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Dirac structures for generalized Courant
and Courant algebroids

by Fani Petalidou and Joana M. Nunes da Costa !

Abstract

We establish some fundamental relations between Dirac subbundles L
for the generalized Courant algebroid (A @ A*, ¢ + W) over a differentiable
manifold M and the associated Dirac subbundles L for the corresponding
Courant algebroid A & A* over M x R.

1 Introduction

In [1], T. Courant introduces the notion of a Dirac structure in order to present
a unified framework for the study of symplectic and Poisson structures and folia-
tions. Alan Weinstein and his collaborators develop the theory of these structures
and study several problems of Poisson geometry via Dirac structures theory [10],
[11]. The notion was exploited by A. Wade ([16]) and recently by the second
author and J. Clemente-Gallardo ([14]) in order to interpreter Jacobi manifolds
([9], [2]) by means of Dirac structures. In [14], J.M. Nunes da Costa and J.
Clemente-Gallardo approach this problem by introducing the notions of a gen-
eralized Courant algebroid and of a Dirac structure for a generalized Courant
algebroid and by proving that the double (A @ A* ¢ + W) of a generalized Lie
bialgebroid ((A, ¢), (A*,W)) over a differentiable manifold M, notion very close
to the Jacobi manifolds ([6]), is a generalized Courant algebroid.

In the present work, being well known that there is an one-to-one corre-
spondence between generalized Lie bialgebroids structures ((A, ¢), (A*, W)) over
M and Lie bialgebroids structures (A, A*), A = A x R, A* = A* x R, over
M = M x R, we establish some basic relations between the Dirac subbundles L
for (A®A*, ¢+W) and the associated Dirac subbundles L = {X+e'a / X +a € L}
for A @ A*. We prove : 1) L is a reducible Dirac structure for (A @ A*, ¢ + W)
if and only if L is a reducible Dirac structure for A @ A*. 2) If F and F are
the characteristic foliations of M and M defined by L and L, respectively, then
L induces an homogeneous Poisson structure on M /F = M/F x R which is the
Poissonization of the induced Jacobi structure on M /F by L.
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Notation : In this paper, M is a C"*°-differential manifold of finite dimension.
We denote by C*°(M) the space of all real C'*°-differentiable functions on M and
by ¢ the usual de Rham differential operator.

2 Generalized Lie bialgebroids

Let (A, ], |,a) be a Lie algebroid over M ([12]), A* its dual vector bundle over M,
NA" =&, 7 A" A* the graded exterior algebra of A* whose differential sections
are called A-formson M, d : T'(\ A*) — I'(\ A*) the exterior derivative of degree
1 and ¢ € I'(A*) an l-cocycle in the Lie algebroid cohomology complex with
trivial coefficients ([12], [6]), i.e., for all X, Y € ['(A), (¢, [X,Y]) = a(X)((¢,Y)) —
a(Y)({(¢, X)). We modify the usual representation a of the Lie algebra (I'(A), [, ])
on the space C*°(M) by defining a® : T'(A) x C*(M) — C*(M), a®(X, f) =
a(X)f + (¢, X) f. The resulting cohomology operator d? : T'(\ A*) — ['(\ A*) of
the new cohomology complex is called the ¢-differential of A and d®n = dn-+@An,
for all n € T(\" A*). d? allows us to define the ¢-Lie derivative by X € T'(A),
L% T(N\"A*) = T(A" 4%, as LS = d® oix +ix od®, where ix is the contraction
by X. Using ¢ we can also modify the Schouten bracket [, ] on I'(/\ A) to the ¢-
Schouten bracket [, ] on T/ A) by setting, for all P € T(A” A) and Q € T'(A\? A),
PQJ = [P.Q)+ (p— VP A (i4Q) + (—1)P(q — 1)(isP) A Q) where i, can be
interpreted as the usual contraction of a multivector field with an 1-form. For
details, see [12], [6] and [4].

The notion of generalized Lie bialgebroid has been introduced by D. Iglesias
and J.C. Marrero in [6] and independently by J. Grabowski and G. Marmo in [4]
under the name of Jacobi bialgebroid, in such a way that a Jacobi manifold ([9])
has a generalized Lie bialgebroid canonically associated and conversely. We recall
that a Jacobi manifold is a smooth manifold M equipped with a bivector field A
and a vector field E such that [A, A] = —2EAA and [E, A] = 0, where [, | denotes
the Schouten bracket.

We consider a Lie algebroid (A4, [, |, a) over M and an 1-cocycle ¢ € I'(A*) and
we assume that the dual vector bundle A* — M admits a Lie algebroid structure
([, ]+, a+) and that W € T'(A) is an l-cocycle in the Lie algebroid cohomology
complex with trivial coefficients of (A*,[, |+, a.). Then, we say that :

Definition 2.1. The pair ((4, ¢), (A*,W)) is a generalized Lie bialgebroid over
M if, for all X, Y € I'(A) and P € T'(A\” A), the following conditions hold :

dV[X,Y] = [dV X, Y]+ [X,d)Y]* and LYP+L,P =0;
d¥ and LY are, respectively, the W-differential and the W-Lie derivative of A*.

Obviously, if ¢ = 0 and W = 0, we recover the notion of Lie bialgebroid
introduced by K. Mackenzie and P. Xu in [13] and its equivalent definition given
by Yv. Kosmann-Schwarzbach in [§].
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Given a Lie algebroid (A, [, ],a) over M, we can construct a Lie algebroid
structure on A — M, A= Ax R and M = M x R. We identify F(A) with the
set of the time-dependent sections of A — M, i.e. for any X € I['(A) and (z,t) €
M x IR, t being the canonical coordinate on R, X (z,t) = X,(z), where X, € I'(A),
and we take : i) the Lie bracket [, | on I'(A) defined, for any X,Y € I'(A) and
(z,t) € M, by [X Y](z,t) = [X,,Y;](z), ii) the bundle map @ : A — TM,
a(X)(z,t) = a(X;)(z). Then (A,[,],a) — M is a Lie algebroid. Also, taking an
1-cocycle ¢ of A, we deform ([, |,a) in two different ways and we obtain two new
Lie algebroid structures on A, [6]. Precisely, for any X,Y € I'(A):

(2.1) [X,Y]? = [X,Y] +iyX,0Y /ot —igYOX /0t, a®(X) = a(X) +is,X0/0t;
(22) [X, 17]“’ = (X Y”]+<<Z>,Xt>(8Y/3t— Y) = (¢, Y1) (0X /ot — X)),
a’(X) = e (a(X)+ (9, X;)0/0t).

Theorem 2.1 ([6]). Let (A,[, ],a) be a Lie algebroid over M and ¢ € I'(A*)
an 1-cocycle. Suppose that A* has a Lie algebroid structure ([, |.,a.) and that
W € I(A) is an 1-cocycle for this structure. Consider on A = A x IR and
A* = A* x IR the Lie algebroid structures ([, ], a?) and ([, ]V, a"), respectively.
Then (A, A*) is a Lie bialgebroid over M = M x IR if and only if (A, ¢), (A*, W))

1s a generalized Lie bialgebroid over M. The induced Poisson structure on M is
the Poissonization of the induced Jacobi structure on M.

Moreover, the image Ima of the anchor map a of (A, [, ],a) — M is an inte-
grable distribution on M ([3]) which defines a singular foliation F4 of M, called
the Lie algebroid foliation of M associated with A ([7]). The relation between the
leaves of the Lie algebroid foliation F; of M x IR associated with (A, [, ]?,a?)
(given by (2.1)) and the leaves of the Lie algebroid foliation F4 of M associated
with A was studied in [7] by D. Iglesias and J.C. Marrero. They have proved :

Theorem 2.2 ([7]). Under the above considerations, suppose that (zo,ty) € M X
R and that F and F are the leaves of the Lie algebroid foliations Fi and Fa
passing through (xo,ty) € M x IR and xy € M, respectively, and denote by A,
the fiber of A over xo. Then : (1) If ker(ala, ) € {(¢(20))°, F=FxR. (2)]If
ker(ala,,) € (#(x0))° and m : M x IR — M is the canonical projection onto the
first factor, 7 (F) = F and g F — F is a covering map.

3 Generalized Courant algebroids
The notion of generalized Courant algebroid has been introduced by the second

author and J. Clemente-Gallardo in [14] and independently, under the name of
Courant-Jacobi algebroid, by J. Grabowski and G. Marmo in [5].
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Definition 3.1 ([14]). Let £ — M to be a vector bundle over a differentiable
manifold M equipped with : (i) a nondegenerate symmetric bilinear form (, )
on the bundle, (ii) a skew-symmetric bilinear bracket [, | on I'(E), (iii) a bundle
map p : E — TM and (iv) an E-1-form 0 such that, for any ej,e; € T'(E),
(0, le1, ea]) = ple1)(0, es) — plea)(d,e1). We consider : (a) the bundle map p? :
E — TM x R defined, for any e € E, by p?(e) = p(e) + (0, e), (b) the applications
D, DY : C*(M) — I'(E) defined, for any f € C°(M), respectively, by Df =
671" 0f 2 and Df = Df + 5f571(0) and (c) for any ey, er,e5 € ['(E), the
function T'(ey, €2, e3) = £([e1, ea], e3) + c.p. on the base M. Then, we say that E
is a generalized Courant algebroid if the following relations are satisfied :

- ler, e2], es] + e.p. = D'T(er, ea,e3),  Ver, ez, e3 € T(E);

Pler,e2]) = [p7(er), p¥(e2)],>  Ver,e2 € T(E);

le1, fea] = fler, ea] + (p(er)f)ea — (e1,e2)Df, Vey, e € T(E), Vf € C®(M);

. p?oD? =0, ie., for any f,g € C*(M), (D’f, D) = 0;

. pP(e)(er, e2) = ([e,e1] + D (e, e1), €2) + (en, [e, e2] + DY (e, €2)), Ve, e1,e5 € D(E).

Uk W N =

Definition 3.2. A Dirac structure for a generalized Courant algebroid (E, ) over
M is a subbundle L C E that is maximal isotropic under (, ) and integrable, i.e.
['(L) is closed under [, |.

A Dirac subbundle L of (F,0) is a Lie algebroid under the restrictions of the
bracket [, | and of the anchor p to I'(L). If # € I'(L*), then it is an 1-cocycle for
the Lie algebroid cohomology with trivial coefficients of (L, [, ||z, plL)-

The most important example of generalized Courant algebroid is the double
(A® A*, ¢ + W) of a generalized Lie bialgebroid ((4, ¢), (A*,W)) over M. On
A & A* there exist two natural nondegenerate bilinear forms, one symmetric and
another skew-symmetric (, )+ : for any X;+aq, Xo+ay € AGA*, (X1 4+, Xo+
az)ty = 1/2({aq, Xo) £ (g, X)) and on I'(A @ A*) = T'(A) & I'(A*) we introduce
the bracket [, ]| : for all Xy 4+ oq, Xo + s € (A& A%),

IIXl + Qq, X2 + 062]] = ([)(1,)(2](ZS -+ L:W X2 — L:W X1 — d*W(Gl, 62)_) +

*Q1 *QQ

+ ([ag, a]? + Ef(lozg — L’fQOq +d?(e1,e5)).

Also, we consider the bundle map p: A@® A* — T'M given by p = a + a,, i.e., for
any X +a € E, p(X 4+ a) = a(X) + a.(a). We have:

Theorem 3.1 ([14]). If ((4,¢), (A*,W)) is a generalized Lie bialgebroid over
M, then A @ A* endowed with ([, ],(, )+,p) and 0 = ¢+ W € T'(E*) is a
generalized Courant algebroid over M. The operators D and D? are, respectively,
D = (du + d)|car) and D° = (d¥ + d®)|c(an).-

23 is the isomorphism from E onto E* given by the nondegenerate bilinear form (, ).
3The bracket on the right-hand side is the Lie bracket defined on T'(TM x R) by

[(X’f)v(yvg)] = ([XvY]vX'g_Y'f)'
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4 Dirac structures of ((A4, ¢), (A*,W)) and of (/Nl, fl*)

Let ((4,], ],a,¢), (A* [, |, as,W)) be a generalized Lie bialgebroid over M and
(A A* [, ],(, )s,a+ as, ¢ + W) the associated generalized Courant algebroid.

Definition 4.1. We say that a Dirac subbundle L of A & A* is reducible if the
image a(D) of its characteristic subbundle D = L N A by a defines a simple
foliation F of M. By the term ”simple foliation” we mean that F is a regular
foliation such that the space M/F is a nice manifold and the canonical projection

M — M/F is a submersion.

Definition 4.2. Let L be a Dirac subbundle of A @ A*. A function f € C*(M)
is called L-admissible if there exists Y; € I'(A) such that Y; +d?f € I'(L). We
denote by C°(M,R) the set of all L-admissible functions of C*(M).

Let ((A, [, ]?,a%), (A% [,]1%,a")) be the Lie bialgebroid over M defined by
(A, [, ],a,9), (A*, [, ]+, as, W)) as in Theorem 2.1. Then, A @® A* endowed with :
(i) the two nondegenerate bilinear forms (, )+ on A®A* : for all X1 +ay, Xo+ay €
A ©® A* (Xl + 5[1,)22 + ONéQ):t = 1/2((&1,){2) + <O[2,X1>), ( ) the bracket [[, ]] on
NAo A*) :for all X, + ay, Xy + dy € T(A@ AY),

[[Xl +O~11,X2+d/2]]~ = ([Xl,XQ] EWX ,C X1 d ((61,62) )) +
([0417052] +£¢ OéQ £§26€1+d¢((61,62)_)),
(for any f € C=(M), d*f = df + %o and d¥ f = e7/(df + %), [6]), (iii) the
bundle map p: A® A* — TM, p = a’+al, is a Courant algebroid over M ([10]).
Let E: T(A@® A*) — I'(A & A*) be the embedding of I'(A @ A*) into T'(A & A*)
defined, for any X + a € I'(A & A*), by
E(X +a) =X +¢a,

where X and « are regarded as time-independent sections of A and A*, respec-
tively. If L is a subbundle of A @ A*, we write L = E(L) in order to denote the
vector subbundle L of A@® A* whose space of global cross sections is the image by
E of the space of global cross sections of L, i.e. T(L) = E(T(L)).

Proposition 4.1. Let L be a vector subbundle of A@® A* and L = E(L). Then,
L is a Dirac structure for the generalized Courant algebroid (A ® A*, ¢ + W) if
and only if L is a Dirac structure for the Courant algebroid A & A*.

Proof. Tt is easy to check that L is a maximally isotropic subbundle of (fl <)
A*. (,)4) if and only if L is a maximally isotropic subbundle of (A & A*, (, )4).
Moreover, by a straightforward calculation we get that

[[E(Xl + Oél), E(XQ -+ 042)]]~: E([[Xl + al,XQ + CKQH), VXl + Oél,Xg + s € F(L),
i.e. I(L) is closed under [, | if and only if (L) is closed under [, ]. O
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Proposition 4.2. Let L be a Dirac structure of (A® A*, ¢ +W) and L=E(L)
the associated Dirac structure of A @ A*. Then f € C®(M) is a L-admissible
function if and only if f =e'f and f € CP(M).

Proof. Let f € CEO(]\;[), i.e. there exists Y € I'(A) : Y + f e F(f/) But,
Y 4d?f € (L) implies that there exists € € T'(A*) : Y +£ € (L) and Y +d?f =
E(Y + &), thus d°f = et¢. From Theorem of normal forms for Lie algebroids
([3]) we have that, if the rank of a(D), D = LN A, at a point ¢ € M is k, then
we can construct on a neighborhood U of ¢ in M a system of local coordinates
(T1,..., Tgy...,Tp) (n = dim M) and a basis of sections (Xi,..., Xk,...X,) of
I'(A) (r is the dimension of the fibres of A — M), with (Xy,..., X}) sections of
['(D), such that a(X;) = a%y for every i = 1,... k. Let (ay,...,Q,...,q;) be
the basis of I'(A*), dual of (Xy,...,X,...X,). Since ¢, € I'(A*), there exist
¢i,& € C°(U),i=1,...,r,such that ¢ = > | ¢y and € =7 &a. So, for

any 1 =1,...,r,
(41) d°f = '€ = (df+(0f/0t)d, Xi) = ('€, Xi) & (df, Xi)+(f [0t)¢ = '€,

But, for i = 1,....k, (df, X)) = (6f.a(X))) = (5f,a(X,)) = (5f, 2) = 2L.

Hence, the last equation of (4.1) can be written, for any ¢ = 1,...  k, as
(4.2) Of |0x; + (9f |0t) i = etfi.
By resolving the characteristic system ‘5? = % = etg - of (4.2), we obtain that f

must be, at least locally, of the form f = e f with f € C>(U). Taking into account
Definition 4.2 and that L = E(L), we get f = e'f € Cx¥(M) & feCPM). O

Proposition 4.3. Let L be a Dirac subbundle for (A® A*, ¢+ W) and L= E(L)
the associated Dirac subbundle of A® A*. Then, L is reducible if and only if L is
reducible.

Proof. Let D = LN A and D = LN A be the characteristic subbundles of L and
L, respectively, 7 and F the foliations of M and M, respectively, defined by a(D)
and a?(D), respectively. Obviously, D = D and a¢( ) =1{a*(X)/X € D} =
{a(X) + (¢, X)0/0t | X € D}. Let (wg,t9) be a point of M=MxR, Fand F
the leaves of F and F passing through (xg,t) € M and zy € M, respectively, and
D, the fibre of D over xy. By Theorem 2.2, we have : (i) if ker(a|pzo) Z (¢(x0))°,
then F = F x R, so dim F' = dim F + 1 and the vector field 0/0t is tangent to
F; (i) if ker(alp,,) € <¢(9c0)> and m : M x IR — M is the canonical projection,
then 7, (F) = F and m |z : F — F is a covering map, thus dim F = dim F and
the vector field /0t is not tangent to F'. Since every L-admissible function f is
of type f = e'f, f € C°(M), (Proposition 4.2) and also it is constant along the
leaves of F ([1],[11]), it is not possible the leaves E' of F to be of type F' = F x R
(because, in this case, 0/0t is tangent to F and f = e'f is not constant along
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d/0t). Thus, for any leaf F of F and for the corresponding leaf F' of F, we have
m(F) = F and | F — F is a covering map. Hence, we get : (1) Every
leaf [ of F is of the same dimension as the corresponding leaf F of F, so F is
a regular foliation of M if and only if F is a regular foliation of M. (2) F = F,
so M/F = (M x R)/F = (M/F) x R ; thus, M/F is a nice manifold if and
only if M / F is a nice manifold and the projection M — M /F is a submersion if
and only if the projection M x R = M — M /F = (M/F) x R is a submersion.
Consequently, L is a reducible Dirac subbundle for A@® A* if and only if L = E(L)
is a reducible Dirac subbundle for A @ A*. m

Let L be a Dirac structure of (A @ A*,¢ + W) and L the associated Dirac
structure of A @ A*. On C°(M) we define the bracket {, }, by setting, for all
frge CX(M), {f, g}r :== p(es)g, where e; = Y; +d?f € T(L). Also, on CEO(J\;[)
we define the bracket {, }; by setting, for all f,§ € O( M), f = etf, g =c¢lg
with f,g € C2(M), {f,§}; = p(€f)g, where é; = Y} +d’°f e I(L). By a
straightforward calculation we get :

(4.3) {f.5}; ={e'f.e'g}; = e'{f. q}1-

Theorem 4.1 ([15]). 1) If 1 € C2(M)*, then (C°(M),{, }1) is a Jacobi alge-
bra. 2) If L is a reducible Dirac subbundle of (A@ A*,¢p + W) and 1 € C°(M),
then L induces a Jacobi structure on M/F defined by the Jacobi bracket {, }r.

Theorem 4.2. 1) If 1 € CP(M), then (C3°(M 1),{,};) is an homogeneous
Poisson algebra with respect 9/0t°. 2) If L is a reducible Dirac subbundle of
(ADA*, ¢+ W) and 1 € C°(M), then L induces an homogeneous Poisson struc-
ture on M /F defined by the homogeneous Poisson bracket {,};. 8) M/F =
(M/F) x IR and the induced homogeneous Poisson structure on M /F by L is the
Poissonization of the induced Jacobi structure on M/F by L.

Proof. 1) It is checked by taking account (4.3) and the fact that, if 1 € C°(M),
then (C°(M),{, }1) is a Jacobi algebra. 2) By applying the results of [11] to the
reducible Dirac subbundle L and the homogeneous Poisson algebra (C(M), {, }i)-

3) We have F = Fx {0} ([15]), thus M /F = (M/F) xR, and by (4.3) we conclude
the announced result. [

References

[1] T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.

[2] P. Dazord, A. Lichnerowicz, C.-M. Marle, Structure locale des variétés de
Jacobi, J. Math. Pures Appl. 70 (1991) 101-152.

4We have ([15]) : 1 is an L-admissible function if and only if, for any Y € T'(D), (¢, Y) =
°In the sense of Dazord-Lichnerowicz-Marle ([2]) terminology.



272 F. Petalidou and J.M. Nunes da Costa
(3] J.-P. Dufour, Normal forms for Lie algebroids, in Lie Algebroids, Banach
Center Publications, Vol. 54, Warszawa 2001, pp. 35-41.
[4] J. Grabowski and G. Marmo, Jacobi structures revisited, J. Phys. A : Math.
Gen. 34 (2001) 10975-10990.
[5] J. Grabowski and G. Marmo, The graded Jacobi algebras and (co)homology,
J. Phys. A : Math. Gen. 36 (2003) 161-181.
[6] D. Iglesias and J.C. Marrero, Generalized Lie bialgebroids and Jacobi struc-
tures, J. Geom. Phys. 40 (2001) 176-200.
[7] D. Iglesias and J.C. Marrero, Lie algebroid foliations and EY(M)-Dirac struc-
tures, J. Phys. A : Math. Gen. 35 (2002) 4085-4104.
[8] Y. Kosmann-Schwarzbach, Ezact Gerstenhaber algebras and Lie bialgebroids,
Acta Appl. Math 41 (1995) 153-165.
[9] A. Lichnerowicz, Les variétés de Jacobi et leurs de Lie associées, J. Math.
pures et appl. 57 (1978) 453-488.
[10] Z.-J. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Diff.
Geom. 45 (1997) 547-574.
[11] Z.-J. Liu, A. Weinstein, P. Xu, Dirac Structures and Poisson Homogeneous
Spaces, Commun. Math. Phys. 192 (1998) 121-144.
. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, Lon-
12] K. Mackenzie, Li ids and Lie algebroids in di al L
don Math. Soc. Lecture notes series 124, Cambridge University Press, Cam-
bridge 1987.
[13] K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math.
J. 73 (1994) 415-452.
[14] J.M. Nunes da Costa and J. Clemente-Gallardo, Dirac structures for gener-
alized Lie bialgebroids, J. Phys. A : Math. Gen. 37 (2004) 2671-2692.
[15] F. Petalidou and J.M. Nunes da Costa, Reduction of Jacobi manifolds via
Dirac structures theory, Diff. Geom. and its Applic. 23 (2005) 282-304.
[16] A. Wade, Conformal Dirac structures, Lett. Math. Phys. 53 (2000) 331-348.
Fani Petalidou Joana M. Nunes da Costa
Faculty of Sciences and Technology Department of Mathematics
University of Peloponnese Unwversity of Coimbra
22100 Tripoli, Greece Apartado 3008

3001-454 Coimbra, Portugal

e-mail : petalido@uop.qgr e-mail : jmcosta@mat.uc.pt



