and moment maps, J. Diff. Geom., 56 (2000), 133–165 (e-print math.DG/9909176).
- [2] V. G. Drinfeld, On Poisson homogeneous spaces of Poisson-Lie groups, *Theor. Math. Phys.*, 95 (1993), 226–227.
- [3] S. Evens, J.-H. Lu, On the variety of Lagrangian subalgebras, II, preprint math.QA/0409236, 42 p.
- [4] V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Structure of Lie groups and Lie algebras, Encyclopaedia of Math. Sci., Vol. 41, Springer-Verlag, Berlin, 1994.
- [5] E. Karolinsky, A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups, *Banach Center Publications*, **51** (2000), 103– 108 (e-print math.QA/9901073).
- [6] E. Karolinsky, K. Muzykin, On quasi-Poisson homogeneous spaces of quasi-Poisson Lie groups, *Journal of Lie Theory*, **14** (2004), 543–554 (e-print math.QA/0303298).
- [7] A. W. Knapp, *Lie groups beyond an introduction*, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, 1996.
- [8] G. D. Mostov, On maximal subgroups of real Lie groups, Annals of Mathematics, 74 (1961), 503–517.
- [9] A. L. Onishchik, E. B. Vinberg, *Lie groups and algebraic groups*, Springer-Verlag, Berlin, 1990.

Eugene Karolinsky

Department of Mathematics, Kharkov National University, 4 Svobody Sq., Kharkov 61077, Ukraine eugene.a.karolinsky@univer.kharkov.ua; Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA ykarolin@nd.edu

Sasha Lyapina Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA olyapina@nd.edu