Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$, where \mathfrak{g} is a real simple Lie algebra of real rank one

by Eugene Karolinsky and Sasha Lyapina

Abstract

We classify Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$, where \mathfrak{g} is a real simple Lie algebra of real rank 0 or 1 . We also apply our results to classification of quasi-Poisson homogeneous spaces.

1 Introduction

Let G be a (quasi-) Poisson Lie group, $\mathfrak{g}=\operatorname{Lie} G$ the corresponding Lie (quasi-) bialgebra, $D(\mathfrak{g})$ the double corresponding to \mathfrak{g}. A subalgebra $\mathfrak{l} \subset D(\mathfrak{g})$ is called Lagrangian if \mathfrak{l} is a maximal isotropic subspace with respect to the natural scalar product in $D(\mathfrak{g})$. Denote by Λ the set of all Lagrangian subalgebras in $D(\mathfrak{g})$. Let M be a G-homogeneous space. It follows from [2] and [6] that a (quasi-) Poisson G-homogeneous structure on M is equivalent to a G-equivariant map $M \rightarrow \Lambda$, $m \mapsto \mathfrak{l}_{m}$ such that $\mathfrak{l}_{m} \cap \mathfrak{g}=\mathfrak{g}_{m}$, where \mathfrak{g}_{m} is the Lie algebra of the stabilizer subgroup of G at m. Thus in order to describe the set of (quasi-) Poisson G homogeneous spaces up to local isomorphism it is enough to describe G-conjugacy classes of Lagrangian subalgebras in $D(\mathfrak{g})$.

Let \mathfrak{g} be a Lie algebra equipped with an invariant non-degenerate symmetric bilinear form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$, and G a corresponding connected Lie group. Consider $D(\mathfrak{g})=$ $\mathfrak{g} \times \mathfrak{g}$ with the scalar product given by

$$
\begin{equation*}
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=\frac{1}{2}\left(\left\langle x_{1}, y_{1}\right\rangle_{\mathfrak{g}}-\left\langle x_{2}, y_{2}\right\rangle_{\mathfrak{g}}\right), \tag{1.1}
\end{equation*}
$$

where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathfrak{g}$. The structure of Λ in the case \mathfrak{g} is complex simple was studied in $[3,5]$. In this paper we describe orbits of diagonal G-action on Λ for the case \mathfrak{g} is a real simple Lie algebra of real rank 0 (i.e. compact) or 1 .

In Section 1 we discuss a structure of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ for an arbitrary Lie algebra \mathfrak{g} with an invariant non-degenerate symmetric bilinear form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$. In Section 2 the case of compact connected Lie group G is considered. First, we describe G-orbits of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ (see Subsection 2.1). In Subsection 2.2 we give a description of the corresponding quasi-Poisson
homogeneous G-spaces. Section 3 is devoted to simple Lie algebras \mathfrak{g} of real rank one. We classify G-orbits on the set of all Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ (see Theorem 4.3 for the main result).

We are grateful to the referee for valuable comments that helped to improve the paper.

2 Generalities on Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$

Let G be a connected Lie group, and $\mathfrak{g}=\operatorname{Lie} G$ is equipped with a non-degenerate invariant symmetric bilinear form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$. Let us consider the Lie algebra $\mathfrak{g} \times \mathfrak{g}$ equipped with the invariant symmetric bilinear form (1.1).

Definition 2.1. A Lie subalgebra $\mathfrak{l} \subset \mathfrak{g} \times \mathfrak{g}$ is said to be Lagrangian if $\operatorname{dim} \mathfrak{l}=$ $\operatorname{dim} \mathfrak{g}$, and \mathfrak{l} is isotropic, i.e. $\langle x, y\rangle=0$ for all $x, y \in \mathfrak{l}$.

Definition 2.2. A Lie subalgebra $\mathfrak{c} \subset \mathfrak{g}$ is called coisotropic if $\mathfrak{c}^{\perp} \subset \mathfrak{c}$.
If a subalgebra $\mathfrak{c} \subset \mathfrak{g}$ is coisotropic, then \mathfrak{c}^{\perp} is an ideal in \mathfrak{c}, and $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ induces a non-degenerate invariant symmetric bilinear form on $\mathfrak{c} / \mathfrak{c}^{\perp}$.

Proposition 2.1. The set of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ is in a natural G-equivariant bijection with the set of all triples $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$, where \mathfrak{c}_{1} and \mathfrak{c}_{2} are coisotropic subalgebras in \mathfrak{g}, and $\varphi: \mathfrak{c}_{1} / \mathfrak{c}_{1}^{\perp} \rightarrow \mathfrak{c}_{2} / \mathfrak{c}_{2}^{\perp}$ is an isomorphism preserving the form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$.

Proof. Let $\mathfrak{l} \subset \mathfrak{g} \times \mathfrak{g}$ be a Lagrangian subalgebra. Consider the projections p_{i} : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}, i=1,2$, given by $p_{1}(x, y)=x, p_{2}(x, y)=y,(x, y) \in \mathfrak{g} \times \mathfrak{g}$. Set $\mathfrak{c}_{i}=p_{i}(\mathfrak{l})$. Because of maximality of \mathfrak{l}, we see that \mathfrak{c}_{1} and \mathfrak{c}_{2} are coisotropic subalgebras. Let us consider the map $\varphi: \mathfrak{c}_{1} / \mathfrak{c}_{1}^{\perp} \rightarrow \mathfrak{c}_{2} / \mathfrak{c}_{2}^{\perp}$ given by $\varphi\left(x+\mathfrak{c}_{1}^{\perp}\right)=y+\mathfrak{c}_{2}^{\perp}$ for any $(x, y) \in \mathfrak{l}$. Then φ is a well-defined isomorphism of vector spaces. Moreover, φ is an isomorphism of Lie algebras, because \mathfrak{l} is a subalgebra. Further, the subalgebra \mathfrak{l} is Lagrangian, therefore φ preserves the bilinear form. Thus we get the triple $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$ with the required properties.

Conversely, starting from a triple $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$ one can define

$$
\mathfrak{l}=\left\{(x, y) \mid x \in \mathfrak{c}_{1}, y \in \mathfrak{c}_{2}, \varphi\left(x+\mathfrak{c}_{1}^{\perp}\right)=y+\mathfrak{c}_{2}^{\perp}\right\} .
$$

It can be easily checked that \mathfrak{l} is an isotropic subalgebra. Further, $\operatorname{dim} \mathfrak{l}=$ $\operatorname{dim} \mathfrak{c}_{1} / \mathfrak{c}_{1}^{\perp}+\operatorname{dim} \mathfrak{c}_{1}^{\perp}+\operatorname{dim} \mathfrak{c}_{2}^{\perp}=\operatorname{dim} \mathfrak{c}_{1}+\operatorname{dim} \mathfrak{c}_{2}^{\perp}=\operatorname{dim} \mathfrak{g}$, thus \mathfrak{l} is maximal.

Let \mathfrak{l} be a Lagrangian subalgebra and $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$ be the corresponding triple. Under the construction above the natural (diagonal) action of G on the set of Lagrangian subalgebras turns into $g \cdot\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)=\left(\operatorname{Ad} g \cdot \mathfrak{c}_{1}, \operatorname{Ad} g \cdot \mathfrak{c}_{2}, \operatorname{Ad} g \circ \varphi \circ\right.$ $\left.\operatorname{Ad} g^{-1}\right)$.

3 Compact case

Let G be a connected compact semisimple Lie group, $\mathfrak{g}=\operatorname{Lie} G$, and $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ a (positive or negative) definite invariant symmetric bilinear form on \mathfrak{g}. Denote by Aut \mathfrak{g} the group of all automorphisms of \mathfrak{g} preserving the form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$.

3.1 Lagrangian subalgebras

The aim of this section is to describe G-conjugacy classes of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$. We use Proposition 2.1. Since $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ is definite, the only coisotropic subalgebra of \mathfrak{g} is \mathfrak{g} itself. Thus any Lagrangian subalgebra of $\mathfrak{g} \times \mathfrak{g}$ is of the form $\mathfrak{l}_{\varphi}=\{(x, \varphi(x)) \mid x \in \mathfrak{g}\}$, where $\varphi \in$ Aut \mathfrak{g}. Therefore to obtain a description of G-orbits in the set of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$ it is enough to classify Int \mathfrak{g}-conjugacy classes of Aut \mathfrak{g}. For reader's convenience we present here the well-known answer to the latter question.

Let $\mathfrak{g}_{\mathbb{C}}$ be the complexification of \mathfrak{g} and τ the conjugation of $\mathfrak{g}_{\mathbb{C}}$ w.r.t. \mathfrak{g}. We identify automorphisms of \mathfrak{g} with automorphisms of $\mathfrak{g}_{\mathbb{C}}$ commuting with τ.

Let f_{i}, e_{i}, h_{i} be a standard generating system of $\mathfrak{g}_{\mathbb{C}}$ such that $\tau\left(e_{i}\right)=-f_{i}$. Consider the Cartan subalgebra \mathfrak{h} spanned by h_{1}, \ldots, h_{r}, where $r=\operatorname{rank} \mathfrak{g}_{\mathbb{C}}$. Let Δ be the set of simple roots of $\mathfrak{g}_{\mathbb{C}}$ corresponding to h_{1}, \ldots, h_{r}. Let Π : Aut $\mathfrak{g}_{\mathbb{C}} \rightarrow$ Aut Δ be the canonical homomorphism. For any $\sigma \in$ Aut Δ, set $\Theta_{\sigma}=\left\{\theta \in \Pi^{-1}(\sigma) \mid \theta \tau=\tau \theta\right\}$.

Let $\widetilde{\sigma} \in$ Aut $\mathfrak{g}_{\mathbb{C}}$ be defined by $\widetilde{\sigma}\left(e_{i}\right)=e_{\sigma(i)}, \widetilde{\sigma}\left(f_{i}\right)=f_{\sigma(i)}, \widetilde{\sigma}\left(h_{i}\right)=h_{\sigma(i)}$. Clearly, $\widetilde{\sigma} \in \Theta_{\sigma}$. Set $H=\{\exp (\operatorname{ad} x) \mid x \in \mathfrak{h}\}$. Let us identify H and $\left(\mathbb{C}^{*}\right)^{\Delta}$, i.e. $h \in H$ is identified with the set $\left\{h_{\alpha}\right\}_{\alpha \in \Delta}$ of eigenvalues of h on the root spaces \mathfrak{g}_{α}. Choose a system Δ^{\prime} of representatives of the σ-orbits in Δ. Set

$$
H^{\prime}=\left\{h \in H \mid h \tau=\tau h, \text { and } h_{\alpha}=1 \text { for any } \alpha \notin \Delta^{\prime}\right\} .
$$

Theorem 3.1. If $\theta \in \Theta_{\sigma}$, then there exists a unique $h \in H^{\prime}$ such that $g \theta g^{-1}=\widetilde{\sigma} h$ for some $g \in \operatorname{Int} \mathfrak{g}$.

3.2 Quasi-Poisson homogeneous G-spaces

Our further investigations are based on the correspondence between (quasi-) Poisson homogeneous spaces and Lagrangian subalgebras (see [2] and [6] for details).

Let us consider the Manin quasi-triple $\left(\mathfrak{g} \times \mathfrak{g}, \mathfrak{g}_{\Delta}, \mathfrak{g}_{-\Delta}\right)$, where $\mathfrak{g} \times \mathfrak{g}$ is equipped with the invariant symmetric bilinear form (1.1), $\mathfrak{g}_{\Delta}=\{(x, x) \mid x \in \mathfrak{g}\}$, and $\mathfrak{g}_{-\Delta}=$ $\{(x,-x) \mid x \in \mathfrak{g}\} .{ }^{1}$ The corresponding Lie quasi-bialgebra structure on \mathfrak{g} is given by $\delta=0, \varphi=-\left[\Omega^{12}, \Omega^{23}\right]$, where $\Omega \in S^{2} \mathfrak{g}$ corresponds to $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ (see details in $[1,6]$). In this case the quasi-Poisson structure on G is given by $\pi_{G}=0$ and φ aforesaid.

[^0]Theorem 3.2. The set of G-conjugacy classes in Aut \mathfrak{g}, where each class is equipped with the quasi-Poisson structure given by

$$
\begin{equation*}
\pi(\theta)=\left(\left(r_{\theta}\right)_{*} \otimes\left(l_{\theta}\right)_{*}-\left(l_{\theta}\right)_{*} \otimes\left(r_{\theta}\right)_{*}\right)(\Omega) \tag{3.1}
\end{equation*}
$$

$\theta \in$ Aut \mathfrak{g}, is the complete system of representatives of quasi-Poisson G-homogeneous spaces up to local isomorphism.

Proof. Let $\theta \in$ Aut \mathfrak{g}. Consider the Lagrangian subalgebra $\mathfrak{l}_{\theta} \subset \mathfrak{g} \times \mathfrak{g}$ defined by $\mathfrak{l}_{\theta}=\{(x, \theta(x)) \mid x \in \mathfrak{g}\}$. Then $\mathfrak{l}_{\theta} \cap \mathfrak{g}_{\Delta} \simeq \mathfrak{g}^{\theta}=\{x \in \mathfrak{g} \mid \theta(x)=x\}$. Consider $H_{\theta}=\left\{g \in G \mid \operatorname{Ad} g \cdot \theta \cdot \operatorname{Ad} g^{-1}=\theta\right\}$. It is clear that H_{θ} normalizes \mathfrak{l}_{θ}, and Lie $H_{\theta}=$ \mathfrak{g}^{θ}. By Theorem 3.2 in [6] we can conclude that the pair $\left(\mathfrak{l}_{\theta}, H_{\theta}\right)$ corresponds to the quasi-Poisson homogeneous space $O(\theta)$ which is the G-conjugacy class of θ in Aut \mathfrak{g}. To finish the proof one has to show that the corresponding quasi-Poisson structure on $O(\theta)$ is given by (3.1). This can be calculated straightforwardly.

4 Rank one case

Let \mathfrak{g} be a simple Lie algebra of real rank one, G a connected Lie group such that Lie $G=\mathfrak{g}$. Let $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ be a non-degenerate invariant symmetric bilinear form on \mathfrak{g}. Denote by Aut \mathfrak{g} the group of all automorphisms in \mathfrak{g} preserving the form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$. Consider $\mathfrak{g} \times \mathfrak{g}$ equipped with the invariant symmetric bilinear form (1.1). We are going to describe the set of G-conjugacy classes of Lagrangian subalgebras in $\mathfrak{g} \times \mathfrak{g}$.

By Proposition 2.1, there is a bijection between the set of all Lagrangian subalgebras and the set of triples $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$, where $\mathfrak{c}_{1}, \mathfrak{c}_{2}$ are coisotropic subalgebras in \mathfrak{g}, and $\varphi: \mathfrak{c}_{1} / \mathfrak{c}_{1}^{\perp} \rightarrow \mathfrak{c}_{2} / \mathfrak{c}_{2}^{\perp}$ is an isomorphism preserving the form $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$.

First, consider the triples of the form $(\mathfrak{g}, \mathfrak{g}, \varphi)$, where $\varphi \in$ Aut \mathfrak{g}. The corresponding G-conjugacy classes of such triples are parameterized by orbits of the Int \mathfrak{g}-action on Aut \mathfrak{g} by conjugation. Let us denote a set of representatives of Int \mathfrak{g}-orbits in Aut \mathfrak{g} by $\Phi(\mathfrak{g})$. The corresponding Lagrangian subalgebras are graphs of automorphisms in $\Phi(\mathfrak{g})$.

Further, we consider the case when the coisotropic subalgebras in the triples are proper subalgebras in \mathfrak{g}.

Proposition 4.1. Any proper coisotropic subalgebra $\mathfrak{c} \subset \mathfrak{g}$ is contained in a maximal parabolic subalgebra in \mathfrak{g}.

Proof. Consider a maximal subalgebra \mathfrak{q} of \mathfrak{g} such that $\mathfrak{c} \subset \mathfrak{q}$. According to Theorem 3.1 in [8], either the radical of \mathfrak{q} is compact or \mathfrak{q} is a maximal parabolic subalgebra. In the first case, \mathfrak{q} is not coisotropic, neither is any of its subalgebras. Indeed, assume that $\mathfrak{q}^{\perp} \subset \mathfrak{q}$. Then \mathfrak{q}^{\perp} is a solvable ideal of \mathfrak{q} (because \mathfrak{g} can be embedded into a suitable general linear algebra, and the restriction of the form $\langle X, Y\rangle=\operatorname{Tr} X Y$ vanishes on \mathfrak{q}^{\perp}). Thus \mathfrak{q}^{\perp} is contained in the radical of \mathfrak{q}. Note
that any invariant bilinear form on \mathfrak{g}, being proportional to the Killing form, vanishes on \mathfrak{q}^{\perp}. Therefore \mathfrak{q}^{\perp} is not compact, and we get a contradiction.

Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition, θ the Cartan involution, \mathfrak{a} a maximal subalgebra of \mathfrak{p}. Recall that $\operatorname{rank}_{\mathbb{R}} \mathfrak{g}=\operatorname{dim} \mathfrak{a}$. Denote by Θ the Cartan involution on G.

In the case of real rank one algebras all maximal parabolic subalgebras in \mathfrak{g} are G-conjugate to $\mathfrak{q}=\mathfrak{q}_{+}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{\lambda} \oplus \mathfrak{g}_{2 \lambda}$ (see [4] for details). We also set $\mathfrak{q}_{-}=\theta(\mathfrak{q})=\mathfrak{g}_{0} \oplus \mathfrak{g}_{-\lambda} \oplus \mathfrak{g}_{-2 \lambda}$. Here $\mathfrak{g}_{ \pm \lambda}, \mathfrak{g}_{ \pm 2 \lambda}$ are the root subspaces in \mathfrak{g} (perhaps, $\left.\mathfrak{g}_{ \pm 2 \lambda}=0\right)$. Set $\mathfrak{n}=\mathfrak{g}_{\lambda} \oplus \mathfrak{g}_{2 \lambda}$ and $\mathfrak{n}_{-}=\theta(\mathfrak{n})=\mathfrak{g}_{-\lambda} \oplus \mathfrak{g}_{-2 \lambda}$. Obviously, $\mathfrak{q}^{\perp}=\mathfrak{n}$ and $\mathfrak{q}_{-}^{\perp}=\mathfrak{n}_{-}$. Therefore $\mathfrak{q} / \mathfrak{q}^{\perp} \simeq \mathfrak{q}_{-} / \mathfrak{q}_{-}^{\perp} \simeq \mathfrak{g}_{0}$. It is known that $\mathfrak{g}_{0}=\mathfrak{a} \oplus \mathfrak{m}$, where $\mathfrak{m}=\mathfrak{z}_{\mathfrak{k}}(\mathfrak{a})$ (the centralizer of \mathfrak{a} in \mathfrak{k}, see [9, §5.4.1]). Clearly, $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ is non-degenerate on \mathfrak{g}_{0}. Let $m=\operatorname{dim} \mathfrak{m}$.

Lemma 4.1. Any coisotropic subalgebra in \mathfrak{g} is G-conjugate to $\mathfrak{c}=\mathfrak{c}_{0} \oplus \mathfrak{q}^{\perp}$, where \mathfrak{c}_{0} is a coisotropic subalgebra in \mathfrak{g}_{0}.

Proof. Let \mathfrak{c} be a coisotropic subalgebra in \mathfrak{g}. By Proposition 4.1 and the fact that any proper parabolic subalgebra is G-conjugate to \mathfrak{q}, we may assume that $\mathfrak{c} \subset \mathfrak{q}$. Since $\mathfrak{q}^{\perp} \subset \mathfrak{c}^{\perp} \subset \mathfrak{c} \subset \mathfrak{q}$, we can consider $\mathfrak{c}_{0}=\mathfrak{c} / \mathfrak{q}^{\perp} \subset \mathfrak{g}_{0}$. Obviously, \mathfrak{c}_{0} is a coisotropic subalgebra in \mathfrak{g}_{0}.

Denote by $\mathfrak{z}(\mathfrak{m})$ the center of \mathfrak{m}. It is not hard to show that $\operatorname{dim} \mathfrak{z}(\mathfrak{m}) \leq$ $\operatorname{rank}_{\mathbb{R}} \mathfrak{g}=1$. (In fact, the inequality $\operatorname{dim} \mathfrak{z}(\mathfrak{m}) \leq \operatorname{rank}_{\mathbb{R}} \mathfrak{g}$ holds for any real simple Lie algebra \mathfrak{g}.) Set $\mathfrak{m}^{\prime}=[\mathfrak{m}, \mathfrak{m}]$. We have $\mathfrak{m}=\mathfrak{m}^{\prime} \oplus \mathfrak{z}(\mathfrak{m})$.

Lemma 4.2. Any coisotropic subalgebra of \mathfrak{g}_{0} has dimension m or $m+1$. In the case $\mathfrak{z}(\mathfrak{m})=0$ the only coisotropic subalgebra in \mathfrak{g}_{0} is \mathfrak{g}_{0} itself. In the case $\operatorname{dim} \mathfrak{z}(\mathfrak{m})=1$ there exist exactly two m-dimensional coisotropic subalgebras $\mathfrak{c}_{ \pm}$in \mathfrak{g}_{0}. Namely, $\mathfrak{c}_{ \pm}=\mathfrak{m}^{\prime} \oplus \mathfrak{u}_{ \pm}$, where $\mathfrak{u}_{ \pm}$is spanned by $x_{0} \pm a$, x_{0} spans $\mathfrak{z}(\mathfrak{m})$, and $a \in \mathfrak{a}$ satisfies $\langle a, a\rangle_{\mathfrak{g}}+\left\langle x_{0}, x_{0}\right\rangle_{\mathfrak{g}}=0$.

Proof. Note that the restriction of $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ onto $\mathfrak{g}_{0}=\mathfrak{a} \oplus \mathfrak{m}$ is of signature $(1, m)$ (in particular, \mathfrak{a} and \mathfrak{m} are orthogonal w.r.t. $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$). Therefore any coisotropic subspace of \mathfrak{g}_{0} has dimension m or $m+1$ (i.e. is equal to \mathfrak{g}_{0} in the latter case). Now consider any one-dimensional isotropic subspace $\mathfrak{u} \neq 0$ in \mathfrak{g}_{0}. Let $a \in \mathfrak{a}$ and $x_{0} \in \mathfrak{m}$ be such that \mathfrak{u} is spanned by $a+x_{0}$; in particular, $\left\langle a+x_{0}, a+x_{0}\right\rangle=0$ and $x_{0} \neq 0, a \neq 0$. Put $\mathfrak{c}=\mathfrak{u}^{\perp}$. It is clear that \mathfrak{c} is a coisotropic subspace. Further, \mathfrak{c} is a subalgebra if and only if $x_{0} \in \mathfrak{z}(\mathfrak{m})$. This observation completes the proof.

Lemmas 4.1 and 4.2 imply the following
Proposition 4.2. Any coisotropic subalgebra in \mathfrak{g} is either parabolic or is G conjugate to $\mathfrak{c}_{ \pm} \oplus \mathfrak{q}^{\perp}$. The latter case is possible only for $\mathfrak{z}(\mathfrak{m}) \neq 0$.

Theorem 4.1. Any triple $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$ with \mathfrak{c}_{1} and \mathfrak{c}_{2} proper parabolic is G-conjugate to exactly one triple of the form $\left(\mathfrak{q}, \mathfrak{q}_{ \pm}, \varphi\right)$, where $\left.\varphi\right|_{\mathfrak{a}}= \pm 1,\left.\varphi\right|_{\mathfrak{z}(\mathfrak{m})}= \pm 1$ (in the case $\mathfrak{z}(\mathfrak{m}) \neq 0$) and $\left.\varphi\right|_{\mathfrak{m}^{\prime}} \in \Phi\left(\mathfrak{m}^{\prime}\right)$.

Proof. Any pair $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}\right)$ of proper parabolic subalgebras in \mathfrak{g} is G-conjugate to a pair of the form $(\mathfrak{q}, \mathfrak{c})$. Further, we continue to conjugate $(\mathfrak{q}, \mathfrak{c})$ by elements of $N_{G}(\mathfrak{q})$. Clearly, the $N_{G}(\mathfrak{q})$-orbits on the set of all proper parabolic subalgebras are parameterized by $N_{G}(\mathfrak{q}) \backslash G / N_{G}(\mathfrak{q})$.

Consider the Iwasawa decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Let $G=K A N$ be the Iwasawa decomposition of G, where $K \subset G$ is a maximal compact subgroup, $A=\exp (\mathfrak{a})$, and $N=\exp (\mathfrak{n})$ (see VII. 2 in [7]). Set $M=Z_{K}(\mathfrak{a})$. Let $W=$ $N_{K}(\mathfrak{a}) / Z_{K}(\mathfrak{a})$ be the Weyl group. In our case $|W|=2$. We have the Bruhat decomposition $M A N \backslash G / M A N=W$.
Lemma 4.3. $N_{G}(\mathfrak{q})=M A N$.
Proof. To show that $M A N \subset N_{G}(\mathfrak{q})$ it is enough to prove that M acts on \mathfrak{q} by inner automorphisms. Indeed, by Theorem 7.66 in [7] the group M is connected unless $\operatorname{dim} \mathfrak{n}=1$. The condition $\operatorname{dim} \mathfrak{n}=1$ is equivalent to the condition $\mathfrak{g}=$ $\mathfrak{s l}(2, \mathbb{R})$. In the latter case $M=\{ \pm E\}$ acts trivially on \mathfrak{q}.

Further, by the Bruhat decomposition we have $G=M A N \cup M A N \widetilde{\omega} M A N$, where $\widetilde{\omega} \in N_{K}(\mathfrak{a})$ represents the nontrivial element of W. It is evident that $M A N \widetilde{\omega} M A N$ does not normalize \mathfrak{q}. Hence we get $N_{G}(\mathfrak{q})=M A N$.

Therefore there are exactly two G-orbits in the set of pairs $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}\right)$, and their representatives are $(\mathfrak{q}, \mathfrak{q})$ and $\left(\mathfrak{q}, \mathfrak{q}_{-}\right)$. Each triple $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$ is G-conjugate to a triple of the form $(\mathfrak{q}, \mathfrak{q}, \varphi)$ or $\left(\mathfrak{q}, \mathfrak{q}_{-}, \varphi\right)$.

Now let us describe $N_{G}(\mathfrak{q})$-conjugacy classes of orthogonal automorphisms $\varphi: \mathfrak{q} / \mathfrak{q}^{\perp} \rightarrow \mathfrak{q} / \mathfrak{q}^{\perp}$. We have $\mathfrak{q} / \mathfrak{q}^{\perp} \simeq \mathfrak{g}_{0}=\mathfrak{m} \oplus \mathfrak{a}$. Since φ preserves $\langle\cdot, \cdot\rangle$, we have $\varphi(\mathfrak{a})=\mathfrak{a}, \varphi(\mathfrak{m})=\mathfrak{m}$. Since $\operatorname{dim} \mathfrak{a}=1$, we have $\left.\varphi\right|_{\mathfrak{a}}= \pm 1$. In the case $\operatorname{dim} \mathfrak{z}(\mathfrak{m})=1$ we have $\left.\varphi\right|_{\mathfrak{z}(\mathfrak{m})}= \pm 1$. We consider φ as the pair $\left(\left.\varphi\right|_{\mathfrak{a}},\left.\varphi\right|_{\mathfrak{m}}\right)=\left(\pm 1,\left.\varphi\right|_{\mathfrak{m}}\right)$ (or the triple $\left(\left.\varphi\right|_{\mathfrak{a}},\left.\varphi\right|_{\mathfrak{z}(\mathfrak{m})},\left.\varphi\right|_{\mathfrak{m}^{\prime}}\right)=\left(\pm 1, \pm 1,\left.\varphi\right|_{\mathfrak{m}^{\prime}}\right)$ in the case $\left.\operatorname{dim} \mathfrak{z}(\mathfrak{m})=1\right)$.

Since $\operatorname{Ad} A=\exp (\operatorname{ad} \mathfrak{a})$, we see that A acts on \mathfrak{m} identically. Therefore A acts on φ trivially. Now consider action of $n \in N$. Since $\operatorname{Ad} N=\exp (\operatorname{ad} \mathfrak{n})$, we conclude that $\operatorname{Ad} n$ carries $\mathfrak{a} \oplus \mathfrak{m}$ to $\mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n}$ leaving the $\mathfrak{a} \oplus \mathfrak{m}$ component unchanged. Thus N acts on φ trivially as well. Finally, arguing as in the proof of Lemma 4.3, we see that M acts by inner automorphisms on \mathfrak{g}_{0}.

Now consider the case of a triple $\left(\mathfrak{q}, \mathfrak{q}_{-}, \varphi\right)$.
Lemma 4.4. The normalizer of the pair $\left(\mathfrak{q}, \mathfrak{q}_{-}\right)$in G is $M A$.
Proof. Clearly, the normalizer of this pair is $N_{G}(\mathfrak{q}) \cap N_{G}\left(\mathfrak{q}_{-}\right)$. By Lemma 4.3, we have $N_{G}(\mathfrak{q})=M A N$. Similarly, $N_{G}\left(\mathfrak{q}_{-}\right)=M A N_{-}$, where $N_{-}=\Theta N$. Further, $M A N \cap N_{-}=\{1\}$ (see Lemma 7.64 in [7]). Thus $N_{G}(\mathfrak{q}) \cap N_{G}\left(\mathfrak{q}_{-}\right)=M A N \cap$ $M A N_{-}=M A$.

By the above computation, we see that only the M-part of the normalizer of $\left(\mathfrak{q}, \mathfrak{q}_{-}\right)$can act non-trivially on φ, and this action is by inner automorphisms of \mathfrak{m}. This completes the proof of the theorem.

Theorem 4.2. Let $\mathfrak{z}(\mathfrak{m}) \neq 0$. Each triple $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}, \varphi\right)$ with \mathfrak{c}_{1} and \mathfrak{c}_{2} non-parabolic is G-conjugate to exactly one triple of the form $\left(\mathfrak{c}_{\alpha} \oplus \mathfrak{q}^{\perp}, \mathfrak{c}_{\beta} \oplus \mathfrak{q}_{\gamma}^{\perp}, \varphi\right)$, where $\varphi \in \Phi\left(\mathfrak{m}^{\prime}\right)$, and $\alpha, \beta, \gamma \in\{+,-\}$.

Proof. By Proposition 4.1 we know that $\mathfrak{c}_{1} \subset \mathfrak{q}_{1}, \mathfrak{c}_{2} \subset \mathfrak{q}_{2}$, where $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ are proper parabolic subalgebras in \mathfrak{g}. Using the same argument as in the proof of Theorem 4.1, we may assume, up to G-conjugation, that $\left(\mathfrak{q}_{1}, \mathfrak{q}_{2}\right)$ is equal to $(\mathfrak{q}, \mathfrak{q})$ or $\left(\mathfrak{q}, \mathfrak{q}_{-}\right)$. By Lemma 4.2, we may assume that $\left(\mathfrak{c}_{1}, \mathfrak{c}_{2}\right)=\left(\mathfrak{c}_{\alpha} \oplus \mathfrak{q}^{\perp}, \mathfrak{c}_{\beta} \oplus \mathfrak{q}_{\gamma}^{\perp}\right)$, where $\alpha, \beta, \gamma \in$ $\{+,-\}$.

Lemma 4.5. $N_{G}\left(\mathfrak{c}_{ \pm} \oplus \mathfrak{q}^{\perp}\right)=M A N$.
Proof. The same argument as in Lemma 4.3 shows that $M A N \subset N_{G}\left(\mathfrak{c}_{ \pm} \oplus \mathfrak{q}^{\perp}\right)$. Conversely, let $\operatorname{Ad}_{g}\left(\mathfrak{c}_{ \pm} \oplus \mathfrak{q}^{\perp}\right)=\mathfrak{c}_{ \pm} \oplus \mathfrak{q}^{\perp}$ for some $g \in G$. It is easy to see that $\mathfrak{c}_{ \pm}$ is reductive and \mathfrak{q}^{\perp} is nilpotent. Thus $\operatorname{Ad}_{g} \mathfrak{q}^{\perp}=\mathfrak{q}^{\perp}$. Since Ad_{g} preserves $\langle\cdot, \cdot\rangle$, we have $\operatorname{Ad}_{g} \mathfrak{q}=\mathfrak{q}$ and $g \in N_{G}(\mathfrak{q})=M A N$.

The proof of the theorem can now be finished along the lines of the proof of Theorem 4.1.

Now let us summarize our investigations:
Theorem 4.3. Any Lagrangian subalgebra in $\mathfrak{g} \times \mathfrak{g}$ is G-conjugate to exactly one subalgebra of the following list:

1. $\mathfrak{l}=\{(x, \theta(x)) \mid x \in \mathfrak{g}\}$, where $\theta \in \Phi(\mathfrak{g})$;
2. $\mathfrak{l}=\left\{(x, \varphi(x)) \mid x \in \mathfrak{g}_{0}\right\} \oplus\left(\mathfrak{q}^{\perp}, 0\right) \oplus\left(0, \mathfrak{q}_{ \pm}^{\perp}\right)$, where $\left.\varphi\right|_{\mathfrak{a}}= \pm 1,\left.\varphi\right|_{\mathfrak{z}(\mathfrak{m})}= \pm 1($ in the case $\mathfrak{z}(\mathfrak{m}) \neq 0)$, and $\left.\varphi\right|_{\mathfrak{m}^{\prime}} \in \Phi\left(\mathfrak{m}^{\prime}\right)$;
$3($ case $\mathfrak{z}(\mathfrak{m}) \neq 0$ only $) . \mathfrak{l}=\left\{(x, \varphi(x)) \mid x \in \mathfrak{m}^{\prime}\right\} \oplus\left(\mathfrak{u}_{\alpha} \oplus \mathfrak{q}^{\perp}, 0\right) \oplus\left(0, \mathfrak{u}_{\beta} \oplus \mathfrak{q}_{\gamma}^{\perp}\right)$, where $\alpha, \beta, \gamma \in\{+,-\}, \varphi \in \Phi\left(\mathfrak{m}^{\prime}\right)$, and $\mathfrak{u}_{ \pm}$are defined in Lemma 4.2.

Remark. It rarely happens that \mathfrak{g}_{Δ} has a Lagrangian complement in $\mathfrak{g} \times \mathfrak{g}$. Indeed, if \mathfrak{l} is the graph of $\theta \in$ Aut \mathfrak{g}, then $\mathfrak{l} \cap \mathfrak{g}_{\Delta}=\mathfrak{g}_{\Delta}^{\theta} \neq 0$. For \mathfrak{l} described in parts 2 and 3 of Theorem 4.3 we see that $\mathfrak{l} \cap \mathfrak{g}_{\Delta} \supset\left(\mathfrak{m}^{\prime}\right)_{\Delta}^{\varphi}$, which is non-zero for $\mathfrak{m}^{\prime} \neq 0$ (cf. [4, $\S 3.3 .4]$). It is not hard to check that the only real rank one algebras with $\mathfrak{m}^{\prime}=0$ are $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$ (here $\mathfrak{m}=0), \mathfrak{g}=\mathfrak{s u}(1,2)$, and $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})_{\mathbb{R}}$ (in the latter cases $\mathfrak{m}=$ $\mathbb{R})$. Using Theorem 4.3 it is clear that for $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$ there is a unique up to G conjugation Lagrangian complement $\mathfrak{a}_{-\Delta} \oplus\left(\mathfrak{q}^{\perp}, 0\right) \oplus\left(0, \mathfrak{q}_{-}^{\perp}\right)$, while for $\mathfrak{g}=\mathfrak{s u}(1,2)$ or $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})_{\mathbb{R}}$ there are three G-conjugacy classes of Lagrangian complements with representatives $\mathfrak{a}_{-\Delta} \oplus \mathfrak{m}_{-\Delta} \oplus\left(\mathfrak{q}^{\perp}, 0\right) \oplus\left(0, \mathfrak{q}_{-}^{\perp}\right),\left(\mathfrak{u}_{+} \oplus \mathfrak{q}^{\perp}, 0\right) \oplus\left(0, \mathfrak{u}_{-} \oplus \mathfrak{q}_{-}^{\perp}\right)$, $\left(\mathfrak{u}_{-} \oplus \mathfrak{q}^{\perp}, 0\right) \oplus\left(0, \mathfrak{u}_{+} \oplus \mathfrak{q}_{-}^{\perp}\right)$.

References

[1] A. Alekseev, Y. Kosmann-Schwarzbach, Manin pairs and moment maps, J. Diff. Geom., 56 (2000), 133-165 (e-print math.DG/9909176).
[2] V. G. Drinfeld, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys., 95 (1993), 226-227.
[3] S. Evens, J.-H. Lu, On the variety of Lagrangian subalgebras, II, preprint math.QA/0409236, 42 p.
[4] V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Structure of Lie groups and Lie algebras, Encyclopaedia of Math. Sci., Vol. 41, Springer-Verlag, Berlin, 1994.
[5] E. Karolinsky, A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups, Banach Center Publications, 51 (2000), 103108 (e-print math.QA/9901073).
[6] E. Karolinsky, K. Muzykin, On quasi-Poisson homogeneous spaces of quasiPoisson Lie groups, Journal of Lie Theory, 14 (2004), 543-554 (e-print math.QA/0303298).
[7] A. W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, 1996.
[8] G. D. Mostov, On maximal subgroups of real Lie groups, Annals of Mathematics, 74 (1961), 503-517.
[9] A. L. Onishchik, E. B. Vinberg, Lie groups and algebraic groups, SpringerVerlag, Berlin, 1990.

Eugene Karolinsky
Department of Mathematics, Kharkov National University, 4 Svobody Sq., Kharkov 61077, Ukraine
eugene.a.karolinsky@univer.kharkov.ua;
Department of Mathematics, University of Notre Dame,
Notre Dame IN 46556, USA
ykarolin@nd.edu
Sasha Lyapina
Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA
olyapina@nd.edu

[^0]: ${ }^{1}$ Notice that $\mathfrak{g}_{-\Delta}$ is not a subalgebra in $\mathfrak{g} \times \mathfrak{g}$. It is easy to see that there is no subalgebra which is a Lagrangian complement of \mathfrak{g}_{Δ} in $\mathfrak{g} \times \mathfrak{g}$.

