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Introduction

Poisson geometry is naturally linked to the theory of deformation quantization
invented by Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer [2]: here the
algebra of quantum observables in quantum theory is described by an associa-
tive formal deformation (a so-called star-product ∗) of the commutative associa-
tive algebra C∞(M,K) of smooth functions on a Poisson manifold (M,P ) such
that its first order commutator is proportional to the Poisson bracket. The alge-
bra part of this theory is finished by now: there is a general existence theorem
(DeWilde-Lecomte 1983 [20] for the symplectic and Kontsevitch 1997 [38] for
the general Poisson case) and a classification of formal isomorphy or equivalence
classes (Deligne [18]; Nest-Tsygan [44], [45]; Bertelsson-Cahen-Gutt [3] for the
symplectic (see also [33] for a review) and Kontsevitch (1997) [38] for the Poisson
case).

The subject of this talk is to give an introduction to three algebraic question in
deformation quantization, namely what are the algebra morphisms, the modules,
and what are commutants of modules? I shall show that to each of these topics
there is a geometric situation in ‘the classical limit’, i.e. Poisson maps, coisotropic
maps, and phase space reduction whose quantization problem is most interesting
and finds applications in quantum physics such as quantization of symmetries and
integrable systems, quantization of first class constraints, and quantization of the
reduced Poisson algebra. I shall present some results on these topics which are
listed in the following table and also a recursive and total obstruction analysis. As
opposed to the abovementioned algebra part there are still many open questions
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in that field. Of course the list of names in the result column is not complete, and
I apologize in advance for any omission.

Algebraic object Geometric object
in classical limit

Quantization
problem

Results

Algebra:
A :=

(
C∞(M,K)[[ν]], ∗

)
associative deformation
of commutative algebra

Poisson manifold
(M,P )

Quantization
of Poisson
structures

DeWilde-
Lecomte 1983:
symplectic case
Kontsevitch
1997: general
Poisson case

Morphism of algebras
Φ : A → B
B =

(
C∞(M ′,K)[[ν]], ∗′

) Poisson map φ
(M ′, P ′)→ (M,P )

Quantization
of Poisson
maps

open, even in the
symplectic-to-
symplectic case,
partial results
for vanishing
Atiyah-Molino
class: MB, 2004,
[10]

A-Module
ρ : A⊗M→M
M = C∞(C,K)[[ν]]

coisotropic map i
C → (M,P )

Quantization
of coisotropic
submanifolds

open, par-
tial results by
[10], [8], and
Cattaneo-Felder
2003

Commutant
HomA(M,M)
D :M→M
Dρ(f) = ρ(f)D ∀ f ∈ A

phase space reduc-
tion
M

i← C
π→Mred

Quantization
of phase
space reduc-
tion

Fedosov 1996,
for general
coisotropic in
symplectic: MB
2004, [10]

Most of the material of this talk comes from my detailed preprint [10] (covering
some of my research during the last three years) to which I refer for most of the
proofs, and some additional things are contained in the preprint [8]. I apologize
for the incomplete reference list and refer the reader to the more extensive list in
[10].
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1 Motivation: Simple symbol calculus

One of the motivations for deformation quantization comes from the standard
symbol calculus used in differential operator theory and in quantum mechanics
where it is called canonical quantization: Let A := C[q, p] be the associative
commutative algebra of complex polynomials in two variables, and D the algebra
of differential operators on the real line with complex polynomial coefficients, i.e.

D :=

{
N∑

k,l=0

bklq
k ∂

l

∂ql

∣∣∣∣∣ N ∈ N, bkl ∈ C

}
.

For the nonzero real number ~ (which is Planck’s constant in physics) define the
linear bijection

(1.1) ρs : A→ D :
N∑

k,l=0

aklq
kpl 7→

N∑
k,l=0

aklq
k

(
~
i

∂

∂q

)l

.

In particular, one has for ϕ ∈ C∞(R,C) the position and momentum operators in
quantum mechanics:

ρs(q) := Q with (Qϕ)(q) = qϕ(q) and ρs(p) =: P :=
~
i

∂

∂q
.

The bijection (1.1) can be rewritten in the following way: let f ∈ A and ϕ ∈
C∞(R,C), then

ρs(f)(ϕ)(q) =
∞∑

r=0

(~/i)r

r!

∂rf

∂pr
(q, 0)

∂rϕ

∂qr
(q).

The multiplication of differential operators in D is again a differential operator in
D, whence for f, g ∈ A:

ρs(f)ρs(g) = ρs(f ∗s g) with

f ∗s g :=
∞∑

r=0

(~/i)r

r!

∂rf

∂pr

∂rg

∂qr
.(1.2)

Hence the pair (A, ∗s) is an associative noncommutative algebra with unit 1.
Expansion in ~ yields

f ∗s g = fg +
~
i

∂f

∂p

∂g

∂q
+ · · · .
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The formula (1.2) does not converge when f and g are just elements of C∞(R2,C).
But in case ~ is seen as a formal parameter, the multiplication ∗s makes sense on
A := A[[~]] as seen as an algebra over the power series ring C[[~]]. Moreover, by
construction the C[[~]]-moduleM := C∞(R,C)[[~]] becomes an A-module via the
natural extension of the map ρs from C to C[[~]]-modules.

2 Recall of deformation quantization

2.1 Formal associative deformation of algebras

The example of the previous section can be generalized in the following way (see
Gerstenhaber’s work 1963, see [27], [28]: let (A,C0) be an associative algebra with
unit 1 over a commutative ring k and let ν be a formal parameter. We shall
sometimes use the convention ν = i~

2
. Consider the k[[ν]]-module of all formal

power series

A = A[[ν]] :=

{
∞∑

r=0

νrar

∣∣∣∣∣ ar ∈ A ∀ r ∈ N

}
equipped with a multiplication C : A×A → A subject to the following conditions
(for arbitrary f, g, h ∈ A):

C :=
∞∑

r=0

νrCr with Cr ∈ Homk(A⊗ A,A) and(2.1)

0 =
r∑

s=0

(
Cs

(
Cr−s(f, g), h

)
− Cs

(
f,Cr−s(g, h)

))
and(2.2)

0 = Cr(1, f) = Cr(f, 1) ∀r ≥ 1.(2.3)

Then (A,C) is an associative algebra over the commutative ring k[[ν]], a defor-
mation of (A,C0).

The associativity condition (2.2) at order r + 1 of ν yields

0 = (C ◦G C)r+1(f, g, h) := C
(
C(f, g), h

)
r+1
− C

(
f,C(g, h)

)
r+1

= −fCr+1(g, h) + Cr+1(fg, h)− Cr+1(f, gh) + Cr+1(f, g)h

+
r∑

s=1

(
Cs

(
Cr+1−s(f, g), h

)
− Cs

(
f,Cr+1−s(g, h)

))
=: −(bCr+1)(f, g, h)

+ D̂r+1(f, g, h)(2.4)
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where b denotes the Hochschild coboundary operator. On the other hand, the
obvious identity

0 = C
(
C
(
C(f, g), h

)
, p

)
− C

(
C
(
f,C(g, h)

)
, p

)
+C

(
f,C

(
C(g, h), p

))
− C

(
f,C

(
g,C(h, p)

))
−C

(
C
(
C(f, g), h

)
, p

)
+ C

(
C(f, g),C(h, p)

)
+C

(
C
(
f,C(g, h)

)
, p

)
− C

(
f,C

(
C(g, h), p

))
−C

(
C(f, g),C(h, p)

)
+ C

(
f,C

(
g,C(h, p)

))
–which is true for any k[[ν]]-bilinear map C– yields the following equation in case
C is associative up to order r, i.e. (C ◦G C)k = 0 for all 0 ≤ k ≤ r:

(2.5) bD̂r+1 = 0.

If one wants to construct the formal series C =
∑∞

r=0 ν
rCr order by order in a

recursive manner, the two preceding equations (2.4) and (2.5) show that the re-
cursive obstructions to associativity from order r to r+1 lie in the third Hochschild
cohomology group of the underlying algebra A,

HH3(A,A).

Two formal associative deformations C =
∑∞

r=0 ν
rCr and C′ =

∑∞
r=0 ν

rC′r
of the same underlying assoaciative algebra (A,C0 = C′0) over k are said to be
equivalent iff they are formally isomorphic in the following sense: there is a series
S =

∑∞
r=0 ν

rSr of linear maps Sr : A → A, called an equivalence transformation
such that

S0 = idA(2.6)

Sr(1) = 0 ∀ r ≥ 1(2.7)

S
(
C(f, g)

)
= C′

(
S(f), S(g)

)
∀ f, g ∈ A(2.8)

We shall write S(C)(f, g) for S
(
C
(
S−1(f), S−1(g)

))
. Note that the first condition

(2.6) implies that S is invertible whence the stated equivalence is a true equivalence
relation.

The obstructions to recursively construct an equivalence transformation be-
tween to given deformations are also described by Hochschild cohomology: if
Cs = C′s for all 0 ≤ s ≤ r then by associativity at order r + 1 it follows that

b(C′r+1 − Cr+1) = 0.
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On the other hand, an equivalence transformation S with Ss = 0 for all 1 ≤ s ≤ r
changes Cr+1 into (

S(C)
)

r+1
= Cr+1 − bSr+1.

It follows that the recursive obstructions for this construction lie in the second
Hochschild cohomology group of A:

HH2(A,A).

2.2 Classical Limit: Poisson algebras and manifolds

If (A,C0) is commutative and C =
∑∞

r=0 ν
rCr is a formal associative deformation

then it turns out that

{f, g} := C1(f, g)− C1(g, f) ∀ f, g ∈ A

defines a Poisson bracket on A, i.e. a Lie bracket which satisfies the Leibniz rule:

{f, gh} = {f, g}h+ {f, h}g ∀ f, g, h ∈ A.

Indeed, the Jacobi identity for the bracket { , } follows from total antisymmetriza-
tion of the associativity condition of C at order 2. In order to obtain the Leibniz
identity one takes the associativity condition of C at order 1,

0 = −fC1(g, h) + C1(fg, h)− C1(f, gh) + C1(f, g)h,

and adds to it the same identity with f and h interchanged, which gives

0 = −f{g, h}+ {fg, h} − {f, gh}+ {f, g}h

(showing that b{ , } = 0). Adding to this identity the one with g and h inter-
changed and subtracting the one with f and g interchanged yields (twice) the
Leibniz rule.

Let M be a differentiable manifold, let k = K where K = R or K = C, and let
A be the commutative associative unital algebra A = C∞(M,K) equipped with
the pointwise multiplication C0. A Poisson structure P is a bivector field, i.e. a
section in Γ∞(M,Λ2TM) such that its associated Poisson bracket

(2.9) {f, g} := P (df, dg)

satisfies the Jacobi identity

0
!
= [P, P ]S(df, dg, dh) := −2

(
{{f, g}, h}+{{g, h}, f}+{{h, f}, g}

)
∀ f, g, h ∈ A.

Clearly (A,C0, { , }) is a Poisson algebra (since the exterior derivative satisfies
the Leibniz rule). Conversely, every algebraically given Poisson bracket on A is of
the above form (2.9): indeed the map

(2.10) f 7→ Xg(f) := {f, g}
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is a derivation of A, hence a vector field (the so-called Hamiltonian vector field
associated to g), which depends in a derivative manner on g; so the map g 7→
Xg descends to an A-module morphism of the Kähler differentials of A, i.e.
Γ∞(M,T ∗M), into the derivations of A, hence the vector fields Γ∞(M,TM). It
follows that { , } is in HomA

(
Γ∞(M,T ∗M),Γ∞(M,TM)

)
which is isomorphic to

Γ∞(M,TM ⊗ TM).

• Example: symplectic manifold: (M,ω) where ω is a nondegenerate closed 2-
form on M ; for instance M = R2n, ω =

∑n
k=1 dq

k ∧dpk and P =
∑n

k=1
∂

∂qk ∧
∂

∂pk
.

• Example: dual g∗ of a finite-dimensional Lie algebra (g, [ , ]):

Pα := α([ , ])

2.3 Quantization Problem: Deformation quantization on
Poisson manifolds

The inverse problem of deforming a given Poisson algebra had been formulated
by Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer in 1978, see [2]:

Definition 2.1 Let (M,P ) be a given Poisson manifold. A star-product ∗ =∑∞
r=0 ν

rCr is a formal associative deformation of the Poisson algebra A given
by

(
C∞(M,K),C0, { , }

)
where C0 is the pointwise multiplication in A such that

conditions (2.1), (2.2) and (2.3) are satisfied and in addition

C1(f, g)− C1(g, f) = 2P (df, dg) = 2{f, g}
Cr bidifferential operators ∀r ∈ N.

Here a multidifferential operator of rank p is defined by a p-multilinear (w.r.t.
K) map

D : C∞(M,K)× · · · × C∞(M,K)→ C∞(M,K)

such that there is N ∈ N for which in any chart
(
U, (x1, . . . , xn)

)
D(f1, . . . , fp)|U =

∑
|I1|,...,|Ip|≤N

DI1···Ip
∂|I1|f1

∂xI1
· · · ∂

|Ip|fp

∂xIp
(2.11)

where I1, . . . , Ip are multi-indices in Nn, for I = (i1, . . . , in) the symbol |I| means

i1 + · · ·+ in, ∂|I|

∂xI is short for ∂i1+···+ik

∂x1i1 ···∂xnin
, and DI1···Ip is a C∞-function on U .

Often this condition is generalized to locality, i.e. the maps D are support
nonincreasing: by Peetre’s theorem such maps are locally p-differential, but the
orders of the partial derivatives may not be bounded on noncompact manifolds.
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Still another generalization is given by continuity with respect ot the standard
Fréchet topology. These requirements simplify computations and are also mo-
tivated by asymptotic limits (stationary phase expansions) of pseudodifferential
operator calculus.

The notion of equivalence of formal associative deformations is transferred to
star-products: here the series S = idA+

∑∞
r=1 ν

rSr is such that the conditions (2.6),
(2.7), and (2.8) are satisfied and each Sr is a differential operator C∞(M,K) →
C∞(M,K) vanishing on the constants for all r ≥ 1.

The Hochschild cohomology for multidifferential or local or continuous cochains
ofA = C∞(A,K) is well-known by the C∞-version of Hochschild-Kostant-Rosenberg-
Theorem [35], namely

HHp
diff

(
C∞(M,K), C∞(M,K)

) ∼= Γ∞(M,ΛpTM).

One can find a proof for C∞(M,K) in Cahen-DeWilde-Gutt 1980 [13], DeWilde-
Lecomte 1983 [19] and for the continuous case in Connes 1982 [17], Pflaum 1998
[49], and Nadaud 1999 [43]. In particular HH3

diff

(
C∞(M,K), C∞(M,K)

)
is non

zero for manifolds of dimension greater or equal than 3, so there is no simple
recursion construction for star-products.

The Existence of star-products has been shown by DeWilde-Lecomte 1983 [20],
Fedosov 1985 (see [22]), and Omori-Maeda-Yoshioka 1990 [47] in the symplectic
case and by Kontsevitch 1997 [38] in the general Poisson case. Moreover the
Classification of equivalence classes of star-products has been done by Deligne
1995 [18], Nest-Tsygan 1995 [44] [45], and Bertelson-Cahen-Gutt 1997 [3] in the
symplectic case where the result is

{[∗] | ∗ star− product on (M,ω)} ∼=
[ω]dR

ν
+H2

dR(M,K)[[ν]],

and the class [∗] is called the Deligne class of ∗, see also [33] for an excellent review.
For general Poisson manifolds Kontsevitch (1997) [38] classified the equivalence
classes by formal diffeomorphy classes of formal Poisson structures.

For later use we mention the Gutt star-product of the Poisson manifold g∗ where
(g, [ , ]) is a finite-dimensional real Lie algebra, see [32]: for ξ ∈ g let eξ denote
the exponential function x 7→ e〈x,ξ〉, and for ξ, η ∈ g let H(ξ, η) be the Baker-
Campbell-Hausdorff series 1

ν
log(eνξeνη) (where the formal exponential functions

eνξ are computed in Ug[[ν]] where Ug is the universal envelopping algebra of g).
The Gutt star-product is given by

eξ ∗ eη := eH(ξ,η),

and reflects the multiplication in Ug by applying ∗ to polynomials and setting
ν = 1.

Let me mention two obvious constructions which I shall need later on: for two
given star-products ∗ on M , ∗′ on M ′, one may form their tensor product ∗ ⊗ ∗′
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on M ×M ′ by

∗ ⊗ ∗′ :=
∞∑

r=0

νr

r∑
s=0

(pr∗1Cs)⊗ (pr∗2C
′
r−s)

where pr1 : M × M ′ → M and pr2 : M × M ′ → M ′ denote the canonical
projections. The Deligne class of ∗ ⊗ ∗′ is computed to be (see e.g. [10])

[∗ ⊗ ∗′] = pr∗1[∗] + pr∗2[∗′].

The opposite star-product of a star-product ∗ is defined in the equally obvious
manner

f ∗opp g := g ∗ f

and defines a star-product for the Poisson manifold (M,−P ). Its Deligne class is
given by (see [46])

[∗opp] = −[∗].

3 Morphisms

3.1 Morphisms of deformed algebras

Let (A,C0) and (B,C′0) two associative algebras with unit over the commutative
ring k. Consider two formal associative deformations (A = A[[ν]], ∗ = C =∑∞

r=0 ν
rCr) and (B = B[[ν]], ∗′ = C′ =

∑∞
r=0 ν

rC′r).
It is natural to look at algebra morphisms A → B, i.e. k[[ν]]-linear maps

Φ =
∑∞

r=0 ν
rΦr with

Φ(f ∗ g) =
(
Φ(f)

)
∗′

(
Φ(g)

)
and Φ(1) = 1.

This identity at order r yields

(3.1) 0
!
= Dr(f, g) :=

∑
s+t=r

Φt

(
Cs(f, g)

)
−

∑
s+t+u=r

C′s
(
Φt(f),Φu(g)

)
∀ f, g ∈ A.

For r = 0 this immediately implies that Φ0 : A→ B is a morphism of associative
algebras with unit. It follows that B becomes an A − A-bimodule via fφg :=
Φ0(f)φΦ0(g) for all f, g ∈ A, ;φ ∈ B where we write simple multiplication for C0

and C′0.
In order to perform a recursive construction of Φ: suppose that there are k-

linear maps Φ1, . . . ,Φr : A → B such that the identity (3.1) holds up to order r.
Now there is the following general identity for

D(f, g) :=
∑

r=0∞

νrDr(f, g) = Φ
(
C(f, g)

)
− C′

(
Φ(f),Φ(g)

)
,
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namely

(3.2) 0 = C′
(
Φ(f),D(g, h)

)
− D

(
C(f, g), h

)
+ D

(
f,C(g, h)

)
− C′

(
D(f, g),Φ(h)

)
where only the associativity of C and C′ (and not (3.1)) is needed. At order r+ 1
(3.1) reads

0
!
= Dr+1 =: bΦr+1 + D̂r+1

where D̂r+1 contains only Φs up to order r. Supposing 0 = D0 = · · · = Dr identity
(3.2) at order r + 1 gives

0 = bDr+1 = bD̂r+1

whence the recursive obstructions lie in the following second Hochschild cohomol-
ogy group

HH2(A,B).

More information can be found in [29] and the references cited therein.

3.2 Classical limit: Poisson maps

Let (M,P ) and (M ′, P ′) two Poisson manifolds, andA = C∞(M,K), B = C∞(M ′,K).
Given two star-products ∗ on M and ∗′ on M ′ suppose there is a star-product mor-
phism, i.e. an algebra morphism Φ : A = A[[ν]]→ B = B[[ν]].

By Milnor’s exercise (see e.g. [37]) the algebra morphism Φ0 has to be the pull-
back φ∗ with respect to a unique smooth map φ : M ′ → M , i.e. Φ0(f) = f ◦ φ.
Moreover, considering the morphism identity (3.1) at order 1, antisymmetrized in
f, g, we get

Φ0({f, g}) = {Φ0(f),Φ0(g)}′

(where {f, g} (resp. {f, g}′) denotes the Poisson bracket w.r.t. P (resp. P ′)),
hence φ is a Poisson map

Tφ⊗ Tφ(P ′) = P ◦ φ.

Examples of Poisson maps:

• Projections on first factor: let (M1, P1) and (M2, P2) two Poisson manifolds
and (M1 ×M2, P1 + P2) their product then

M1 × M2

pr1 ↓
M1

is obviously a Poisson map.
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• Momentum maps: let (g, [ , ]) be a finite-dimensional real Lie algebra and
J be a

C∞−map J : M → g∗ with {〈J, ξ〉, 〈J, η〉} = 〈J, [ξ, η]〉

∀ ξ, η ∈ g. Then J is a Poisson map.

For g abelian, 2 dim g = dimP and J regular on an open subset whose
complement is of measure zero, one speaks of a completely integrable system.

• Symplectic to symplectic: let (M ′, ω′) and (M,ω) be two symplectic mani-
folds and φ : M ′ →M a Poisson map. There is the following –at first glance
surprisingly simple– result: it can be shown that

M ′

φ ↓
M

is locally like
M × M2

pr1 ↓
M

,

i.e. φ is a submersion and M ′ has two transverse symplectic foliations: this
means that the tangent bundle of M ′ decomposes into the direct sum

TM ′ = KerTφ⊕ (KerTφ)ω′

of two integrable symplectic subbundles, see e.g. [10] for a proof.

3.3 Differentiability of morphisms: differential operators
along maps

One may wonder whether the K-linear maps Φr : C∞(M,K) → C∞(M ′,K) of a
star-product morphism are constrained to some more geometric subset: since Φ0

is the pull-back w.r.t a smooth map φ : M ′ → M it is reasonable to ask whether
the Φr of higher order are “differential along φ”. To be more precise, one defines
multidifferential operators along maps in the following natural way: to a diagram
of manifolds and smooth maps

M1

↖ φ1
...

... M
↙ φp

Mp

one associates a space of certain multilinear maps, called multidifferential along
φ1, . . . , φp,

Dp
(
C∞(M1,K), . . . , C∞(Mp,K); C∞(M,K)

)
,
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locally given by the obvious generalization of (2.11)

D(f1, . . . , fp)|U =
∑

|I1|,...,|Ip|≤N

DI1···Ip
∂|I1|f1

∂xI1
(1)

◦ φ1 · · ·
∂|Ip|fp

∂x
Ip

(p)

◦ φp(3.3)

in local charts (U, x), (U1, x(1)), . . . , (Up, x(p)) of M,M1, . . . ,Mp with DI1···Ip ∈
C∞(U,K).
The generalization to sections of vector bundles is possible, see [10]. It would be
interesting to study the operadic nature of these objects.

Shortly after my preprint [10] appeared on the web in which I had conjectured
that star-product morphisms are differential, S.Gutt and J.Rawnsley informed me
that this was indeed the case:

Theorem 3.1 (Gutt-Rawnsley 2004) : Every ∗-product morphism Φ =
∑∞

r=0 ν
rΦr

is a series of differential operators along the Poisson map φ (where Φ0 = φ∗).

For their proof they computed a variant of the C∞ Hochschild-Kostant-Rosenberg
Theorem, namely for any smooth map φ : M ′ →M :

HHp
diff,φ

(
C∞(M,K), C∞(M ′,K)

) ∼= Γ∞(M ′, φ∗ΛpTM).

Among other things this had also been shown for the particular case of the canon-
ical embedding φ of Rn−l into Rn in [8].

3.4 Quantization problem of Poisson maps

The natural inverse problem is the following: given a Poisson map

φ : M ′ →M

between two Poisson manifolds (M ′, P ′) and (M,P ), are there star-products ∗ on
M and ∗′ on M ′ and a star-product homomorphism

Φ : A → A′ with Φ0 = φ∗ ?

Φ will then be called a quantization of the Poisson map φ.

3.5 Results

3.5.1 (Quantum) Momentum maps

The problem of quantizing a momentum map J : M → g∗ as a Poisson map can
slightly be modified in the following way: on g∗ the Gutt star-product is fixed
and the quantized morphism Φ is only applied to the polynomial functions on
g∗, that is to the ν-adic completion Uνg of the universal envelopping algebra of
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the Lie algebra g⊗R K[[ν]] over K[[ν]] equipped with the Lie bracket ν[ , ]. This
modified quantization –where Φ may in general no longer be applied to C∞(g∗,K)–
is equivalent to the concept of a quantum momentum map

J : M → g∗[[ν]]

(Lu 1993 [39], Xu 1998 [56]) where J is Φ restricted to g (hence J = J0) and
satisfies

〈J, ξ〉 ∗ 〈J, η〉 − 〈J, η〉 ∗ 〈J, ξ〉 = 2ν〈J, [ξ, η]〉 ∀ ξ, η ∈ g.

for a given star-product ∗ on the Poisson manifold (M,P ). For J = J the star-
product ∗ is also called covariant by Arnal, Cortet, Molin,Pinczon (1983) [1].
An important particular case of this is a quantized integrable system when g is
abelian and J defines an integrable system.

A large class of covariant star-products is provided by Fedosov’s

Theorem 3.2 (Fedosov 1996) Let (M,ω) be a symplectic manifold, J : M →
g∗ a momentum map, and ∇ a connection in the tangent bundle TM such that

0 =
(
LX〈J,ξ〉∇

)
X
Y := [X〈J,ξ〉,∇XY ]−∇[X〈J,ξ〉,X]Y −∇X [X〈J,ξ〉, Y ].

for all ξ ∈ g and vector fields X,Y on M , i.e. ∇ is invariant by the Hamiltonian
Lie algebra action induced by g.
Then there exists a strongly invariant star-product ∗ on M , i.e. for which

〈J, ξ〉 ∗ g − g ∗ 〈J, ξ〉 = 2ν{〈J, ξ〉, g} ∀ ξ ∈ g ∀ g ∈ C∞(M,K).

In particular (g = 〈J, η〉) the star-product ∗ is covariant.

See [24] for a proof. Many examples are provided by momentum maps associated
to a proper Hamiltonian Lie group action (since the action preserves a Riemannian
metric thanks to a classical theorem by R.Palais, [48]).

3.5.2 Symplectic to symplectic

In spite of the simple geometric nature of a Poisson map φ : M ′ →M between two
symplectic manifolds (M ′, ω′) and (M,ω), the full answer of the quantizability of
φ is not yet known. A partial result has been obtained in [10]:

Theorem 3.3 (M.B. 2004) If

• the Atiyah-Molino class κAM(M ′, (KerTφ)ω′
) of the symplectic integrable

subbundle (KerTφ)ω′
vanishes and

• the Deligne classes satisfy [∗′](ν) = [ω′]
ν

+ φ∗
(
[∗](ν)− [ω]

ν

)
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then the Poisson map φ : M →M ′ is quantizable. Moreover, in that case the star-
products can be modified by equivalence transformations such that φ∗ is already a
star-product morphism.

See section 6 for a short definition of the Atiyah-Molino class.
The proof uses a Fedosovian representation of both star-products where the Atiyah-
Molino class arises as a natural obstruction, see also section 7.1.2 for a discussion
of total obstructions up to order three.

4 (Bi)Modules

4.1 (Bi)Modules of deformed algebras

Let (A,C0) be an associative algebra with unit over the commutative ring k.
Consider a formal associative deformation (A = A[[ν]], ∗ = C =

∑∞
r=0 ν

rCr).
It is natural to look at (left) modules or representations of A, i.e. at a k-module

M0 such that forM :=M0[[ν]] there is a

k[[ν]]−bilinear map ρ : A × M → M
(f , ϕ) 7→ ρ(f)(ϕ)

with the representation identity

(4.1) ρ(f)ρ(g)(ϕ) = ρ(f ∗ g)(ϕ) and ρ(1) = idM

for all f, g ∈ A and ϕ ∈ M0. A right A-module is defined as a left Aopp-
module. For another associative k-algebra (B,C′0) with associative deformation
(B = B[[ν]], ∗′ = C′ =

∑∞
r=0 ν

rC′r) a A−B bimodule is a left A⊗k[[ν]]Bopp-module.
In order to see some recursive constructions let

(4.2) D(f, g) :=
∞∑

r=0

νrDr(f, g) := ρ(f)ρ(g)− ρ
(
C(f, g)

)
∈ Homk[[ν]](M,M)

for all f, g ∈ A, hence (4.1) holds iff D = 0. At order r = 0 the representation
identity entails that ρ0 is a representation of A on M0. Moreover, the space
Homk(M0,M0) becomes an A−A bimodule via (fKg)(φ) := ρ0(f)

(
K(ρ0(g)φ)

)
for all f, g ∈ A, K ∈ Homk(M0,M0), and ϕ ∈M0. At order r+ 1 the represen-
tation identity gives

0
!
= Dr+1 =: bρr+1 + D̂r+1.

where D̂r+1 only contains ρs up to order r. There is the following general identity
for D:

0 = ρ(f)D(g, h)− D
(
C(f, g), h

)
+ D

(
f,C(g, h)

)
− D(f, g)ρ(h) ∀ f, g, h ∈ A
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where only the associativity of C and the multiplication in Homk[[ν]](M,M) is
needed. Supposing the representation identity true up to order r, i.e. 0 = D0 =
· · · = Dr we can deduce the following equation from the preceding identity:

0 = bDr+1 = bD̂r+1,

hence the recursive obstructions to this construction lie in the second Hochschild
cohomology group

HH2
(
A,Homk(M0,M0)

)
.

4.2 Classical Limit: vanishing ideal and coisotropic maps

Let (M,P ) be a Poisson manifold, let A = C∞(M,K), and let ∗ =
∑∞

r=0 Cr be
a star-product on M . A possible framework for modules and representations in
deformation quantization –but certainly not the only one– is the following: let
E

τ→ C a K-vector bundle over a manifold C (where the most important case will
be the trivial bundle E = C × K), let M0 := Γ∞(C,E) and M :=M0[[ν]]. We
demand that a star-product representation ρ to be an algebra morphism of (A, ∗)
into the associative unital algebra of all formal series of differential operators on
M0, i.e. D(M0,M0)[[ν]] =: D(M,M).

In what follows, we shall restrict on the case E = C ×K. The representation
identity (4.1) at r = 0 shows that ρ0 is an algebra morphism of the associative
commutative algebra A = C∞(M,K) into D

(
C∞(C,K), C∞(C,K)

)
. Since for real-

valued f the function 1 + f 2 is invertible, and invertible differential operators are
of order zero (we do not consider inverses as pseudodifferential operators!), hence
there is an algebra morphism Φ0 : C∞(M,K)→ C∞(C,K) such that

ρ0(f)(ϕ) =: Φ0(f)ϕ ∀ f ∈ A ∀ ϕ ∈M0 = C∞(C,K)

whence (thanks to Milnor’s exercise) there exists a C∞-map

i : C →M with ρ(f)(ϕ) = (i∗f)ϕ.

A very important notion will be the vanishing ideal of i:

I := {g ∈ C∞(M,K) | i∗g = 0} which is an ideal of C∞(M,K).

Upon antisymmetrizing the representation identity (4.1) at r = 1 for g, g′ ∈ I we
get

0 = ρ1(g)ρ0(g
′) + ρ0(g)ρ1(g

′)− ρ1(gg
′)− ρ0

(
C1(g, g

′)
)
− (g ↔ g′)

= 0 + 0− 0− 2ρ0({g, g′})

whence
I is a Poisson subalgebra of C∞(M,K)

⇔:
i is a coisotropic map.
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These maps are important in Poisson geometry as the following examples of
coisotropic maps show:

• i is surjective or has dense image.

• i is a Poisson map.

• i is an embedding on a coisotropic or 1st class submanifold of M which can
alternatively be defined in the following way:

Poisson : ∀ c ∈ C, ∀ α ∈ TcC
ann ⊂ TcM

∗ : Pc(α, ) ∈ TcC
symplectic : ∀ c ∈ C : TcC

ω ⊂ TcC

Note that coisotropic submanifolds come with a (singular) integrable dis-
tribution c 7→ Pc(TcC

ann, ) ⊂ TcC giving rise to a (singular) foliation F
on C: the quotient space π : C → C/F is known to be the reduced phase
space. For symplectic manifolds M the distribution is an integrable sub-
bundle E = TCω and the foliation is regular. If in this case the quotient
C/F =: Mred is a manifold such that π is a submersion, then Mred is known
to carry a canonical symplectic structure ωred defined by π∗ωred = i∗ω.

• i : M ′ → M × M ′ : m′ 7→
(
φ(m′),m′) i.e. a graph of a Poisson map

(A.Weinstein [55]), where M ′ indicates the Poisson manifold (M ′,−P ′).

4.3 Differentiability of representations

In the same way as for morphisms, one may ask whether a star-product represen-
tation ρ is also differential in its first argument:

Theorem 4.1 (M.B. 2004) Every ∗ star-product representation on C∞(C,K),
ρ =

∑∞
r=0 ν

rρr, is a series of bidifferential operators along i and idC according to
the diagram

M
↖ i

C
↙ idC

C

The idea of the proof is similar to the proof of the fact that all derivations of A
are vector fields: by induction the case ρ0 being clear.

• Use the representation identity at r + 1:

ρr+1(fg)(ψ) = ρr+1(f)
(
(i∗g)ψ

)
+ (i∗f)ρr+1(g)(ψ)− D̂r+1(f, g, ψ)

• Embed ι : M → RN by Whitney’s theorem (Pflaum’s trick).
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• Use Hadamard’s trick

ĥ(x) = ĥ(y) +
N∑

j=1

∫ 1

0

∂ĥ

∂xj
(tx+ (1− t)y)dt (xj − yj)

on a prolongation ĥ of a function h on M to RN , restrict this formula to
M , and express ρr+1(h)(ψ) upon using ρr+1(1) = 0 at x = y in terms of
D̂r+1(f, g, ψ) which by induction is tridifferential along i, i, idC .

4.4 Quantization problem of coisotropic submanifolds

The following inverse problem is interesting: given a coisotropic submanifold of
M

i : C →M

and a star-product ∗ on M , is there a star-product representation on M :=
C∞(C,K)[[ν]]

ρ : A → D(M,M) with ρ0(f)(φ) = (i∗f)φ ?

∗ is called representable in that case.

4.5 Deformation of the vanishing ideal and adapted star-
products

Let i : C →M be a coisotropic submanifold (with vanishing ideal I) of the Poisson
manifold (M,P ), and let ∗ be a star-product on M . The following simplification
has turned out to be useful:

Adapted star-products are star-products ∗ such that

I[[ν]] is a left ideal of A

These star-products are immediately representable since

C∞(C,K)[[ν]] ∼= A/I[[ν]].

For example the star-product (1.2) is adapted. Moreover, every representable
star-product is equivalent to an adapted star-product: in a tubular neighbourhood
of C in M one shows that the map f 7→ ρ(f)1 can be written as i∗(Sf) where
S = id+

∑∞
r=1 ν

rSr is a formal series of differential operators such that Sr1 = 0 for
all r ≥ 1. Then for the equivalent star-product ∗′ = S(∗) the map ρ′(f) := ρ(S−1f)
will be a star-product representation such that

I[[ν]] = {g ∈ A | ρ′(g)1 = 0}

and the right hand side obviously is a left ideal of (A, ∗′).



(Bi)Modules, morphisms, and reduction of star-products 27

4.6 Results

4.6.1 Partial results

Finitely generated projective modules of A = C∞(M,K) are in bijection with
Γ∞(M,E) where E is a K-vector bundle over M thanks to the Serre-Swan The-
orem. By explicitly deforming the projection valued map on M defining E as a
subbundle of a trivial bundle B.Fedosov (1985, 1996, see e.g. [24]) has shown that
these modules are always quantizable. This analysis has been carried out further
by Bursztyn and Waldmann who investigated Morita equivalence bimodules, see
e.g. [11], [12].

Waldmann and myself (1998) [4] transferred the notion of the Gel’fand-Naimark-
Segal construction in C∗-algebra theory to deformation quantization: here the
modules are constructed by means of a positive linear functional on A (‘positiv-
ity’ refers to the nonarchimedian asymptotic ring ordering in R[[ν]]). We saw that
some of the relevant representations in quantum mechanics (Schrödinger and Wick
representation and projectable WKB) could be obtained that way. Waldmann has
continued this work [51], [52].

The aforementioned symbol calculus of differential operators (cf. Section 1) is
a particular case of representations of star-products on the cotangent bundle T ∗Q
of any manifold Q which has been studied in a series of papers by Pflaum (1998)
[50], M.B., N.Neumaier, S.Waldmann [5], [6], [9].

4.6.2 Results in the symplectic case

See subsection 5.2 for the notion of symplectic reduction:

Theorem 4.2 (M.B. 2003) : Let i : C →M be a closed coisotropic submanifold
of a symplectic manifold (M,ω) such that the reduced phase space π : C → Mred

exists. Let ∗ be a star-product on M . Then if for the Deligne class [∗] of ∗ it is
true that i∗[∗] is basic, i.e. there is a class β on Mred with i∗[∗] = π∗β then the
star-product ∗ is representable.

The idea of the proof is to note that i×π : C →M×Mred embeds C as a Lagrangian
(i.e. minimal coisotropic) submanifold. According to a classical theorem by Alan
Weinstein [53], a tubular neighbourhood of C in M ×Mred is symplectomorphic
to an open neighbourhood of the zero section of T ∗C. The theorem follows by
symbol calculus on C. See also the reduction theorem in subsection 5.4.3.

A more general result is true:

Theorem 4.3 (M.B. 2003) : Let i : C →M be a closed coisotropic submanifold
of a symplectic manifold (M,ω) and let E = TCω be the integrable subbundle of
TC. Let ∗ be a star-product on M having Deligne class [∗]. Suppose that

• The Atiyah-Molino class κAM(C,E) of E vanishes.
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• i∗[∗] = 0.

Then the star-product ∗ is representable.

The idea of the proof in [10] is to reduce this situation to the morphism quantization
theorem 3.3:

• Construct a fibration of locally reduced phase spaces, i.e. a Poisson
map φ : EC → tubular neighbourhood of C in M where the symplectic
manifold EC generalizes the aforementioned situation M ×Mred → M and
the fibres are local quotients in a foliation chart.

• C embeds into EC as Lagrangian submanifold.

• Represent C∞(EC ,K)[[ν]] on C,

• quantize the Poisson map φ (here the Atiyah-Molino class becomes rele-
vant) to get an algebra morphism of C∞(M,K)[[ν]] into C∞(EC ,K)[[ν]], and
represent.

4.6.3 Adapted multidifferential operators and formality

Let C be a fixed closed submanifold with vanishing ideal I of a differentiable man-
ifold M . Motivated by adapted star-products we have introduced in [8] the notion
of an adapted multidifferential operator D in Dp

(
C∞(M,K), . . . , C∞(M,K); C∞(M,K)

)
by demanding

D(f1, . . . , fp−1, g) ∈ I ∀ f1, . . . , fp−1 ∈ C∞(M,K), ∀ g ∈ I.

Let Gp
I be the space of adapted p-multidifferential operators on M and GI :=⊕

p∈Z Gp
I . Then GI

• contains the bidifferential operators of an adapted star-product,

• is closed by composition in the ith argument,

• and thus a subcomplex of the Hochschild complex.

• There is the Hochschild-Kostant-Rosenberg type Theorem

gp
I := HGp

I
∼= {T ∈ Γ∞(M,ΛpTM | T (dg1, . . . , dgp) ∈ I ∀ g1, . . . , gp ∈ I}.

Note also that HHp
diff

(
A,D(M0,M0)

) ∼= Γ∞(C,Λp(TM/C)). For certain partic-
ular situations in M = Rn and C = Rn−l one can show a G∞-formality statement.
A different aproach to the same problem which generalizes the Kontsevitch graphs
has been done by A.Cattaneo, G.Felder, see [15], [16].
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4.6.4 Glößners’s representability theorem in codimension one

Theorem 4.4 (P.Glößner 1998) Let i : C → M be a closed coisotropic sub-
manifold of codimension 1 of a Poisson manifold (M,P ).
Then every star-product on M is representable.

See [30]. This theorem can be deduced from the absence of recursive obstructions
in codimension 1, see subsection 7.2.1.

5 Commutants of modules and quantum reduc-

tion

5.1 Commutants of modules of deformed algebras

Let (A,C0) be an associative unital algebra over the commutative ring k, let
∗ = C =

∑∞
r=0 ν

rCr an associative formal deformation of A and A = A[[ν]]. Let
M0 be an A-module, andM =M0[[ν]] be an A-module where the representation
is denoted by ρ. We specialize to the situation where M0 is generated by one
element b as an A-module. By induction it is clear thatM is also generated by b
as an A-module.

It is interesting to study the algebra Ar := HomA(M,M) of all homomor-
phisms ofM, i.e. k-linear maps D :M→M such that

(5.1) D
(
ρ(f)(ϕ)

)
= ρ(f)

(
D(ϕ)

)
∀ f ∈ A ∀ ϕ ∈M

The algebra Ar is also known as the commutant of the A-moduleM. It is classical
that M becomes a A-Aopp

r -bimodule via (f, ϕ,D) 7→ ρ(f)
(
Dϕ

)
for all f ∈ A,

D ∈ Ar, and ϕ ∈M.
The algebra Ar can be related to a certain subquotient of A as follows: let I

be the left ideal in A defined by

I := {g ∈ A | ρ(g)b = 0}.
Let ϕ ∈ M. There is f ∈ A, unique up to elements in I, with ρ(f)b = ϕ. Let
D ∈ Ar and h ∈ A (also unique up to elements in I) with ρ(h)b = Db. Then we
have

Dϕ = Dρ(f)b = ρ(f)Db = ρ(f)ρ(h)b = ρ(f ∗ h)b.
Hence D is determined by h which has the additional property that g ∗ h ∈ I for
all g ∈ I. Define the idealizer of I by

(5.2) N (I) := {h ∈ A | g ∗ h ∈ I ∀ g ∈ I}.
It follows that N (I) is a subalgebra of A, that I is a two-sided ideal of N (I),
and that

N (I)/I → Aopp
r : h̄ := h+ I 7→ Dh̄ : (ρ(f)b 7→ ρ(f ∗ h)b

is a well-defined isomorphism of associative algebras.
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5.2 Classical limit in the symplectic case: symplectic re-
duction

Let (M,ω) be a symplectic manifold, A = C∞(M,K), and let ∗ be a star-product
onM . Let i : C →M be a closed coisotropic submanifold andM = C∞(C,K)[[ν]].
Suppose that there is a star-product representation ρ of ∗ on M. Computing
zeroth and first order of (5.2) we get the following classical limits:

I ν→0−→ I

N (I) ν→0−→ N(I) := {f ∈ C∞(M,K) | {f, g} ∈ I ∀ g ∈ I}

Note that in these ‘limits’ only the conditions up to first order of the zeroth
components of f, g are considered; there may be additional ones in higher orders:
in general it is NOT true that N (I) is isomorphic to N(I)[[ν]] as K[[ν]]-module.
Since C is coisotropic, I is a Poisson subalgebra of A (and a commutative ideal),
and it follows that N(I), its Lie normalizer, is a Poisson subalgebra with unit of A
and I is a Poisson ideal of N(I). Hence the quotient N(I)/I is a Poisson algebra
which can be seen as the classical limit

N (I)/I ν→0−→ N(I)/I.

The geometric interpretation is a well-known construction called phase space re-
duction: the coisotropic submanifold C is foliated along the integrable subbundle
TCω. Since the differentials of elements of I vanish along C it can be shown
that the Hamiltonian vector fields of g ∈ I are along the leaves of the foliation F .
Hence N(I) is a space of functions constant along the leaves and thus project down
to the quotient space (or reduced phase space) Mred := C/F . Hence the Poisson
algebra N(I)/I models a function space on Mred. In case Mred is a smooth mani-
fold and the canonical projection C

π→ Mred is a smooth submersion it is known
that Mred carries a canonical symplectic structure ωred defined by

i∗ω =: π∗ωred.

In that case there is the following isomorphism

N(I)/I ∼= C∞(Mred,K) as Poisson algebras.

This point of view is one of the features of the classical BRST approach to con-
straints, incorporating the ideas of Dirac 1964 and Batalin-Fradkin-Vilkovisky
1983/85, see e.g. Henneaux-Teitelboim 1988 , Stasheff 1988 [34] [26], Kimura
1992 [36].



(Bi)Modules, morphisms, and reduction of star-products 31

A.Weinstein and J.Hua Lu (1993) [39] emphasized the bimodule structure of
the geometric situation (‘coisotropic creed’)

M
i

↗
C

↘
π

Mred

corresponds to

C∞(M,K)
i∗

↙
C∞(C,K)

↖
π∗

C∞(Mred,K)

hence C∞(C,K) is a C∞(M,K)-C∞(Mred,K)-bimodule via fϕh = (i∗f)(π∗h)ϕ.
Note that both i and π are coisotropic maps.

Example: Marden-Weinstein reduction (1974) [40]: let J : M → g∗ be a momen-
tum map (coming from symplectic G-action), 0 regular value of J :

C := J−1(0) is coisotropic, Mred = C/G.

5.3 Quantization Problem: quantum reduction

The inverse problem is interesting: in the above geometric situation M
i← C

π→
Mred what would a reasonable quantum reduction be?

• Coisotropic creed: are there star-products ∗ on M and ∗r on Mred such that

M := C∞(C,K)[[ν]] becomes a ∗ − ∗r −bimodule ?

• Classical BRST: is there a star-product ∗ on M such that

I[[ν]] is a ∗ −subalgebra of A,
N(I)[[ν]] is a ∗ −subalgebra of A,
I[[ν]] is a ∗ −ideal of N(I)[[ν]] ?

This implies that

N(I)[[ν]]/I[[ν]] ∼= C∞(Mred,K)[[ν]] has a star− product.

The star-product ∗ is called projectable in that case. Note that I[[ν]] is not
demanded to be a one-sided ideal of A as in the first approach.

5.4 Results

5.4.1 Partial results

A deformation quantization version of the BRST construction in the situation of
the Marsden-Weinstein reduction has been given by M.B, H.-C. Herbig, S.Waldmann
(2000) [7].
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5.4.2 Subalgebra deformations of the vanishing ideal

The difference of the two aforementioned approaches becomes smaller in the sym-
plectic case, see [10]

Theorem 5.1 (M.B. 2003) : For every symplectic manifold M and connected
closed coisotropic submanifold C we have: if there is a star-product ∗ on M such
that I[[ν]] is a subalgebra of A, then it is either a left or a right ideal of A.

5.4.3 Quantum reduction in the symplectic case

For smooth reduced phase spaces, the quantization of the reduction procedure
can in some sense be classified, see [10]:

Theorem 5.2 (M.B. 2003): Let i : C → M be a connected coisotropic subman-
ifold of a symplectic manifold (M,ω) such that the reduced phase space π : C →
Mred exists. Let ∗ be a star-product on M . Then the following conditions are
equivalent:

1. i∗[∗] is basic, i.e. there is a class β on Mred with i∗[∗] = π∗β.

2. ∗ is reducible, i.e. equivalent to a projectable star-product.

3. There is a star-product ∗r on Mred such that C∞(C,K)[[ν]] becomes a ∗− ∗r
or a ∗r − ∗-bimodule.

If one of these conditions is satisfied then

• ∗ is representable.

• i∗[∗] = π∗[∗r].

•
(
C∞(Mred,K)[[ν]], ∗r

)
is the commutant of the algebra

(
C∞(M,K)[[ν]], ∗

)
acting on C∞(C,K)[[ν]].

• The isomorphism classes of ∗− ∗r-bimodule-structures on C∞(C,K)[[ν]] are
in bijection to the following deRham cohomology groups

νH1′
dR(C,K)⊕ ν2H1

dR(C,K)[[ν]]

where the ′ means quotienting by 2πi times the integer classes for K = C.

Idea of proof:

1. Note that (A.Weinstein)
C →M ×Mred

is a Lagrangian submanifold.
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2. An open neighbourhood of C in M×Mred looks like an open neighbourhood
of T ∗C (A.Weinstein).

3. The symbol calculus on C by means of a star-product is possible iff the
restriction of the Deligne class vanishes
(M.B., N.Neumaier, M.Pflaum, S.Waldmann, 2003, [9]).

4. Thereby one gets a representation of the tensor product ∗⊗∗opp
r on C which

gives the bimodule structure.

Note that there is equivalence of Coisotropic Creed and Classical BRST in this case.

6 The Atiyah-Molino-Class of a foliation

In order to understand the nature of the total obstructions I am going to present
in the next section I shall give some overview of the Atiyah-Molino class of a
foliation (P.Molino 1971 [41], [42]):

Let E be an integrable subbundle of the tangent bundle of a manifold C.
Frobenius’ theorem guarantees the existence of a foliation of C along E. Consider
the quotient bundle Q := TC/E, then one has Γ∞(C,Q) = Γ∞(C, TC)/Γ∞(C,E).
Since Γ∞(C,E) is a Lie subalgebra of the Lie algebra Γ∞(C, TC) of all vector fields,
there is a natural representation of the ‘vertical fields’, Γ∞(C,E) on Γ∞(C,Q) by
means of

∇Bott
V X := [V,X]

for all V ∈ Γ∞(C,E), X ∈ Γ∞(C, TC) and X 7→ X denoting the canonical pro-
jection Γ∞(C, TC)→ Γ∞(C,Q). This representation is called the Bott connection
since it satisfies the Koszul axioms of a partial connection along E in the vector
bundle Q. The representation identity implies the flatness of the Bott connec-
tion. The spaces of smooth sections of tensor, symmetric or Grassmann products
of Q or its dual are thus modules of the Lie algebra Γ∞(C,E) and the space
Γ∞(C,ΛE∗ ⊗ F) (where F is one of these bundles constructed out of Q) becomes
a cocomplex by the natural vertical version dv of the exterior derivative.

It is always possible to extend the Bott connection in a nonunique manner
to a connection ∇ on C in Q, i.e. for which ∇VX = ∇Bott

V X for all vertical
vector fields V . The curvature tensor R of this connection has the property that
R(V,W )X = 0 for all vertical V,W and arbitrary vector fields X due to the
flatness of the Bott connection. Hence the curvature tensor descends to a section
rAM in Γ∞(C,Λ1E∗⊗Q⊗Q∗⊗Q∗) defined by rAM(V )(X, Y ) := R(V,X)Y . By the
Bianchi identity it follows that dvrAM = 0. The class of this 1-cocyle, the so-called
Atiyah-Molino class cAM(C,E) turns out to be independent of the connection one
has chosen to extend the Bott connection, and it is thus a differential topological
invariant of the foliation. An example of a foliation with nonzero Atiyah-Molino
class is provided by the Reeb foliation of the three-sphere.
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Molino has also shown that the vanishing of the Atiyah-Molino class is equiv-
alent to the existence of a locally projectable connection in TC, i.e. a connection
for which the locally defined projections on the local leaf spaces (in a foliation
chart) are affine maps with respect to a local connection on the local leaf space.
In the Fedosov construction this fact is crucial.

For coisotropic submanifolds one can find a variant of the Atiyah-Molino class,
κAM(C,E) where only connections are considered which preserve the symplectic
structure on Q, see [10].

7 Obstructions and foliations

7.1 Morphisms

7.1.1 Reduction to bimodule problem

Since the graph of a Poisson map is a coisotropic submanifold of the cartesian
product of the two Poisson manifolds concerned, the problem of quantizing a
Poisson map can be reduced to a bimodule representation problem on their graphs,
see [10].

7.1.2 Total obstructions in the symplectic case

By a rather technical Fedosov analysis of a Poisson map φ : M → M ′ between
symplectic manifolds we get the

Theorem 7.1 (M.B.2003) Let ∗ be a star-product on M and ∗′ be a star-product
on M ′. Let E := (KerTφ)ω Let α0 be a representative of [∗]0− φ∗[∗′]0. Then ∗ is
adapted up to order 3 iff

1. 0 = pv

(
[∗]0 − φ∗[∗′]0) (vertical restriction of class of α0 vanishes)

2. α0 can be chosen in such a way that

1

12
P

(3)(
κAM(M,E), κAM(M,E)

)
+

1

2
P

(1)
([α0](1,1), [α0](1,1))− pv

(
[∗]1 − φ∗[∗′]

)
= 0

where P
(p) ∈ Γ∞(C,Q⊗2p) are p factors of the transverse Poisson structure,

[α0](1,1) denotes the class of α0 seen as form in Γ∞
(
M,Λ1M ⊗ (TM/E)

)
and

κAM(M,E) is the Atiyah-Molino class of the presymplectic manifold (M,φ∗ω′).

See [10] for a proof.
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7.2 (Bi)modules

7.2.1 Recursive obstructions

Recursive obstructions (M.B 2002/04; A.Cattaneo, G.Felder 2003 [15]) answered
the question: if a star-product ∗ is representable on a coisotropic submanifold
C of a Poisson manifold (M,P ) up to order r, what are necessary and sufficient
conditions to continue up to order r + 1 if one can only modify the orders r and
r + 1?

• The good cocomplex is given by Γ∞
(
C,Λ•(TM |C/TC)

)
with

differential dP : Ā 7→ [P,A].

• The obstructions lie in

H2
P (C,K)

( ∼= H2
vert.dR(C,K) if M is symplectic

)
.

• In the particular case where C is of codimension 1 (P.Glößner 1998)H2
P (C,K)

always vanishes, hence every star-product is representable.

7.2.2 Symplectic case

Total obstructions to modules up to order three (M.B.2003) [10]: take the general
symplectic star-product ∗ up to order three (Lichnerowicz 1980; see e.g. DeWilde,
Lecomte 1988 [21]; Fedosov 1996 [24]) and check whether it is adapted:

• Restrict to a tubular neighbourhood U of C;

• Use the Gotay/Weinstein-Theorem [31] U ∼= V ⊂ E∗ := (TCω)∗;

• Use an adapted symplectic covariant derivative ∇̃ constructed out of a presym-
plectic E-preserving connection ∇ on C, and

• Perform some computations of higher order loop type....

Theorem 7.2 (M.B. 2002) Let α0, α1 be representatives of [∗]0, [∗]1. Then ∗ is
adapted up to order 3 iff

1. 0 = pvi
∗[α0] (vertical restriction of class of α0 vanishes)

2. α0 can be chosen in such a way that

1

12
P

(3)(
κAM(C,E), κAM(C,E)

)
+

1

2
P

(1)
([i∗α0](1,1), [i

∗α0](1,1))− pvi
∗[∗]1 = 0

where κAM(C,E) is the Atiyah-Molino class of the presymplectic manifold C.

See [10] for a proof. It is hard to see whether these condition can always be
satisfied which I doubt although I do not know of any concrete example.
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