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Lie Algebroid Associated with an Almost Dirac Structure

Kentaro Mikami and Tadayoshi Mizutani

Abstract

We show that to an almost Dirac structure of a manifold, there asso-
ciates a Lie algebroid. In the case of a Poisson manifold, this Lie algebroid
coincides with the usual cotangent Lie algebroid with Lie algebra bracket
on the space of one-forms.

1 Introduction

Let π be an arbitrary 2-vector field on M , i.e. a smooth section of ∧2(TM). We
denote by π̃, the bundle homomorphism T∗M → TM defined by αx 7→ π(αx, ·)
(x ∈ M). By an abuse of notations, we denote by the same letter π̃, the homo-
morphism Γ(T∗M) → Γ(TM) between sections. For the Schouten bracket [π, π]
of π, which is a 3-vector field, we define ker[π, π] = {α ∈ T∗M | [π, π](α, ·, ·) = 0}.
If ker[π, π] forms a bundle of constant rank, it was proved in [7] that ker[π, π]
becomes a Lie algebroid with respect to the bracket Lπ̃(α)β − Lπ̃(β)α− d(π(α, β))
and the anchor ρ(α) = π̃(α). Clearly, it coincides with the usual Lie algebroid
structure of T∗M of a Poisson manifold (M, π), where [π, π] = 0. On the other
hand, the graph of π̃ : T∗M → TM defines a sub-bundle of TM ⊕ T∗M , which
is an almost Dirac structure (see Section 1), and ker[π, π] can be identified with
a subset of this almost Dirac structure. The aim of this paper is, generalizing the
above result, to show that a certain sub-bundle L0 of an almost Dirac structure
is a Lie algebroid with respect to the bracket and the anchor, which are natu-
rally defined on the almost Dirac structure (Theorem 2.1). The sub-bundle L0 is
given as the kernel of the 3-tensor field T restricted to the almost Dirac structure,
introduced in [1] (see Definition 2.2).

In Section 1, we review some basic facts on Dirac structures and prove that L0

is a Lie algebroid. In Section 2, in order to clarify the conditions under which an
element belongs to ker T , we use the description of an almost Dirac structure by
means of a “2-vector field on a sub-bundle of T∗M”. In Section 3, we give a ‘dual’
description of Dirac structures in which we use “2-forms” defined on a sub-bundle
of TM . We also give simple examples.

It is possible to generalize our result in the case of deformed bracket in [4] or
[3], and also seems highly possible in the case of the twisted Poisson structures
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[8]. However, we restricted ourselves to the case of the ordinary Dirac structures
in order to make the arguments and the computations clear. We hope interesting
examples will come about from the further generalizations.

2 Dirac Structures

Let T(M) and T∗(M) be the tangent and the cotangent bundle of M , respectively.
Let 〈·, ·〉+ be the symmetric pairing on T(M)⊕ T∗(M) defined by

〈(Xx, αx), (Yx, βx)〉+ = αx(Yx) + βx(Yx), (Xx, αx), (Yx, βx) ∈ TxM ⊕ T∗
xM.

Definition 2.1 (T. Courant). A smooth sub-bundle L ⊂ T(M) ⊕ T∗(M) is
an almost Dirac structure if L is maximally isotropic with respect to the pairing
〈·, ·〉+. This means L is a sub-bundle of rank n(= dim M) and the restriction of
〈·, ·〉+ to L × L vanishes identically.

Remark 2.1. In [1], an almost Dirac structure is called a Dirac structure, however
we use the word Dirac structure to mean the one which was called an integrable
Dirac structure in [1].

On Γ (T(M)⊕ T∗(M)), we have a bracket defined by
(2.1)

[[(X1, α1), (X2, α2)]] =

(
[X1, X2] , LX1α2 − LX2α1 +

1

2
d (α1(X2)− α2(X1))

)
where [X1, X2] is the usual Lie bracket of vector fields and LXα is the Lie derivative
of 1-form α with respect to the vector field X.

The bracket [[(X1, α1), (X2, α2)]] is skew-symmetric but does not satisfy the
Jacobi identity. Indeed, let (J1, J2) denote the Jacobiator

(J1, J2) = [[[[(X1, α1), (X2, α2)]], (X3, α3)]] + c.p. .

Clearly J1 = 0. As for J2, however, we have

Proposition 2.1. The second component J2 of the above Jacobiator is given by

J2 =
1

4
d (2α1([X2, X3]) + LX1 (α2(X3)− α3(X2))) + c.p. .

Especially, the restriction of J2 to an almost Dirac structure L is

1

2
d
(
α1([X2, X3]) + LX1(α2(X3))

)
+ c.p. .

Proof. This is shown directly from the definitions of 〈·, ·〉+ and [[·, ·]].
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Definition 2.2. An almost Dirac structure L is called a(n) (integrable) Dirac
structure if Γ(L) is closed under the bracket [[·, ·]].

In [1], Courant introduced the R-tri-linear map on T(M) ⊕ T∗(M) to R
defined by T ((X1, α1), (X2, α2), (X3, α3)) = 〈[[(X1, α1), (X2, α2)]], (X3, α3)〉+ for
(Xi, αi) ∈ T(M)⊕T∗(M) (i = 1, 2, 3), and showed that an almost Dirac structure
is integrable if and only if T restricted to L vanishes: T |L ≡ 0. We note that the
restriction T |L has the tensor property. That is T |L is tri-linear over C∞(M).

Proposition 2.2. Let L be an almost Dirac structure. Then T |L, T restricted to
L, is computed as

T |L((X1, α1), (X2, α2), (X3, α3)) =
(
α1([X2, X3]) + LX1(α2(X3))

)
+ c.p.

and

J2|L((X1, α1), (X2, α2), (X3, α3)) =
1

2
d (T |L((X1, α1), (X2, α2), (X3, α3))) .

Proof. On L, we have

〈[[(X1, α1), (X2, α2)]], (X3, α3)〉+

= (LX1α2)(X3)− (LX2α1)(X3)−
1

2
LX3(α2(X1)− α1(X2)) + α3([X1, X2])

= LX1(α2(X3))− α2([X1, X3])− LX2(α1(X3)) + α1([X2, X3])

− LX3(α2(X1)) + α3([X1, X2]).

This together with Proposition 2.1 shows Proposition 2.2.

Let L be an almost Dirac structure. We consider the ‘sub-bundle’ L0 of L
consisting of the elements in ker T |L. More precisely, we put

L0 = {e = (Z, γ) ∈ L | T (e1, e2, e) = 0, e1, e2 ∈ L}.

Since T restricted to L, is skew-symmetric with respect to all the arguments, L0

can be considered as the kernel of the bundle map T : L → ∧2L∗, e 7→ T (·, ·, e).
Since the fiber dimension of L0 may change from point to point, to get a Lie
algebroid, we have to restrict L0 to a submanifold of M where L0 is of constant
rank. Hereafter, for simplicity, we assume that L0 is a bundle of constant rank on
whole M . The following proposition is obvious from Proposition 2.2.

Proposition 2.3. If one of e1, e2, e3 in Γ(L) is an element in Γ(L0), we have the
Jacobi identity:

[[[[e1, e2]], e3]] + [[[[e2, e3]], e1]] + [[[[e3, e1]], e2]] = 0.
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The following proposition is used to show that Γ(L0) is closed under the bracket
[[·, ·]].

Proposition 2.4. For e = (Z, γ) ∈ Γ(L0) and e1 = (Y, β) ∈ Γ(L), we have
[[e, e1]] ∈ Γ(L).

Proof. Since T restricted to L is skew symmetric, we have 〈[[e, e1]], e2〉+ =T (e, e1, e2)
=T (e1, e2, e) = 0, for any e1, e2 ∈ Γ(L). By the maximality of L, we can conclude
[[e, e1]] is in Γ(L).

By the above propositions, we obtain the following theorem.

Theorem 2.1. Let L be an almost Dirac structure and L0 the kernel of T , which
we assume a sub-bundle of L. Then L0 is a Lie algebroid with respect to the bracket
[[·, ·]] and the anchor ρL0, which is the natural projection ρ : T(M) ⊕ T∗(M) →
T(M) restricted to L0.

Proof. Let e1, e2 be two elements of Γ(L0). Then for any e3 and e4 in Γ(L), we
have

T ([[e1, e2]], e3, e4) = 〈[[[[e1, e2]], e3]], e4〉+ = 〈[[[[e1, e3]], e2]] + [[e1, [[e2, e3]]]], e4〉+
= T ([[e1, e3]], e2, e4) + T (e1, [[e2, e3]], e4) = 0.

The second equality holds because of the Jacobi identity (Proposition 2.3) for
e1, e2, e3 and the last one is true because [[e1, e3]], [[e2, e3]] are both in Γ(L) by
Proposition 2.4. This shows that Γ(L0) is closed under the bracket. Since the
Jacobi identity is obvious for the elements in Γ(L0)(Proposition 2.3), [[·, ·]] is a Lie
algebra bracket on Γ(L0). That ρL0 satisfies the condition of an anchor map is
also verified directly from the definition (2.1) of [[·, ·]].

3 An alternative description of a Dirac structure

In this section and the next, we give alternative descriptions of an almost Dirac
structure and give more explicit conditions for an element in L to be in the kernel
of 3-tensor T |L.

Let L be an almost Dirac structure on M and ρL and ρ∗L denote the restriction
of the natural projections T(M)⊕T∗(M) → T(M) and T(M)⊕T∗(M) → T∗(M)
to L, respectively. We put E = ImρL and A = Imρ∗L. As was remarked before, the
fiber rank of E as well as A, may not be constant. To justify our computations
we only treat the case when E and A are bundles of constant rank.

Take an element α ∈ Ax (the fiber over x ∈ M ), then for some X ∈ T(M),
(X, α) lies in L. That L is isotropic implies that the restriction X|Ax of X con-
sidered as an element in A∗

x (dual space) depends only on α and we obtain an
well-defined fiber map π : A → A∗ (see [1]). We may consider π as a ‘2-vector
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field’ defined on (each fiber of) A. It is skew-symmetric since for α, β ∈ A, we
have

π(α, β) = X(β) = −Y (α) = −π(β, α), where (Y, β) ∈ L.

From the sub-bundle A = Imρ∗L and a skew-symmetric 2-field π on A, we can
recover L as a bundle given by

L′ = {(X, θ) ∈ T(M)⊕ T∗(M) | θ ∈ A, π̃(θ) = X|A}.

Indeed it is easy to see that L′ is a vector bundle of rank n(= dim M). That L′
is isotropic with respect to 〈·, ·〉+ follows from the skewness of π. If (X ′, α′) ∈ L,
we see

〈(X ′, α′), (X, θ)〉+ =α′(X) + θ(X ′) = π(θ, α′) + θ(X ′)

=− π(α′, θ) + θ(X ′) = −X ′(θ) + θ(X ′) = 0

for (X, θ) ∈ L′. This together with the maximality of L implies L = L′.
Now we are going to characterize the element of L0 in terms of π and A,

where L0 is the sub-bundle ker T |L of L. First, we observe that A∗ is a quotient
bundle of T(M) by the sub-bundle A◦, where A◦ is the bundle consisting of the
annihilators of A. π is an element ∧2A∗, however we choose and fix a splitting
to the projection T(M) → A∗, and consider A∗ as a direct summand of T(M),
obtaining a 2-vector field which extends π. This is possible since we are assuming
A is of constant rank. We denote this extended 2-vector field by the same letter
π, since we hope this will not cause any confusion. Then L is given by

(3.1) L = {(X,α) | α ∈ A, π̃(α) = X|A} = {(π̃(α) + X̄, α) | α ∈ A, X̄ ∈ A◦}.

For e1 = (X, α), e2 = (Y, β) and e3 = (Z, γ) in L, we look for the condition on
e3 under which T (e1, e2, e3) = 0 holds for all e1, e2 ∈ L. We can write e1 =
(π̃(α) + X̄, α), e2 = (π̃(β) + Ȳ , β) and e3 = (π̃(γ) + Z̄, γ), respectively, where
X̄, Ȳ , Z̄ ∈ A◦. With these notations, we have

[[(X, α), (Y, β)]] =
(
[π̃(α),π̃(β)] + [π̃(α), Ȳ ] + [X̄, π̃(β)] + [X̄, Ȳ ],

Lπ̃(α)β + Lπ̃(β)α− d(π(α, β)) + LX̄β − LȲ α
)
.

Writing {α, β}π for Lπ̃(α)β −Lπ̃(β)α− d(π(α, β)) and making the pairing 〈·, ·〉+ of
the above element and (Z, γ) = (π̃(γ) + Z̄, γ), we obtain

[π̃(α), π̃(β)](γ) + [π̃(α), Ȳ ](γ) + [X̄, π̃(β)](γ) + [X̄, Ȳ ](γ)(3.2)

+ π(γ, {α, β}π) + Z̄({α, β}π) + π(γ, LX̄β − LȲ α) + Z̄(LX̄β − LȲ α),

which is nothing but T (e1, e2, e3).
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If we choose X̄ = Ȳ = 0, then (3.2) gives

(3.3) [π̃(α), π̃(β)](γ) + π(γ, {α, β}π) + Z̄({α, β}π) = 0,

for α, β ∈ A. We put Ȳ = 0 and α = 0 in (3.2), we obtain

[X̄, π̃(β)](γ) + π(γ, LX̄β) + Z̄(LX̄β) = 0, X̄ ∈ A◦, β ∈ A.(3.4)

If we put α = β = 0 into (3.2), we get γ([X̄, Ȳ ]) = 0 (X̄, Ȳ ∈ A◦). It is easy to
see that this is equivalent to

(3.5) LX̄γ ∈ A, X̄ ∈ A◦.

Conversely, it can also be seen that if (Z, γ) = (π̃(γ) + Z̄, γ) satisfies conditions
(3.3), (3.4) and (3.5) then (3.2) vanishes identically.

In the following, we will simplify the conditions (3.3) and (3.4). First, we note
(3.4) is equivalent to the following:

(LX̄π)(β, γ) + π(LX̄β, γ) + π(γ, LX̄β) + LX̄(Z̄(β))− [X̄, Z̄](β) = 0.

Since Z̄(β) = 0, this means

(LX̄π)(γ) + LX̄Z̄ = 0, on A.(3.6)

To simplify the condition (3.3), we use the following

Lemma 3.1. For Z̄ ∈ A◦ and α, β ∈ A, we have

[Z̄, π](α, β) = Z̄({α, β}π) .

Proof. By the definition of {α, β}π, we have

Z̄({α, β}π) =(Lπ̃(α)β)(Z̄)− (Lπ̃(β)α)(Z̄)− LZ̄(π(α, β))

=Lπ̃(α)(β(Z̄))− β(Lπ̃(α)Z̄)− Lπ̃(β)(α(Z̄))

+ α(Lπ̃(β)Z̄)− LZ̄(π(α, β))

(since α(Z̄) = β(Z̄) = 0)

=− α(LZ̄(π̃(β)))− π̃(α)(LZ̄β)

=− α([Z̄, π̃])(β)) = [Z̄, π](α, β) .

Lemma 3.2. The condition (3.3) for (Z, γ) = (π̃(γ) + Z̄, γ) can be replaced by
the next equality:

[π̃(γ), π̃(β)] + (LZ̄ π̃)(β)− π̃({γ, β}π) = 0, β ∈ A,

or equivalently by
1

2
[π, π](γ) + LZ̄π = 0 on A .
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Proof. By Lemma 3.1, (3.3) can be replaced by

(3.7) [π̃(α), π̃(β)](γ) + π(γ, {α, β}π) + [Z̄, π](α, β) = 0 α, β ∈ A.

Using the general formula for a 2-vector field (see [7], [9])

[π̃(α), π̃(β)] = π̃({α, β}π) +
1

2
[π, π](α, β) ,(3.8)

we thus rewrite (3.7) as

1

2
[π, π](α, β, γ) + (LZ̄π)(α, β) = 0 i.e.,

1

2
[π, π](γ) + LZ̄π = 0 .

From the above lemmas, we can summarize the conditions on L0 as follows.

Proposition 3.1. Let A and A◦ be as before and π a skew symmetric bilinear
form on A. Let

L = {(X, α) | α ∈ A, π(α) = X|A} = {(π̃(α) + X̄, α) | α ∈ A, X̄ ∈ A◦}

be an almost Dirac structure defined by π. We put

L0 = {e = (Z, γ) = (π̃(γ) + Z̄, γ) ∈ L | T (e1, e2, e) = 0, e1, e2 ∈ L}.

Then (Z, γ) = (π̃(γ) + Z̄, γ) ∈ L belongs to L0 if and only if the following condi-
tions (C1), (C2) and (C3) are satisfied:

(C1) LX̄γ ∈ A, for all X̄ ∈ A◦,

(C2) (LX̄π)(γ) + LX̄Z̄ = 0 on A, for all X̄ ∈ A◦,

(C3)
1

2
[π, π](γ) + [Z̄, π] = 0 on A .

Example 3.1. Let A be an arbitrary Pfaffian system. We consider the case when
π ≡ 0. Then

L = {(X, α) | α ∈ A, X ∈ A◦} .

(C1) means LXγ ∈ A for any X ∈ A◦, and (C2) mean [X, Z] ∈ A◦ for any
X ∈ A◦. Clearly, (C3) is vacuous in this case. Thus L0 = Char(A) ×A1, where
Char(A) is the Cauchy characteristic of A and A1 is the first derived (Pfaffian)
system of A, respectively. In particular, if A is completely integrable and hence
A is the tangent bundle of a foliation F , L0 is just the product TF × (TF)◦. The
bracket in L0 is given by

[[(X, α), (Y, β)]] = ([X, Y ], LXβ − LY α).

Example 3.2 ([7]). We consider the case when A = T∗(M) and π : T∗(M) →
T(M) is an arbitrary 2-vector field. Since A◦ = {0}, the conditions (C1) and
(C2) are trivial. (C3) implies [π, π](α, γ, ·) = 0 for any α ∈ T∗(M). Thus,
L0 = {(π̃(γ), γ) | γ ∈ ker[π, π]} and ker[π, π] is a Lie algebroid with respect to
{·, ·}π. This is our previous result in [7].
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4 Description by 2-forms

In this section, we describe an almost Dirac structure by a ‘2-form’ on E = ρL(L) ⊂
T(M) and find the conditions which characterize L0. To justify the computation,
we assume E is of constant rank again.

Let ω : E → E∗ be a skew symmetric bundle homomorphism as before. The
almost Dirac structure is given by

L = {(X, α) ∈ T(M)⊕ T∗(M) | iXω = α|E , X ∈ E , α ∈ T∗(M)}.

The bracket on Γ(L) is given by

[[(X1, α1), (X2, α2)]] = ([X1, X2] , LX1α2 − LX2α1 + d (ω(X1, X2))) .

Let e1 = (X, α), e2 = (Y, β), e3 = (Z, γ) be three elements in Γ(L). We look for
the conditions on e3 = (Z, γ), so that T (e1, e2, e3) = 0 holds for all e1, e2 ∈ Γ(L).
We choose a section s of the natural projection i∗ : T∗(M) → E∗ and consider the
map s ◦ ω : E → T∗(M). Extending s ◦ ω to a map from T(M) to T∗(M), we
obtain a 2-form ω̃ ∈ ∧2(T∗(M)) satisfying ω̃(e1, e2) = ω(e1, e2), for e1, e2 ∈ E . We
write an element (X, α) in L as (X, iX ω̃ + ᾱ), where ᾱ ∈ E◦ (= the annihilators
of E). We compute T (e1, e2, e3) using the formula in Proposition 2.2:

T ((X, α), (Y, β), (Z, γ))

=α([Y, Z]) + β([Z,X]) + γ([X, Y ]) + LX(β(Z)) + LY (γ(X)) + LZ(α(Y ))

=− dα(Y, Z)− dβ(Z,X)− dγ(X,Y ) + LY (α(Z)) + LZ(β(X)) + LX(γ(Y )).

Making use of

dα =diX ω̃ + dᾱ = LX ω̃ − iXdω̃ + dᾱ,

dα(Y, Z) =(LX ω̃)(Y, Z)− (dω̃)(X, Y, Z) + (dᾱ)(Y, Z),

LY (α(Z)) =LY (ω̃(X, Z) + ᾱ(Z)) = LY (ω̃(X, Z)),

we see the above T (e1, e2, e3) is equal to

dω̃(X,Y, Z) + ᾱ([Y, Z]) + β̄([Z,X]) + γ̄([X, Y ]).

From this, we obtain the following conditions (4.1) and (4.2) on e3 = (Z, γ) which
assure T ((X, α), (Y, β), (Z, γ)) = 0 for all (X, α), (Y, β) ∈ L.

dω̃(X, Y, Z) + γ̄([X, Y ]) = 0 for X, Y ∈ E ,(4.1)

β̄([Z,X]) = 0 for X ∈ E , β̄ ∈ E◦.(4.2)

Now, (4.1) is equivalent to that (dω̃)(Z) − dγ̄ = 0 on E and from γ = iZω̃ + γ̄,
this is equivalent to LZω̃ − dγ = 0 (on E). Similarly, (4.2) is equivalent to that
LZE ⊂ E . Thus L0 is given by the following:

L0 = {(Z, γ) ∈ L | LZE ⊂ E , LZω̃ − dγ = 0 on E}.
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We note that LZω is well-defined since the right-hand side of

iX(LZω̃) = LZ(iX ω̃)− i[Z,X]ω̃

is independent of the choice of ω̃. The bracket (in L) is given by

[[(Z, γ), (W, δ)]] = ([Z,W ], LZδ − LW γ + d(γ(W ))) .

Since L[Z,W ]E = LZ(LWE)− LW (LZE) ⊂ E and

L[Z,W ]ω̃ =LZ(LW ω̃)− LW (LZω̃) = LZ(dδ)− LW (dγ)

=d(LZδ − LW γ + d(γ(W ))), on E ,

that [[(Z, γ), (W, δ)]] ∈ L0 is verified.

Example 4.1. Consider the case where E = T(M) and ω is an arbitrary 2-form.
Then

L = {(X, α) ∈ T(M)⊕ T∗(M) | iXω = α} = {(X, iXω) | X ∈ T(M)}.

It is easy to see L0 = {(Z, iZω) | Z ∈ ker dω}. In particular, if ω is closed, L0 is
a Dirac structure given by the presymplectic structure on M .

Example 4.2. Let E be a contact distribution with its contact 1-form θ, and let
ω = dθ. The only vector field in E satisfying LZE ⊂ E is the zero vector field.
Thus Γ(L0) = {(0, fθ) | f ∈ C∞(M)} with trivial bracket. Similar situations
occur with distributions whose Cauchy characteristic is trivial, since the condition
LZE ⊂ E means that Z is contained in the Cauchy characteristic of E . With such
distributions, it is appropriate to consider the φ-deformed bracket ([3],[4]).
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