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Dirac structures for generalized Courant

and Courant algebroids

by Fani Petalidou and Joana M. Nunes da Costa 1

Abstract

We establish some fundamental relations between Dirac subbundles L
for the generalized Courant algebroid (A⊕A∗, φ + W ) over a differentiable
manifold M and the associated Dirac subbundles L̃ for the corresponding
Courant algebroid Ã⊕ Ã∗ over M × IR.

1 Introduction

In [1], T. Courant introduces the notion of a Dirac structure in order to present
a unified framework for the study of symplectic and Poisson structures and folia-
tions. Alan Weinstein and his collaborators develop the theory of these structures
and study several problems of Poisson geometry via Dirac structures theory [10],
[11]. The notion was exploited by A. Wade ([16]) and recently by the second
author and J. Clemente-Gallardo ([14]) in order to interpreter Jacobi manifolds
([9], [2]) by means of Dirac structures. In [14], J.M. Nunes da Costa and J.
Clemente-Gallardo approach this problem by introducing the notions of a gen-
eralized Courant algebroid and of a Dirac structure for a generalized Courant
algebroid and by proving that the double (A ⊕ A∗, φ + W ) of a generalized Lie
bialgebroid ((A, φ), (A∗, W )) over a differentiable manifold M , notion very close
to the Jacobi manifolds ([6]), is a generalized Courant algebroid.

In the present work, being well known that there is an one-to-one corre-
spondence between generalized Lie bialgebroids structures ((A, φ), (A∗, W )) over
M and Lie bialgebroids structures (Ã, Ã∗), Ã = A × IR, Ã∗ = A∗ × IR, over
M̃ = M × IR, we establish some basic relations between the Dirac subbundles L
for (A⊕A∗, φ+W ) and the associated Dirac subbundles L̃ = {X+etα /X+α ∈ L}
for Ã ⊕ Ã∗. We prove : 1) L is a reducible Dirac structure for (A ⊕ A∗, φ + W )
if and only if L̃ is a reducible Dirac structure for Ã ⊕ Ã∗. 2) If F and F̃ are
the characteristic foliations of M and M̃ defined by L and L̃, respectively, then
L̃ induces an homogeneous Poisson structure on M̃/F̃ = M/F × IR which is the
Poissonization of the induced Jacobi structure on M/F by L.

1Supported by CMUC-FCT and POCTI/MAT/58452/2004.



266 F. Petalidou and J.M. Nunes da Costa

Notation : In this paper, M is a C∞-differential manifold of finite dimension.
We denote by C∞(M) the space of all real C∞-differentiable functions on M and
by δ the usual de Rham differential operator.

2 Generalized Lie bialgebroids

Let (A, [ , ], a) be a Lie algebroid over M ([12]), A∗ its dual vector bundle over M ,∧
A∗ = ⊕

k∈ZZ
∧k A∗ the graded exterior algebra of A∗ whose differential sections

are called A-forms on M , d : Γ(
∧

A∗) → Γ(
∧

A∗) the exterior derivative of degree
1 and φ ∈ Γ(A∗) an 1-cocycle in the Lie algebroid cohomology complex with
trivial coefficients ([12], [6]), i.e., for all X, Y ∈ Γ(A), 〈φ, [X, Y ]〉 = a(X)(〈φ, Y 〉)−
a(Y )(〈φ,X〉). We modify the usual representation a of the Lie algebra (Γ(A), [ , ])
on the space C∞(M) by defining aφ : Γ(A) × C∞(M) → C∞(M), aφ(X, f) =
a(X)f + 〈φ,X〉f . The resulting cohomology operator dφ : Γ(

∧
A∗) → Γ(

∧
A∗) of

the new cohomology complex is called the φ-differential of A and dφη = dη+φ∧η,
for all η ∈ Γ(

∧k A∗). dφ allows us to define the φ-Lie derivative by X ∈ Γ(A),
Lφ

X : Γ(
∧k A∗) → Γ(

∧k A∗), as Lφ
X = dφ ◦ iX + iX ◦dφ, where iX is the contraction

by X. Using φ we can also modify the Schouten bracket [ , ] on Γ(
∧

A) to the φ-
Schouten bracket [ , ]φ on Γ(

∧
A) by setting, for all P ∈ Γ(

∧p A) and Q ∈ Γ(
∧q A),

[P, Q]φ = [P, Q] + (p − 1)P ∧ (iφQ) + (−1)p(q − 1)(iφP ) ∧ Q, where iφQ can be
interpreted as the usual contraction of a multivector field with an 1-form. For
details, see [12], [6] and [4].

The notion of generalized Lie bialgebroid has been introduced by D. Iglesias
and J.C. Marrero in [6] and independently by J. Grabowski and G. Marmo in [4]
under the name of Jacobi bialgebroid, in such a way that a Jacobi manifold ([9])
has a generalized Lie bialgebroid canonically associated and conversely. We recall
that a Jacobi manifold is a smooth manifold M equipped with a bivector field Λ
and a vector field E such that [Λ, Λ] = −2E∧Λ and [E, Λ] = 0, where [ , ] denotes
the Schouten bracket.

We consider a Lie algebroid (A, [ , ], a) over M and an 1-cocycle φ ∈ Γ(A∗) and
we assume that the dual vector bundle A∗ → M admits a Lie algebroid structure
([ , ]∗, a∗) and that W ∈ Γ(A) is an 1-cocycle in the Lie algebroid cohomology
complex with trivial coefficients of (A∗, [ , ]∗, a∗). Then, we say that :

Definition 2.1. The pair ((A, φ), (A∗, W )) is a generalized Lie bialgebroid over
M if, for all X, Y ∈ Γ(A) and P ∈ Γ(

∧p A), the following conditions hold :

dW
∗ [X, Y ] = [dW

∗ X, Y ]φ + [X, dW
∗ Y ]φ and LW

∗φP + Lφ
W P = 0 ;

dW
∗ and LW

∗ are, respectively, the W -differential and the W -Lie derivative of A∗.

Obviously, if φ = 0 and W = 0, we recover the notion of Lie bialgebroid
introduced by K. Mackenzie and P. Xu in [13] and its equivalent definition given
by Yv. Kosmann-Schwarzbach in [8].
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Given a Lie algebroid (A, [ , ], a) over M , we can construct a Lie algebroid
structure on Ã → M̃ , Ã = A × IR and M̃ = M × IR. We identify Γ(Ã) with the
set of the time-dependent sections of A → M , i.e. for any X̃ ∈ Γ(Ã) and (x, t) ∈
M×IR, t being the canonical coordinate on IR, X̃(x, t) = X̃t(x), where X̃t ∈ Γ(A),
and we take : i) the Lie bracket [ , ]˜ on Γ(Ã) defined, for any X̃, Ỹ ∈ Γ(Ã) and
(x, t) ∈ M̃ , by [X̃, Ỹ ]˜(x, t) = [X̃t, Ỹt](x), ii) the bundle map ã : Ã → TM̃ ,
ã(X̃)(x, t) = a(X̃t)(x). Then (Ã, [ , ]˜, ã) → M̃ is a Lie algebroid. Also, taking an
1-cocycle φ of A, we deform ([ , ]˜, ã) in two different ways and we obtain two new
Lie algebroid structures on Ã, [6]. Precisely, for any X̃, Ỹ ∈ Γ(Ã):

(2.1) [X̃, Ỹ ] φ̃ = [X̃, Ỹ ]˜+ iφX̃t∂Ỹ /∂t− iφỸ ∂X̃/∂t, ãφ(X̃) = ã(X̃) + iφX̃∂/∂t;

[X̃, Ỹ ] φ̂ = e−t([X̃, Ỹ ]˜+ 〈φ, X̃t〉(∂Ỹ /∂t− Ỹ )− 〈φ, Ỹt〉(∂X̃/∂t− X̃)),(2.2)

âφ(X̃) = e−t(ã(X̃) + 〈φ, X̃t〉∂/∂t).

Theorem 2.1 ([6]). Let (A, [ , ], a) be a Lie algebroid over M and φ ∈ Γ(A∗)
an 1-cocycle. Suppose that A∗ has a Lie algebroid structure ([ , ]∗, a∗) and that
W ∈ Γ(A) is an 1-cocycle for this structure. Consider on Ã = A × IR and
Ã∗ = A∗× IR the Lie algebroid structures ([ , ] φ̃, ãφ) and ([ , ]ˆW∗ , âW

∗ ), respectively.
Then (Ã, Ã∗) is a Lie bialgebroid over M̃ = M×IR if and only if ((A, φ), (A∗, W ))
is a generalized Lie bialgebroid over M . The induced Poisson structure on M̃ is
the Poissonization of the induced Jacobi structure on M .

Moreover, the image Ima of the anchor map a of (A, [ , ], a) → M is an inte-
grable distribution on M ([3]) which defines a singular foliation FA of M , called
the Lie algebroid foliation of M associated with A ([7]). The relation between the
leaves of the Lie algebroid foliation FÃ of M × IR associated with (Ã, [ , ] φ̃, ãφ)
(given by (2.1)) and the leaves of the Lie algebroid foliation FA of M associated
with A was studied in [7] by D. Iglesias and J.C. Marrero. They have proved :

Theorem 2.2 ([7]). Under the above considerations, suppose that (x0, t0) ∈ M ×
IR and that F̃ and F are the leaves of the Lie algebroid foliations FÃ and FA

passing through (x0, t0) ∈ M × IR and x0 ∈ M , respectively, and denote by Ax0

the fiber of A over x0. Then : (1) If ker(a|Ax0
) * 〈φ(x0)〉◦, F̃ = F × IR. (2) If

ker(a|Ax0
) ⊆ 〈φ(x0)〉◦ and π1 : M × IR → M is the canonical projection onto the

first factor, π1(F̃ ) = F and π1|F̃ : F̃ → F is a covering map.

3 Generalized Courant algebroids

The notion of generalized Courant algebroid has been introduced by the second
author and J. Clemente-Gallardo in [14] and independently, under the name of
Courant-Jacobi algebroid, by J. Grabowski and G. Marmo in [5].
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Definition 3.1 ([14]). Let E → M to be a vector bundle over a differentiable
manifold M equipped with : (i) a nondegenerate symmetric bilinear form ( , )
on the bundle, (ii) a skew-symmetric bilinear bracket [ , ] on Γ(E), (iii) a bundle
map ρ : E → TM and (iv) an E-1-form θ such that, for any e1, e2 ∈ Γ(E),
〈θ, [e1, e2]〉 = ρ(e1)〈θ, e2〉 − ρ(e2)〈θ, e1〉. We consider : (a) the bundle map ρθ :
E → TM× IR defined, for any e ∈ E, by ρθ(e) = ρ(e)+〈θ, e〉, (b) the applications
D,Dθ : C∞(M) → Γ(E) defined, for any f ∈ C∞(M), respectively, by Df =
1
2
β−1ρ∗δf 2 and Dθf = Df + 1

2
fβ−1(θ) and (c) for any e1, e2, e3 ∈ Γ(E), the

function T (e1, e2, e3) = 1
3
([e1, e2], e3) + c.p. on the base M . Then, we say that E

is a generalized Courant algebroid if the following relations are satisfied :
1. [[e1, e2], e3] + c.p. = DθT (e1, e2, e3), ∀ e1, e2, e3 ∈ Γ(E);
2. ρθ([e1, e2]) = [ρθ(e1), ρ

θ(e2)],
3 ∀ e1, e2 ∈ Γ(E);

3. [e1, fe2] = f [e1, e2] + (ρ(e1)f)e2 − (e1, e2)Df, ∀ e1, e2 ∈ Γ(E), ∀f ∈ C∞(M);
4. ρθ ◦ Dθ = 0, i.e., for any f, g ∈ C∞(M), (Dθf,Dθg) = 0;
5. ρθ(e)(e1, e2) = ([e, e1]+Dθ(e, e1), e2)+(e1, [e, e2]+Dθ(e, e2)), ∀ e, e1, e2 ∈ Γ(E).

Definition 3.2. A Dirac structure for a generalized Courant algebroid (E, θ) over
M is a subbundle L ⊂ E that is maximal isotropic under ( , ) and integrable, i.e.
Γ(L) is closed under [ , ].

A Dirac subbundle L of (E, θ) is a Lie algebroid under the restrictions of the
bracket [ , ] and of the anchor ρ to Γ(L). If θ ∈ Γ(L∗), then it is an 1-cocycle for
the Lie algebroid cohomology with trivial coefficients of (L, [ , ]|L, ρ|L).

The most important example of generalized Courant algebroid is the double
(A ⊕ A∗, φ + W ) of a generalized Lie bialgebroid ((A, φ), (A∗, W )) over M . On
A⊕ A∗ there exist two natural nondegenerate bilinear forms, one symmetric and
another skew-symmetric ( , )± : for any X1 +α1, X2 +α2 ∈ A⊕A∗, (X1 +α1, X2 +
α2)± = 1/2(〈α1, X2〉 ± 〈α2, X1〉) and on Γ(A⊕A∗) ∼= Γ(A)⊕ Γ(A∗) we introduce
the bracket [[ , ]] : for all X1 + α1, X2 + α2 ∈ Γ(A⊕ A∗),

[[X1 + α1, X2 + α2]] = ([X1, X2]
φ + LW

∗α1
X2 − LW

∗α2
X1 − dW

∗ (e1, e2)−) +

+ ([α1, α2]
W
∗ + Lφ

X1
α2 − Lφ

X2
α1 + dφ(e1, e2)−).

Also, we consider the bundle map ρ : A⊕A∗ → TM given by ρ = a + a∗, i.e., for
any X + α ∈ E, ρ(X + α) = a(X) + a∗(α). We have:

Theorem 3.1 ([14]). If ((A, φ), (A∗, W )) is a generalized Lie bialgebroid over
M , then A ⊕ A∗ endowed with ([[ , ]], ( , )+, ρ) and θ = φ + W ∈ Γ(E∗) is a
generalized Courant algebroid over M . The operators D and Dθ are, respectively,
D = (d∗ + d)|C∞(M) and Dθ = (dW

∗ + dφ)|C∞(M).

2β is the isomorphism from E onto E∗ given by the nondegenerate bilinear form ( , ).
3The bracket on the right-hand side is the Lie bracket defined on Γ(TM × IR) by

[(X, f), (Y, g)] = ([X, Y ], X · g − Y · f).
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4 Dirac structures of ((A, φ), (A∗, W )) and of (Ã, Ã∗)

Let ((A, [ , ], a, φ), (A∗, [ , ]∗, a∗, W )) be a generalized Lie bialgebroid over M and
(A⊕ A∗, [[ , ]], ( , )+, a + a∗, φ + W ) the associated generalized Courant algebroid.

Definition 4.1. We say that a Dirac subbundle L of A ⊕ A∗ is reducible if the
image a(D) of its characteristic subbundle D = L ∩ A by a defines a simple
foliation F of M . By the term ”simple foliation” we mean that F is a regular
foliation such that the space M/F is a nice manifold and the canonical projection
M → M/F is a submersion.

Definition 4.2. Let L be a Dirac subbundle of A⊕ A∗. A function f ∈ C∞(M)
is called L-admissible if there exists Yf ∈ Γ(A) such that Yf + dφf ∈ Γ(L). We
denote by C∞

L (M, IR) the set of all L-admissible functions of C∞(M).

Let ((Ã, [ , ] φ̃, ãφ), (Ã∗, [ , ]ˆW∗ , âW
∗ )) be the Lie bialgebroid over M̃ defined by

((A, [ , ], a, φ), (A∗, [ , ]∗, a∗, W )) as in Theorem 2.1. Then, Ã⊕ Ã∗ endowed with :
(i) the two nondegenerate bilinear forms ( , )± on Ã⊕Ã∗ : for all X̃1+α̃1, X̃2+α̃2 ∈
Ã⊕ Ã∗, (X̃1 + α̃1, X̃2 + α̃2)± = 1/2(〈α̃1, X̃2〉 ± 〈α̃2, X̃1〉), (ii) the bracket [[ , ]]˜ on
Γ(Ã⊕ Ã∗) : for all X̃1 + α̃1, X̃2 + α̃2 ∈ Γ(Ã⊕ Ã∗),

[[X̃1 + α̃1, X̃2 + α̃2]]
˜ =

(
[X̃1, X̃2]

φ̃ + L̂W
α̃1

X̃2 − L̂W
α̃2

X̃1 − d̂W
∗ ((ẽ1, ẽ2)−)

)
+(

[α̃1, α̃2]
ˆW
∗ + L̃φ

X̃1
α̃2 − L̃φ

X̃2
α̃1 + d̃φ((ẽ1, ẽ2)−)

)
,

(for any f̃ ∈ C∞(M̃), d̃φf̃ = d̃f̃ + ∂f̃
∂t

φ and d̂W
∗ f̃ = e−t(d̃f̃ + ∂f̃

∂t
φ), [6]), (iii) the

bundle map ρ̃ : Ã⊕ Ã∗ → TM̃ , ρ̃ = ãφ + âW
∗ , is a Courant algebroid over M̃ ([10]).

Let E : Γ(A⊕ A∗) → Γ(Ã⊕ Ã∗) be the embedding of Γ(A⊕ A∗) into Γ(Ã⊕ Ã∗)
defined, for any X + α ∈ Γ(A⊕ A∗), by

E(X + α) = X + etα,

where X and α are regarded as time-independent sections of Ã and Ã∗, respec-
tively. If L is a subbundle of A ⊕ A∗, we write L̃ = E(L) in order to denote the
vector subbundle L̃ of Ã⊕ Ã∗ whose space of global cross sections is the image by
E of the space of global cross sections of L, i.e. Γ(L̃) = E(Γ(L)).

Proposition 4.1. Let L be a vector subbundle of A ⊕ A∗ and L̃ = E(L). Then,
L is a Dirac structure for the generalized Courant algebroid (A ⊕ A∗, φ + W ) if
and only if L̃ is a Dirac structure for the Courant algebroid Ã⊕ Ã∗.

Proof. It is easy to check that L̃ is a maximally isotropic subbundle of (Ã ⊕
Ã∗, ( , )+) if and only if L is a maximally isotropic subbundle of (A ⊕ A∗, ( , )+).
Moreover, by a straightforward calculation we get that

[[E(X1 + α1),E(X2 + α2)]]
˜ = E([[X1 + α1, X2 + α2]]), ∀X1 + α1, X2 + α2 ∈ Γ(L),

i.e. Γ(L̃) is closed under [[ , ]]˜ if and only if Γ(L) is closed under [[ , ]].
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Proposition 4.2. Let L be a Dirac structure of (A⊕ A∗, φ + W ) and L̃ = E(L)
the associated Dirac structure of Ã ⊕ Ã∗. Then f̃ ∈ C∞(M̃) is a L̃-admissible
function if and only if f̃ = etf and f ∈ C∞

L (M).

Proof. Let f̃ ∈ C∞
L̃

(M̃), i.e. there exists Y ∈ Γ(A) : Y + d̃φf̃ ∈ Γ(L̃). But,

Y + d̃φf̃ ∈ Γ(L̃) implies that there exists ξ ∈ Γ(A∗) : Y +ξ ∈ Γ(L) and Y + d̃φf̃ =
E(Y + ξ), thus d̃φf̃ = etξ. From Theorem of normal forms for Lie algebroids
([3]) we have that, if the rank of a(D), D = L ∩ A, at a point q ∈ M is k, then
we can construct on a neighborhood U of q in M a system of local coordinates
(x1, . . . , xk, . . . , xn) (n = dim M) and a basis of sections (X1, . . . , Xk, . . . Xr) of
Γ(A) (r is the dimension of the fibres of A → M), with (X1, . . . , Xk) sections of
Γ(D), such that a(Xi) = ∂

∂xi
, for every i = 1, . . . , k. Let (α1, . . . , αk, . . . , αr) be

the basis of Γ(A∗), dual of (X1, . . . , Xk, . . . Xr). Since φ, ξ ∈ Γ(A∗), there exist
φi, ξi ∈ C∞(U), i = 1, . . . , r, such that φ =

∑r
i=1 φiαi and ξ =

∑r
i=1 ξiαi. So, for

any i = 1, . . . , r,

(4.1) d̃φf̃ = etξ ⇒ 〈d̃f̃+(∂f̃/∂t)φ,Xi〉 = 〈etξ, Xi〉 ⇔ 〈d̃f̃ , Xi〉+(∂f̃/∂t)φi = etξi.

But, for i = 1, . . . , k, 〈d̃f̃ , Xi〉 = 〈δf̃ , ã(Xi)〉 = 〈δf̃ , a(Xi)〉 = 〈δf̃ , ∂
∂xi
〉 = ∂f̃

∂xi
.

Hence, the last equation of (4.1) can be written, for any i = 1, . . . , k, as

(4.2) ∂f̃/∂xi + (∂f̃/∂t)φi = etξi.

By resolving the characteristic system δxi

1
= δt

φi
= δf̃

etξi
of (4.2), we obtain that f̃

must be, at least locally, of the form f̃ = etf with f ∈ C∞(U). Taking into account
Definition 4.2 and that L̃ = E(L), we get f̃ = etf ∈ C∞

L̃
(M̃) ⇔ f ∈ C∞

L (M).

Proposition 4.3. Let L be a Dirac subbundle for (A⊕A∗, φ+W ) and L̃ = E(L)
the associated Dirac subbundle of Ã⊕ Ã∗. Then, L is reducible if and only if L̃ is
reducible.

Proof. Let D = L ∩ A and D̃ = L̃ ∩ Ã be the characteristic subbundles of L and
L̃, respectively, F and F̃ the foliations of M and M̃ , respectively, defined by a(D)
and ãφ(D̃), respectively. Obviously, D̃ ∼= D and ãφ(D̃) = {ãφ(X) /X ∈ D} =
{a(X) + 〈φ,X〉∂/∂t / X ∈ D}. Let (x0, t0) be a point of M̃ = M × IR, F̃ and F
the leaves of F̃ and F passing through (x0, t0) ∈ M̃ and x0 ∈ M , respectively, and
Dx0 the fibre of D over x0. By Theorem 2.2, we have : (i) if ker(a|Dx0

) * 〈φ(x0)〉◦,
then F̃ = F × IR, so dim F̃ = dim F + 1 and the vector field ∂/∂t is tangent to
F̃ ; (ii) if ker(a|Dx0

) ⊆ 〈φ(x0)〉◦ and π1 : M × IR → M is the canonical projection,

then π1(F̃ ) = F and π1|F̃ : F̃ → F is a covering map, thus dim F̃ = dim F and
the vector field ∂/∂t is not tangent to F̃ . Since every L̃-admissible function f̃ is
of type f̃ = etf , f ∈ C∞

L (M), (Proposition 4.2) and also it is constant along the
leaves of F̃ ([1],[11]), it is not possible the leaves F̃ of F̃ to be of type F̃ = F × IR
(because, in this case, ∂/∂t is tangent to F̃ and f̃ = etf is not constant along
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∂/∂t). Thus, for any leaf F̃ of F̃ and for the corresponding leaf F of F , we have
π1(F̃ ) = F and π1|F̃ : F̃ → F is a covering map. Hence, we get : (1) Every
leaf F̃ of F̃ is of the same dimension as the corresponding leaf F of F , so F is
a regular foliation of M if and only if F̃ is a regular foliation of M̃ . (2) F̃ ∼= F ,
so M̃/F̃ ∼= (M × IR)/F ∼= (M/F) × IR ; thus, M/F is a nice manifold if and
only if M̃/F̃ is a nice manifold and the projection M → M/F is a submersion if
and only if the projection M × IR = M̃ → M̃/F̃ ∼= (M/F)× IR is a submersion.
Consequently, L is a reducible Dirac subbundle for A⊕A∗ if and only if L̃ = E(L)
is a reducible Dirac subbundle for Ã⊕ Ã∗.

Let L be a Dirac structure of (A ⊕ A∗, φ + W ) and L̃ the associated Dirac
structure of Ã ⊕ Ã∗. On C∞

L (M) we define the bracket { , }L by setting, for all
f, g ∈ C∞

L (M), {f, g}L := ρθ(ef )g, where ef = Yf + dφf ∈ Γ(L). Also, on C∞
L̃

(M̃)

we define the bracket { , }L̃ by setting, for all f̃ , g̃ ∈ C∞
L̃

(M̃), f̃ = etf , g̃ = etg

with f, g ∈ C∞
L (M), {f̃ , g̃}L̃ := ρ̃(ẽf̃ )g̃, where ẽf̃ = Yf + d̃φf̃ ∈ Γ(L̃). By a

straightforward calculation we get :

(4.3) {f̃ , g̃}L̃ = {etf, etg}L̃ = et{f, g}L.

Theorem 4.1 ([15]). 1) If 1 ∈ C∞
L (M)4, then (C∞

L (M), { , }L) is a Jacobi alge-
bra. 2) If L is a reducible Dirac subbundle of (A⊕ A∗, φ + W ) and 1 ∈ C∞

L (M),
then L induces a Jacobi structure on M/F defined by the Jacobi bracket { , }L.

Theorem 4.2. 1) If 1 ∈ C∞
L (M), then (C∞

L̃
(M̃), { , }L̃) is an homogeneous

Poisson algebra with respect ∂/∂t5. 2) If L is a reducible Dirac subbundle of
(A⊕A∗, φ+W ) and 1 ∈ C∞

L (M), then L̃ induces an homogeneous Poisson struc-
ture on M̃/F̃ defined by the homogeneous Poisson bracket { , }L̃. 3) M̃/F̃ =
(M/F)× IR and the induced homogeneous Poisson structure on M̃/F̃ by L̃ is the
Poissonization of the induced Jacobi structure on M/F by L.

Proof. 1) It is checked by taking account (4.3) and the fact that, if 1 ∈ C∞
L (M),

then (C∞
L (M), { , }L) is a Jacobi algebra. 2) By applying the results of [11] to the

reducible Dirac subbundle L̃ and the homogeneous Poisson algebra (C∞
L̃

(M̃), { , }L̃).

3) We have F̃ = F×{0} ([15]), thus M̃/F̃ = (M/F)×IR, and by (4.3) we conclude
the announced result.
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