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Poisson structures on foliated manifolds

by Izu Vaisman

Abstract

We present a survey of results on relationships between a Poisson struc-
ture and a foliation. Namely, we discuss transversally-Poisson structures,
leaf-wise Poisson structures and coupling Poisson structures. The latter
extend Sternberg’s symplectic form, which describes coupling between a
particle and a field. The survey contains no new results, and is based on
[4, 8, 9, 10].

1 Introduction

We present a survey of results on relationships between a Poisson structure and
a foliation. This survey contains no new results, and is based on the following
papers: [4, 8, 9, 10].

We suggest that it is interesting to study Poisson and related structures on
foliated manifolds since these may be relevant to the study of physical systems
depending on gauge parameters, which are the coordinates along the leaves of a
foliation. In what follows we are interested only in mathematical aspects.

2 Calculus on foliated manifolds

In this preliminary section we prepare the necessary computational formulas. All
the objects that we consider are differentiable of class C∞.

Let us recall that a p-dimensional foliation F on a n-dimensional manifold M
consists of the partition of M into maximal integral submanifolds (leaves) of an
integrable, p-dimensional subbundle F = TF , of the tangent bundle TM . By the
classical Frobenius theorem, M is covered by cubical, coordinate domains with
adapted coordinates (xa, yu) (a = 1, ..., q = n − p; u = p + 1, ..., p + q), where the
slices of F have the local equations xa = const., and yu are coordinates along the
leaves.

In foliation theory it is important to study the geometric objects that depend
on the leaves i.e., locally, depend on the coordinates (xa). They are called basic,
projectable or foliated since they may be seen as either lifts from or projections on
the space of leaves M/F . Since the latter may be topologically complicated, its
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differential geometry may be defined as the study of projectable objects on the
foliated manifold (M,F). For instance, one may speak of projectable (foliated,
basic) functions, differential forms, vector and tensor fields, vector and principal
bundles, etc.

On a foliated manifold, we can do differential calculus in a way that takes into
account the foliation. For this purpose, we choose a normal bundle H = HF of
the foliation, such that

(2.1) TM = H ⊕ F.

Obviously H is isomorphic with the transversal bundle TM/F , and it is a foliated
vector bundle. With adapted coordinates we also associate adapted bases of F,H:

(2.2) F = span

{
∂

∂yu

}
, H = span

{
Xa =

∂

∂xa
− tua

∂

∂yu

}
,

where tua are some local coefficients and the Einstein summation convention is
used. By duality, we get

(2.3) T ∗M = H∗ ⊕ F ∗,

and adapted cobases

(2.4) H∗ = annF = span{dxa}, F ∗ = annH = span{θu = dyu + tuadx
a}

(by ann we denote the annihilator of a vector bundle).
Now, let Ω(M),V(M) be the exterior algebras of differential forms and multi-

vector fields onM , respectively. Then, decompositions (2.1), (2.3) yield bigradings

(2.5) Ω(M) =
n∑

k=1

∑
s+t=k

Ωst(M), V(M) =
n∑

k=1

∑
s+t=k

Vst(M),

where s is the H-degree and t is the F -degree.
The calculus operations become F -related if we use bigradings (2.5). The

operations we will need are the exterior differential and the Schouten-Nijenhuis
bracket. If we look at a form ω ∈ Ωst and evaluate dω on arguments X1, ..., Xα ∈
V10, Y1, ..., Yβ ∈ V01, we see that non zero results may be obtained only for
(α = s+ 1, β = t), (α = s, β = t+ 1, α = s+ 2, β = t− 1). Therefore (e.g., [6]),

(2.6) d = d′10 + d′′01 + ∂2,−1,

where the lower indices are the degrees of the corresponding component operators.
(It is essential to use the fact that the Lie bracket of tangent to the leaves vector
fields also is tangent to the leaves.) Furthermore, the coboundary condition d2 = 0
is equivalent to

(2.7)
d′′2 = 0, ∂2 = 0, d′2 + d′′∂ + ∂d′′ = 0,

d′d′′ + d′′d′ = 0, ∂d′ + d′∂ = 0.
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The operator d′′ is the coboundary of the leaf-wise de Rham cohomology, which
computes the cohomology of M with coefficients in the sheaf of germs of foliated
functions [6]. On the other hand, one has the basic de Rham cohomology, which
is the cohomology of the complex of basic forms with coboundary d.

Now, let us refer to the Schouten-Nijenhuis bracket. We recall the following
general formula of Lichnerowicz:

(2.8) i([P,Q])ϕ = (−1)t(s+ 1)i(P )d(i(Q)ϕ)

+(−1)si(Q)d(i(P )ϕ)− i(Q)(i(P )dϕ),

where P ∈ Vs(M), Q ∈ V t(M), and ϕ ∈ Ωs+t−1(M). The operator i is the interior
product.

Now, if P is of bidegree (a, b) (a+b = s) and Q is of bidegree (h, k) (h+k = t),
the component [P,Q]uv (u+ v = s+ t− 1) is provided by formula (2.8) where ϕ ∈
Ωuv(M). With (2.6), we see that the only possibilities to get non-zero components
correspond to the replacement of d by d′, d′′, ∂ in (2.8), which leads to the cases

(2.9) u = a+ h− 1, v = b+ k; u = a+ h, v = b+ k − 1;

u = a+ h− 2, v = b+ k + 1.

All the other components vanish because of degree incompatibility.
We will need more precise formulas for a Schouten-Nijenhuis bracket of two

bivector fields.

Lemma 2.1. For any bivector field P ∈ V2(M) one has

(2.10) [P, P ](α, β, γ) = 2[dγ(]Pα, ]Pβ)− (L]P γP )(α, β)], α, β, γ ∈ Ω1(M),

where L denotes the Lie derivative and ]P : T ∗M → TM is defined by β(]Pα) =
P (α, β).

Proof. It is easy to see that the two sides of (2.10) are tensor fields. Hence, it is
enough to check the formula for α, β, γ equal to differentials of local coordinates
on M , which is simple.

Corollary 2.1. For any two bivector fields P1, P2 ∈ V2(M) one has

(2.11) [P1, P2](α, β, γ) = dγ(]P1α, ]P2β) + dγ(]P2α, ]P1β)

−(L]P1
γP2)(α, β)− (L]P2

γP1)(α, β).

Proof. Polarize formula (2.10).
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If the bivector field P ∈ V2(M) is regular, i.e., s = rank P = dimD = const.,
D = im ]P , we may compute [P, P ] as follows. Choose a decomposition

(2.12) TM = E ⊕D, T ∗M = E∗ ⊕D∗ (E∗ = annD, D∗ = annE).

Then, we have an isomorphism ]P : annE → D, with an inverse −[P : D →
annE, and there exists a well defined differential 2-form θ ∈ Γ∧2D∗ of rank s (Γ
denotes the space of cross sections of a vector bundle) defined by

(2.13) θ(X, Y ) = P [[P (pDX), [P (pDY )]

(p denotes projections). Conversely, (2.13) allows us to reconstruct P from θ, such
that ker ]P = annD. We will say that θ is equivalent to P modulo E.

Lemma 2.2. If P is a regular bivector field and θ is equivalent to P modulo E,
then

(2.14) [P, P ](α, β, γ) =


0 if β, γ ∈ annD,
2γ([]Pα, ]Pβ]) if α, β ∈ annE, γ ∈ annD,
2dθ(]Pα, ]Pβ, ]Pγ) if α, β, γ ∈ annE.

Proof. We use the decomposition (2.12). If not all the arguments are in annE the
result immediately follows from either (2.10) or the following Gelfand-Dorfman
expression of the Schouten-Nijenhuis bracket of two bivector fields [1]

(2.15) [P, P ](α, β, γ) = 2
∑

Cycl(α,β,γ)

< γ, ]P (L]P αβ) > .

For arguments in annE, we have α = [PX, β = [PY, γ = [PZ, with X, Y, Z ∈ ΓD,
and (2.15) yields

[P, P ](α, β, γ) = −2
∑

Cycl(α,β,γ)

< LXβ, Z >

= 2
∑

Cycl(X,Y,Z)

{X(θ(Y, Z))− θ([X, Y ], Z)}.

In the case of a foliated manifold (M,F) with a normal bundle H, if P ∈
V2(M) is an arbitrary bivector field, it has a decomposition

(2.16) P = P ′
20 + P̄11 + P ′′

02,

where the indices denote the bidegree of the components, and we can compute the
corresponding decomposition of the Schouten-Nijenhuis bracket [P, P ] by applying
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formula (2.10) to 1-forms α, β, γ ∈ Ω10(M) and λ, µ, ν ∈ Ω01(M). The results are
contained in the following formulas

(2.17)

[P ′, P ′]30(α, β, γ) = 2[d′γ(]P ′α, ]P ′β)− (L]P ′γP
′)(α, β)],

[P ′, P ′]21(α, β, λ) = 2∂λ(]P ′α, ]P ′β) = −2λ([]P ′α, ]P ′β]),

[P ′, P ′]12(α, λ, µ) = 0, [P ′, P ′]03(λ, µ, ν) = 0,

(2.18)

[P̄ , P̄ ]30(α, β, γ) = 0,

[P̄ , P̄ ]21(α, β, λ) = 2[d′′λ(]P̄α, ]P̄β)− (L]P̄ λP̄ )(α, β)],

[P̄ , P̄ ]12(α, λ, µ) = −2[d′µ(]P̄λ, ]P̄α) + (L]P̄ µP̄ )(α, λ)],

[P̄ , P̄ ]03(λ, µ, ν) = 2[∂ν(]P̄λ, ]P̄µ)− (L]P̄ νP̄ )(λ, µ)],

(2.19)

[P ′′, P ′′]30(α, β, γ) = 0, [P ′′, P ′′]21(α, β, λ) = 0,

[P ′′, P ′′]12(α, λ, µ) = 0,

[P ′′, P ′′]03(λ, µ, ν) = 2[d′′ν(]P ′′λ, ]P ′′µ)− (L]P ′′νP
′′)(λ, µ)],

(2.20)

[P ′, P̄ ]30(α, β, γ) = d′′γ(]P ′α, ]P̄β)− d′′γ(]P ′β, ]P̄α)

−(L]P ′γP̄ )(α, β)− (L]P̄ γP
′)(α, β),

[P ′, P̄ ]21(α, β, λ) = d′λ(]P ′α, ]P̄β)− d′λ(]P ′β, ]P̄α)

−(L]P̄ λP
′)(α, β),

[P ′, P̄ ]12(α, λ, µ) = ∂µ(]P ′α, ]P̄λ)− (L]P̄ µP
′)(α, λ)

= −(L]P ′αP̄ )(λ, µ), [P ′, P̄ ]03(λ, µ, ν) = 0,

(2.21)

[P ′, P ′′]30(α, β, γ) = 0, [P ′, P ′′]03(λ, µ, ν) = 0,

[P ′, P ′′]21(α, β, λ) = −(L]P ′′λP
′)(α, β)

[P ′, P ′′]12(α, λ, µ) = d′µ(]P ′α, ]P ′′λ)− (L]P ′′µP
′)(α, λ)

= (L]P ′αP
′′)(λ, µ),

(2.22)

[P̄ , P ′′]30(α, β, γ) = 0, [P̄ , P ′′]21(α, β, λ) = 0,

[P̄ , P ′′]12(α, λ, µ) = d′′µ(]P̄α, ]P ′′λ)− (L]P̄ µP
′′)(α, λ)

−(L]P ′′µP̄ )(α, λ),

[P̄ , P ′′]03(λ, µ, ν) = d′ν(]P̄λ, ]P ′′µ)− d′ν(]P̄µ, ]P ′′λ)

−(L]P̄ νP
′′)(λ, µ)− (L]P ′′νP̄ )(λ, µ).



144 I. Vaisman

3 Transversally-Poisson structures

In discussing Poisson geometry on a foliated manifold (M,F) it is natural to look
at:

a) structures that have the Poisson property in the transversal geometry of F ;
b) leaf-wise Poisson structures;
c) Poisson structures on M with special relationships to the foliation.
In the present section we consider transversally-Poisson structures for a given

foliation F . We described such structures in [4] and [8].

Definition 3.1. A transversally-Poisson structure of the foliation F on the man-
ifold M is a bivector field P ∈ V2(M) such that

(3.1) {f, g} = P (df, dg) f, g ∈ C∞(M)

restricts to a Lie algebra bracket on C∞
pr (M), where the index pr denotes pro-

jectability.

Proposition 3.1. The bivector field P ∈ V2(M) defines a transversally-Poisson
structure of the foliation F iff

(3.2) (LY P )|ann F = 0 [P, P ]|ann F = 0

for all Y ∈ ΓF .

Proof. If f, g ∈ C∞
pr (M), ∀ Y ∈ ΓF , Y f = 0, and one has

(LY P )(df, dg) = Y (P (df, dg)) = Y {f, g} ,

hence, the first condition (3.2) is equivalent with {f, g} ∈ C∞
pr (M).

The second condition (3.2) is a direct consequence of the formula

(3.3) [P, P ](df, dg, dh) = 2
∑

Cycl(f,g,h)

{{f, g}, h},

which is a consequence of Lemma 2.1.

Remark 3.1. If we choose a normal bundle of F and write P under the form
(2.16), the first condition (3.2) is equivalent with (LY P

′)|ann F = 0. Furthermore,
formulas (2.17)-(2.22) show that the second condition (3.2) is equivalent with
[P ′, P ′]|ann F = 0, modulo the first condition (3.2). Thus, transversally-Poisson is
a property of the transversal component P ′ of the bivector field P .

We may define the Hamiltonian vector field of a foliated function f with respect
to a transversally-Poisson structure P by Xf = i(df)P , and, because of (3.2), it
will be a projectable vector field.

Furthermore, we give the following definition.
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Definition 3.2. The generalized distribution D defined by

Dx = span{ Y (x), Xf (x) / Y ∈ ΓF, f ∈ C∞
pr (M)} (x ∈M)

is called the characteristic distribution of the transversally-Poisson structure P .

The following proposition shows the geometry behind a transversally-Poisson
structure.

Proposition 3.2. The characteristic distribution D of a transversally-Poisson
structure of a foliation is completely integrable, and each leaf Σ of D is a presym-
plectic manifold, with a presymplectic 2−form of kernel F |Σ.

Proof. Brackets of the form [Y1, Y2], [Y,Xf ], Y1, Y2, Y ∈ ΓF, f ∈ C∞
pr (M) belong

to D because F is a foliation, and because Xf is projectable. Then, the Jacobi
identity for the Poisson structure on C∞

pr (M) yields ([Xf , Xg] − X{f,g})(h) = 0,
∀f, g, h ∈ C∞

pr (M), whence

(3.4) [Xf , Xg] = X{f,g} + Y, Y ∈ ΓF .

Hence, the distribution D is involutive.
Furthermore, let U be an F−adapted coordinate neighborhood, and p : U −→

V , V = U/U ∩ F the submersion onto the corresponding space of slices. The
distribution D|U projects onto the symplectic distribution p∗(D) of the Poisson
structure induced by the first term of (2.16) on V . It follows that p∗(D) has
a constant dimension along the integral paths of the vector fields p∗Xf (f ∈
C∞

pr (M)). Hence D = p−1
∗ (p∗(D)) has a constant dimension along the integral

paths of the vector fields Xf . D also has a constant dimension along the integral
paths of vector fields Y ∈ ΓF because p∗(D) does not change along such paths.

Accordingly, the complete integrability of D follows from a version of the
Frobenius-Sussmann-Stefan theorem (see Theorem 2.9′′ of [7]).

The leaves Σ of the characteristic distribution D are immersed submanifolds
of M ,foliated by the restriction of F , and are sent by the submersion p above to
open symplectic submanifolds of the symplectic leaves σ of the projection of the
first term of (2.16). The symplectic form of σ lift to a global, closed 2−form λ of
Σ with the kernel F |Σ.

Now, let us notice that the Hamiltonian vector fields of foliated functions do
not depend on the leaf-wise component P ′′ of the decomposition (2.16), and the
same holds for the characteristic distribution D.

The idea of associating a Hamiltonian vector field to a foliated function is
natural, if we intend to see the leaf-wise coordinates as gauge parameters of a
dynamical system, where motion affects the gauge parameters but is not affected
by the latter. (For instance, the temperature of a body moving with high friction
may be seen as a gauge parameter of this kind.) Indeed, then, the Hamiltonian
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function of the system will have to be a projectable function (independent of the
gauge parameters) but, the dynamical vector field has to be a usual vector field
on phase space in order to also define the evolution of the gauge parameters.

The previous considerations lead to [8]

Definition 3.3. On a foliated manifold (M,F), two transversally-Poisson struc-
tures P1, P2 are transversally equivalent if ]P1|ann F = ]P2 |ann F . A family of
transversally equivalent transversally-Poisson structures is a Hamiltonian struc-
ture of the foliation F .

It is easy to understand that a Hamiltonian structure of F is equivalent with a
vector bundle morphism χ : annF → TM such that, if we define the Hamiltonian
vector fields of foliated functions by Xf = χ(df), the formula

(3.5) {f, g} = Xfg

defines a Poisson algebra structure on C∞
pr (M). (In particular, χ is skew sym-

metric.) Namely, χ = ]P |ann F for any structure P of the equivalence class that
defines the Hamiltonian structure.

A Hamiltonian structure has a characteristic distribution D, which is the com-
mon characteristic distribution of all the corresponding equivalent transversally-
Poisson structures P , and D = F + imχ. It is easy to see that F ∩ imχ =
χ(annD). (Since F ⊆ D, annD ⊆ annF .) Indeed, α ∈ annD iff α = p∗(λ) for
some λ ∈ ker ]p∗(P ′), where P ′ is defined by (2.16), and then

p∗(χ(α)) = p∗(i(α)P ′) = i(λ)(p∗(P
′)) = 0.

This implies χ(annD) ⊆ (imχ) ∩ F . On the other hand, if χ(α) ∈ F , we must
have α = p∗(λ) where λ ∈ ker ]P ′ , and this justifies the converse inclusion.

Example 3.1. Let D be a coisotropic foliation of dimension n + k (k ≤ n) of
a symplectic manifold M of dimension 2n, with the symplectic form ω. It is
well known that the ω-orthogonal distribution of D is tangent to a foliation F ,
and that, ∀x ∈ M , there exist local coordinates (xa, xu, yi) around x such that
a = 1, . . . , p := n − k, u = p + 1, . . . , n, i = 1, . . . , n, xa = const. are the local
equations of D, and the symplectic form has the canonical expression

(3.6) ω =

p∑
a=1

dxa ∧ dya +
n∑

u=p+1

dxu ∧ dyu.

(This result is a theorem of Lie [2].) The local equations of the foliation F are
xa = const., xu = const., yu = const,, and the computation of the hamiltonian
vector field Xω

f of an F -foliated function (via (3.6)) shows that Xω
f is an F -foliated

vector field tangent to the leaves of D. Therefore, χ = −[−1
ω |ann F is a hamiltonian

structure of the foliation F with the presymplectic foliation D. Moreover, in this
case we have F ⊆ imχ. The Poisson structure defined by the original symplectic
structure ω is one of the F -transversally-Poisson structures that defines χ.
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The following definition introduces the case where the evolution of the gauge
parameters is subject to linear constraints.

Definition 3.4. A Hamiltonian structure χ of a foliation F is transversal (to F)
if there exists a normal bundle H of F such that imχ ⊆ H. The distribution
H will be called an image extension of χ. (It is possible to have more than one
image extension.) A transversal Hamiltonian structure of F is a tame structure
if all the brackets of differentiable vector fields that belong to imχ are contained
in an image extension H.(In the tame case, only such image extensions will be
used.)

Proposition 3.3. Let χ be a transversal Hamiltonian structure of the foliation F
with image extension H. Then χ is tame with image extension H iff the Nijenhuis
tensor NH of the projection pH : TM → TM of TM = H ⊕ F onto H satisfies
the condition

(3.7) NH(χα, χβ) = 0, ∀α, β ∈ Ω10(M).

Proof. Since p2
H = pH , the required Nijenhuis tensor is

(3.8) NH(X, Y ) = [pHX, pHY ]− pH [pHX, Y ]− pH [X, pHY ] + pH [X, Y ],

where X, Y ∈ V(M). Generally, χ has local equations

(3.9) χ(dxa) = habXb + kau ∂

∂yu
,

and, if H is an image extension, kau = 0. In view of (3.4) and of Definition 3.4, χ
is tame iff

χ(dhab) = [χ(dxa), χ(dxb)],

which is equivalent to

(3.10) hachbeτu
ce = 0, τu

ce =
∂tuc
∂xe

− ∂tue
∂xc

+ tvc
∂tue
∂yv

− tve
∂tuc
∂yv

.

Condition (3.7) is the invariant form of (3.10).

Transversal Hamiltonian structures χ admit an extended Hamiltonian formal-
ism.

Fix an image extension H of χ, and use the decomposition (2.6) of the exterior
differential. χ is defined for any differential form α ∈ Ω10(M) and χ(α) ∈ ΓH.
Accordingly, ∀f ∈ C∞(M), we get a Hamiltonian vector field

(3.11) X ′
f = χ(d′f),

and ∀f, g ∈ C∞(M) we get an extended Poisson bracket

(3.12) {f, g}′ := X ′
fg =< χ(d′f), dg >=< χ(d′f), d′g >
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= − < d′f, χ(d′g) >= −{g, f}′.

On the other hand, for X ∈ ΓH and α ∈ Ω10(M), we may decompose the Lie
derivative as

(3.13) LXα = L′Xα+ L′′Xα,

where

(3.14) L′X = i(X)d′ + d′i(X), L′′X = i(X)d′′ + d′′i(X),

and we can extend the Gelfand-Dorfman-Schouten-Nijenhuis bracket [1] to arbi-
trary forms α, β, γ ∈ Ω10(M) by putting

(3.15) [h, k]′(α, β, γ) :=
∑

Cycl(α,β,γ)

{< kL′h(α)β, γ > + < hL′k(α)β, γ >},

where χ, κ : annF → H are skew symmetric morphisms. The extended bracket
is trilinear over C∞(M). Hence, for a Hamiltonian structure χ we have

[χ, χ]′(α, β, γ) = 0 ∀α, β, γ ∈ Ω10(M),

since this is true for basic forms. Using (3.12) and (3.14), we see that the previous
property implies that, ∀f, g, l ∈ C∞(M), one has

(3.16)
∑

Cycl(f,g,l)

[{{f, g}′, l}′ + d′2f(X ′
g, X

′
l)] =

1

2
[χ, χ]′(d′f, d′g, d′l) = 0.

Proposition 3.4. If χ is a tame Hamiltonian structure on (M,F) the Poisson
bracket { , }′ is a Poisson bracket on M .

Proof. For any normal bundle H of the foliation F one gets

(3.17) d′2f(X, Y ) =< d′′f,NH(X, Y ) >, ∀f ∈ C∞(M), ∀X, Y ∈ ΓE,

where NH is the Nijenhuis tensor (3.8). Indeed, if X,Y ∈ ΓH, (3.8) yields

(3.18) NH(X, Y ) = pF [X,Y ],

where pF is the projection onto the second term of the decomposition TM =
H ⊕ F . On the other hand,

d′2f(X, Y ) = d(d′f)(X, Y ) = XY f − Y Xf− < d′f, [X, Y ] >

= [X, Y ]f − (pH [X, Y ])f =< df, pF [X,Y ] >=< d′′f, pF [X, Y ] > .

Thus, (3.17) is justified, and the conclusion follows from the characterization (3.7)
of the tame hamiltonian structures and formula (3.16).
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Now, back to a general, transversal, Hamiltonian structure χ of the foliation
F , with the image extension H, we can use the component L′X (X ∈ V10(M)) in
order to define a bracket of 1-forms α, β ∈ V10 similar to that encountered on a
Poisson manifold. Namely,

(3.19) {α, β}′ = L′χαβ − L′χβα− d′ < χα, β > .

Formula (3.19) implies

(3.20) {fα, gβ}′ = fg{α, β}′ + f(h(α)g)β − g(h(β)f)α (f, g ∈ C∞(M)),

whence we see that the bracket (3.19) is skew symmetric because it is such for
foliated 1-forms, where it reduces to the Poisson bracket of 1-forms on a local
transversal submanifold of F .

If we take α = d′f, β = d′g in (3.19), and evaluate on an argument X ∈
V10(M), after some technical calculations, we get

(3.21) {d′f, d′g}′ = d′{f, g}′ + LX′
g
d′′f − LX′

f
d′′g.

Definition 3.5. Let χ be a transversal Hamiltonian structure of the foliation
F , and H an image extension of χ. The function f ∈ C∞(M) will be called a
distinguished function for χ if i) d′f is a foliated 1-form, ii) imχ ⊆ ker d′2f .

We denote by Ω0
d(M) the space of distinguished functions. Any foliated func-

tion is distinguished, ∀f, g ∈ Ω0
d(M), {f, g}′ ∈ C∞

pr (M), and, in view of (3.16),
the extended Poisson bracket of distinguished functions satisfies the Jacobi iden-
tity. Therefore, Ω0

d(M) is a Poisson algebra and C∞
pr (M) is an ideal of the former.

Furthermore, if f, g ∈ C∞
pr (M), one gets LX′

g
d′′f = 0, and (3.21) implies

(3.22) {d′f, d′g}′ = d′{f, g}′, ∀f, g ∈ Ω0
d.

Then, if we take f, g ∈ Ω0
d(M), l ∈ C∞(M) in (3.16) and use (3.18), we get

(3.23) X ′
{f,g}′ = pH [X ′

f , X
′
g] f, g ∈ Ω0

d(M).

We may say that the transversal Hamiltonian structure χ defines a Poisson
structure on the non-holonomic submanifold (i.e., a non-completely integrable
distribution) H of M .

Proposition 3.5. Let χ be a tame hamiltonian structure of the foliation F , H an
image extension of χ, and P ′ the Poisson structure defined by the brackets { , }′.
Then, the triple (annF, { , }′, χ), with the bracket (3.19), is a Lie subalgebroid of
the cotangent Lie algebroid (T ∗M, { , }P ′ , ]P ′).

Proof. The bracket { , }P ′ is given by (3.19), without accents and with χ replaced
by ]P ′ . Since ]P ′|ann F = χ,

{α, β}′ = {α, β}P ′ , ∀α, β ∈ Ω1
pr(M).

Then, (3.20) implies

{fα, gβ}′ = {fα, gβ}P ′ , ∀f, g ∈ C∞(M),∀α, β ∈ Ω1
pr(M).
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4 Leaf-tangent Poisson structures

In this section we discuss Poisson structures along the leaves of a foliation [9].

Definition 4.1. The Poisson structure defined by the bivector field P ∈ V2(M)
is leaf-tangent to F if its symplectic leaves are submanifolds of the leaves of F ,
equivalently, if the leaves of F are Poisson submanifolds of (M,P ).

Obviously, P is F -leaf-tangent iff P ∈ Γ∧2 F (F = TF), equivalently, for any
normal bundle H, in (2.16), one has P ′

1,1 = 0, P̄1,2 = 0.
Accordingly, formulas (2.17)-(2.22) show that P ∈ Γ∧2F is a Poisson bivector

field on M iff

(4.1) d′′ν(]Pλ, ]Pµ)− (L]P νP )(λ, µ) = 0, ∀λ, µ, ν ∈ Ω01(M),

i.e., iff the restrictions of P to the leaves are Poisson bivector fields of the leaves.

Remark 4.1. If P is F -leaf-tangent, F may be seen as a regularizing foliation
of the symplectic foliation S of P . There exists a global, numerical invariant of
a Poisson structure on a manifold Mn, the regularizing dimension, which is the
smallest possible dimension p ≤ n of a regularizing foliation. The role of this
invariant is yet to be studied.

Example 4.1. Put Rn = R3×Rn−3 and take the Poisson structure P defined by
the Lie-Poisson structure of the factor R3 seen as the dual of the Lie algebra so(3).
P is leaf-tangent to the foliation defined by the factor R3 of Rn. The regularizing
dimension of P is 3.

Example 4.2. [10] Let p : G∗ → B be a bundle of Lie coalgebras (i.e., the dual
of a bundle p : G → B of Lie algebras) over a manifold B. Then the Lie-Poisson
structures of the fibers yield a leaf-tangent Poisson structure L of G∗. If (xi) are
local coordinates on B and (ya) are linear coordinates along the fibers of G∗, one
has

(4.2) L =
1

2
αc

ab(x
i)yc

∂

∂ya

∧ ∂

∂yb

,

where αc
ab(x

i) are the structural constants of the corresponding fibers of G. Equiv-
alently, ∀z ∈ G∗ and for fiber-wise linear functions on G∗ seen as elements
X,Y ∈ Gp(z),

(4.3) Lz(X, Y ) =< z,Cp(z)(X,Y ) >,

where the “tensor field” C ∈ Γ[(∧2G∗)⊗ (G)] is defined by

(4.4) Cp(z)(X, Y ) = [X, Y ]Gp(z)
.
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The properties of a leaf-tangent Poisson structure reflect corresponding prop-
erties along the leaves. We discuss Poisson cohomology as an example.

Lemma 4.1. Let P be a leaf-tangent Poisson structure on (M,F) and let σ be
the Lichnerowicz coboundary operator of P . Then, for every normal bundle H of
F , one has a decomposition

(4.5) σ = σ′−1,2 + σ′′01,

where the indices denote the bidegree, and

(4.6) σ′2 = 0, σ′′2 = 0, σ′ ◦ σ′′ + σ′′ ◦ σ′ = 0.

Proof. Since σQ = −[P,Q], Q ∈ Vhk(M) (e.g., [7]), (2.9) shows that σ may
have only components of bidegree (−1, 2), (0, 1), (−2, 3). We will see that the
(−2, 3)-component vanishes.

Indeed, σ−2,3 is obtained by computing i([P,Q])ϕ, Q ∈ Vh,k(M), ϕ ∈ Ωh−2,k+3(M)
via (2.8). Since in this case i(Q)ϕ = 0 (it should be of bidegree (−2, 3)), we get

(4.7) i([P,Q])ϕ = i(Q)[di(P )ϕ− i(P )dϕ],

where only the component ∂ of d may bring a non zero contribution.
To continue, first look at the evaluation of a Lie derivative LY ψ, where Y ∈ ΓF

and ψ ∈ Ωst(M) for arguments X1, ..., Xu ∈ V10
pr (M), Y1, ..., Yv ∈ V01(M). We see

that LY ψ may have components of bidegree equal either to (s, t) or to (s−1, t+1)
only.

Therefore,

(4.8) i(Q)LY ψ = i(Q)[di(Y ) + i(Y )d]ψ = 0,

∀Q ∈ Vhk(M), ∀ψ ∈ Ωh−2,k+3 ⊕ Ωh−2,k+2, ∀Y ∈ ΓF .
Furthermore, from (4.8), using the the fact that

i(P ∧Q) = i(Q)i(P ) (P,Q ∈ V∗(M))

and a form ϕ ∈ Ωh−2,k+3, we get

i(Q)[i(Y1 ∧ Y2)d− di(Y1 ∧ Y2)]ϕ = i(Y2 ∧Q)i(Y1)dϕ− i(Q)di(Y2)i(Y1)ϕ

= −i(Y2 ∧Q)di(Y1)ϕ+ i(Q)i(Y2)di(Y1)ϕ = 0.

Since P is spanned over R by wedge products Y1 ∧ Y2 of tangent vector fields of
F , the result of (4.7) is zero.

Properties (4.6) follow from σ2 = 0.

Properties (4.6) show that (Whk = Vkh(M), σ) is a double, semipositive,
cochain complex, and the cohomology of such a complex is the limit of a spectral
sequence [6].
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Proposition 4.1. Let P be a leaf-tangent Poisson structure on (M,F) and denote
by Hh

P (F , P ) the cohomology spaces of the cochain complex (V0∗, σ′′). Then, the
Poisson cohomology of P is the limit of a spectral sequence (Ehk

r , dr) where

(4.9) Ehk
2 = Vk0(M)⊗R H

h
P (F , P )

and d2 is induced by the operator σ′.

Proof. The spaces
Wl(M) = ⊕k≥l ⊕h Vhk(M)

yield a regular filtration of the Lichnerowicz-Poisson complex (V(M), σ). The
required spectral sequence is the spectral sequence (Ehk

r , dr) defined by this filtra-
tion. ¿From the definition of a spectral sequence we get

Ekh
0 = Vhk(M), d0 = 0.

The cohomology of E0 yields

Ekh
1 = Vhk(M), d1 = σ′′.

Then, the cohomology spaces of the complex E1 are the spaces given by formula
(4.9), and d2 is induced by σ′.

Remark 4.2. The leaf-tangent Poisson bivector field P ∈ Γ ∧2 F may be seen
as a Poisson bivector of the Lie algebroid F defined by the foliation. As such, it
induces a Lie algebroid structure on the dual bundle F ∗, and Hh

P (F , P ) are the
cohomology spaces of this Lie algebroid.

5 Coupling Poisson structures

Now, we proceed with a discussion of certain aspects of the geometry of general
Poisson structures on a foliated manifold. More precisely, we will discuss the
coupling situation, a generalization of the symplectic structure that describes the
coupling of a particle and a field discovered by S. Sternberg [5]. The notion of
a coupling Poisson structure on a fiber bundle was defined and studied by Y.
Vorobiev [10], who used it in order to get information about Poisson structures in
the neighborhood of a symplectic leaf.

In what follows we present general results on coupling Poisson structures on
foliated manifolds [9]. (In [9] the coupling property is also extended to Jacobi
structures.) The notation is that of Section 1, we consider the manifold M , the
foliation F , the normal bundle H, and the bivector field P written under the form
(2.16).



Poisson structures on foliated manifolds 153

Definition 5.1. The bivector field P is F -almost coupling via H if

(5.1) ]P (annF ) ⊆ H.

The bivector field P is F -coupling if ]P (annF ) is a normal bundle H of F .

With (2.16), the almost coupling condition is equivalent to P̄11 = 0, hence,
with the condition ]P (annH) ⊆ F . The coupling condition is equivalent with

(5.2) dim(]P (annF )) = q,

where q is the codimension of F . The first term of (5.2) is the rank of the term
P ′ of (2.16) for any choice of H, hence, coupling may exist only if q is even. In
the case of a coupling field P , we use the normal bundle H = ]P (annF ).

Example 5.1. Let P be an arbitrary Poisson bivector field on the foliated man-
ifold (M,F). Let S be a symplectic leaf of P , embedded in M and transversal
to F . Then condition (5.2) holds on S, hence, on an open neighborhood V of S,
and P is F -coupling on V . In particular [10], for P and S as above, there exists
a tubular neighborhood V of S where P is coupling for the fibers of the tubular
structure of V .

Proposition 5.1. An almost coupling bivector field P is Poisson iff

(5.3)

d′γ(]P ′α, ]P ′β)− (L]P ′γP
′)(α, β) = 0,

(L]P ′′λP
′)(α, β) + λ([]P ′α, ]P ′β]) = 0,

(L]P ′αP
′′)(λ, µ) = 0,

d′′ν(]P ′′λ, ]P ′′µ)− (L]P ′′νP
′′)(λ, µ) = 0,

∀α, β, γ ∈ Ω10(M), ∀λ, µ, ν ∈ Ω01(M).

Proof. Use (2.17)-(2.22) to express [P, P ] = 0 for

(5.4) P = P ′ + P ′′.

The last condition (5.3) means that the component P ′′ is an F -leaf-tangent
Poisson bivector field.

Proposition 5.2. [10]. A coupling Poisson structure of a foliated manifold (M,F)
is equivalent with a triple (P ′′, H, σ), where P ′′ is a leaf-tangent Poisson structure,
H is a normal bundle of F and σ is a non-degenerate cross section of ∧2(annF )
such that

(5.5) d′σ = 0,

(5.6) ]P ′′{d[σ(X,Y )]} = −pF [X, Y ], ∀X, Y ∈ V10
pr (M),

(5.7) LXP
′′ = 0, ∀X ∈ V10

pr (M).
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Proof. The coupling condition defines H,which enables us to write (5.4) and
get P ′′ such that the last condition (5.3) holds. Furthermore, P ′ is a regular
bivector field with im ]P ′ = H, and we may write P ′ = ]P ′(σ) = ]P (σ), where
σ ∈ ∧2(annF ) is equivalent with P ′ mod. F and has the maximal rank. Then,
for the 1-forms of bidegree (10) of (5.3) we may write

(5.8) α = [σX, β = [σY, γ = [σZ, X, Y, Z ∈ V10(M),

where X, Y, Z are uniquely defined.
By (2.14), the first condition (5.3) becomes (5.5).
Furthermore, conditions (5.3) are tensorial. In particular, the second condition

(5.3) holds iff it holds for X,Y ∈ V10
pr (M) in (5.8), and the definition of the Lie

derivative shows the equivalence of the second condition (5.3) with (5.6).
Finally, the third condition (5.3) is equivalent to (5.7) because, for a pro-

jectable vector fieldX, LXP
′′ vanishes if at least one of its arguments is of bidegree

(10).
Now, notice that we may define a triple (P ′′, H, σ) for any coupling bivector

field P , and one has an isomorphism [σ : H → annF . Conversely, given such a
triple, we get

(5.9) P (ξ, η) = σ([−1
σ ξ′, [−1

σ η′) + P ′′(ξ′′, η′′),

where
ξ = ξ′ + ξ′′, η = η′ + η′′, ξ′, η′ ∈ annF, ξ′′, η′′ ∈ annH,

and the conditions stated in Proposition 5.2 imply (5.3).

Remark 5.1. If the triple (P ′′, H, σ) satisfies all the conditions of Proposition 5.2,
these conditions are also satisfied by any triple (P ′′, H, σ+ετ) where τ ∈ ∧2(annF )
is closed and ε ∈ R. If ε is small enough, σ + ετ is non degenerate on H, and the
new triple also provides a coupling Poisson structure.

Remark 5.2. If the coupling Poisson tensor field P of (5.4) is defined by a sym-
plectic form ω, P ′′ is equivalent with a closed 2-form θ of bidegree (02) that defines
a symplectic structure on each leaf of F . Then, if F is a fibration, we are in the
case discovered by Sternberg [5].

The following result is about projectable coupling Poisson structures (5.4).
Projectability holds iff (LY P

′)(α, β) = 0, ∀Y ∈ ΓF , ∀α, β ∈ Γpr(annF ).

Proposition 5.3. P given by (5.4) is a projectable coupling Poisson bivector field
iff i) P ′′ is Poisson, ii) H is integrable; iii) the mod. F equivalent 2-form σ of P ′

is a transversal symplectic form of F ; iv) (5.7) holds.

Proof. If P ′ is projectable, the same holds for the equivalent 2-form σ, and we see
that (5.5) implies iii) and that (5.6) implies the integrability of H. Conversely,
iii), iv) imply (5.5), (5.7) and the projectability of σ and P ′, which, together with
ii), shows that the two sides of (5.6) are zero.
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Proposition 5.3 tells that projectable, F -coupling Poisson tensors exist only on
locally product manifolds M with structural foliations F ,H where H is a leaf-wise
symplectic foliation.

Remark 5.3. If P given by (5.4) is Poisson, almost coupling and projectable,
P ′ is a Poisson bivector field too, since by (2.17) the first two conditions (5.3)
imply [P ′, P ′] = 0. In the terminology of Section 2, P ′ defines a tame Hamiltonian
structure of F . Conversely, if we have such a tame structure, with a corresponding
Poisson structure P ′ and a leaf-tangent Poisson structure P ′′, and if the third
condition (5.3) holds, we get a projectable, almost coupling, Poisson structure on
(M,F). Of course, we may always take P ′′ = 0, hence, the tame Hamiltonian
structures of F and the projectable, almost coupling, Poisson structures of (M,F)
are equivalent objects (not in a one-to-one correspondence, however).

6 Vorobiev-Poisson structures

In this section we give a presentation of a class of coupling Poisson structures
defined by Vorobiev [10].

Let p : G∗ → B be a bundle of Lie coalgebras such that: i) B is a symplectic
manifold with the symplectic form ω; ii) the dual Lie algebras bundle G → B
is the kernel of the (surjective) anchor ρ : A → TB of a transitive Lie algebroid
p : A→ B [3].

Let

(6.1) A = Q⊕G

be a splitting of the vector bundle A, and pQ, pG the corresponding natural pro-
jections. Then ρ|Q : Q → TB is an isomorphism and we denote by γ : TB → Q
its inverse i.e.,

(6.2) γ(ρ(s)) = pQ(s), ∀s ∈ A.

Let U ⊆ B be an open local-trivialization neighborhood of all the vector
bundles above and (xi) (i = 1, ..., n = dimB) local coordinates on U . Then
qi = γ(∂/∂xi) is a local basis of Q, and we may complete it by a local basis (ga)
of G (a = 1, ..., k = rankG) to a local basis of A. Let (θa) be the dual basis
of (ga) for the vector bundle G∗. These bases define fiber-wise local coordinates
(ya) and (ya) on G, G∗, respectively. Since G = ker ρ and ρ is a morphism of Lie
algebroids, the local expressions of the Lie bracket of A must be of the form

(6.3)
[ga,gb]A = αc

ab(x)gc, [ga,qi]A = βc
ai(x)gc,

[qi,qj]A = γc
ij(x)gc + γh

ij(x)qh.
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(The Einstein summation convention is in use.) We will freely use the following
identifications:

(6.4) ηa ∂

∂ya
⇔ ηaga, µa

∂

∂ya

⇔ µaθa.

Since G = ker ρ, the formula

(6.5) ∇Xη = [γ(X), η]A, X ∈ V1(B), η ∈ ΓG,

defines a connection of the vector bundle G, which yields a dual connection on
G∗ and connections on all the associated tensor bundles of G. All are denoted
again by ∇, except for situations where we want to emphasize the connection ∇∗

on G∗. With (6.3), the local components of ∇ are given by

(6.6) ∇ ∂

∂xi
ga = Γb

aigb, Γb
ai = −βb

ai.

The Jacobi identity of the A-bracket yields

(6.7) ∇C = 0,

where the tensor C is defined by (4.4). Furthermore, since

ρ([γ(X), γ(Y )]A) = [X,Y ],

we get

(6.8) pQ[γ(X), γ(Y )]A = γ([X,Y ]).

Formula (6.8) yields

(6.9) R∇(X, Y )η = [pG[γ(X), γ(Y )]A, η]A,

where R∇ is the curvature of the connection ∇.
Finally, we write

(6.10) TG∗ = H⊕ V ,

with the projections pH, pV , where V is tangent to the fibers andH is the horizontal
distribution of ∇∗.

On G∗, we have a triple (P ′′, H, σ) as in Proposition 5.2, where P ′′ = L, L
being the leaf-tangent Poisson bivector field defined by (4.3), H = H and

(6.11) σz(X ,Y) = ωp(z)(X, Y )− z(pG[γ(X), γ(Y )]A),

where z ∈ G∗, X ,Y ∈ ΓH are the horizontal lifts of X = p∗X , Y = p∗Y . The
definition of σ is completed by asking it to have bidegree (20) with respect to
(6.10).
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The distribution H and the form σ are defined by the local formulas

(6.12) H = span{Xi =
∂

∂xi
+ Γb

aiyb
∂

∂ya

},

(6.13) σz(Xi,Xj) = ωij(x)− γc
ijyc,

where Xi is the horizontal lift of ∂/∂xi, the coefficients γ,Γ are those of (6.3)
and (6.6), and ωij are the natural local components of ω on B. We see that the
horizontal lifts of vector fields of B are projectable with respect to the vertical
foliation V of G∗.

Proposition 6.1. [10] There exists a neighborhood U of B, as the zero section of
G∗, where the triple (L,H, σ) defines a coupling Poisson bivector field.

Proof. Using (6.12), one gets

(6.14) X (< z, η >) =< z,∇Xη >,

where z ∈ ΓG∗, η ∈ ΓG, p(z(x)) = p(η(x)), x ∈ B, and then

dσ(X ,Y ,Z) = dω(X, Y, Z)−
∑

Cycl(X,Y,Z)

< z, pG[γ(X), [γ(Y ), γ(Z)]A)]A >= 0,

since dω = 0 and [ , ]A satisfies the Jacobi identity. Thus, (5.5) holds.
Furthermore, by using the identification (6.4), (6.12) and (6.14), we get

(6.15) (LXL)z(η, ν) =< z, (∇XC)(η, ν) >,

and (5.7) follows from (6.7).
Finally, (4.2), (4.4), and (6.9) yield

Lz(pG[γ(X), γ(Y )]A, η) =< z, [pG[γ(X), γ(Y )]A, η]A >

=< z,R∇(X, Y )η >= − < R∇∗(X, Y )z, η >,

which is equivalent to

]Lz(pG[γ(X), γ(Y )]A) = −R∇∗(X, Y )z = pV [X ,Y ](z).

On the other hand, ∀µ ∈ ΓG the (01)-component of d < z, µp(z) > with respect
to (6.10) identifies with µ, and (6.11) yields

]Lz{d[σ(X ,Y)]} = pV [X ,Y ],

which is (5.6) in our case.
Therefore, since σ is non degenerate on a neighborhood U of the zero section

of G∗, a corresponding coupling Poisson structure on U exists.
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Definition 6.1. The coupling Poisson structure defined by Proposition 6.1 on
the neighborhood U of B will be called a Vorobiev-Poisson structure.

The Vorobiev-Poisson structure of a given bundle G∗ is unique up to equiva-
lence. Indeed, one has:

Proposition 6.2. [10] The Vorobiev-Poisson structures defined by two splittings

(6.16) A = Q⊕G, A = Q̃⊕G

on neighborhoods U1,U2 of B in G∗ are Poisson-equivalent in a neighborhood V ⊆
U1 ∩ U2.

Proof. The notation below is that of Proposition 6.1 with a tilde for everything
related to the second splitting.

The difference φ = γ̃ − γ is a G-valued 1-form on B and, if s ∈ ΓA has the
two decompositions

s = pG(s) + pQ(s) = p̃G(s) + pQ̃(s),

and (6.2) implies

(6.17) p̃G(s) = pG(s)− φ(ρ(s)), pQ̃(s) = pQ(s) + φ(ρ(s)).

Furthermore, on G∗ we get a scalar 1-form ψ ∈ annV defined by

(6.18) ψz(X ) =< z, φp(z)(X) >, z ∈ G∗.

We define a family of splittings A = Qt ⊕G by the projectors

(6.19) pQt = pQ + t(φ ◦ ρ), t ∈ R,

which is such that Q0 = Q, Q1 = Q̃, and the corresponding family Pt of Vorobiev-
Poisson bivector fields defined by the triples (L,Ht, σt) of the connection ∇t de-
fined by (6.5) for Qt.

It is easy to compute the connection coefficients of ∇t and we get

(6.20) Ht = span{Xt,i = Xi + tαb
acφ

c
iyb

∂

∂ya

},

where the components φc
i are given by

(6.21) φ(
∂

∂xi
) = φc

igc.

The corresponding basis of annHt = V∗ consists of the forms

(6.22) µt,a = µa − tαb
acφ

c
iybdx

i,
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where µa = µ0,a. From (6.20) we get the horizontal lift of X ∈ TB to Ht

(6.23) Xt(z) = X (z)− t coadφ(X)(E(z)), z ∈ G∗, E(z) = ya
∂

∂ya

⇔ yaθ
a

(E is the infinitesimal homothety of G∗). Then, (6.22) define a bijection λ ↔ λt

between annH and annHt given by:

(6.24) λt = λ− tL]Lλψ,

where ψ is the 1-form (6.18).
Now, since the differences X̃ − X , Ỹ − Y are vertical, and using (6.14) and

(6.17), we get

(6.25) σt(Xt,Yt) = σ(X ,Y)− tdψ(X ,Y)− t2L(φ(X), φ(Y )).

We define a time-dependent vector field Ξt ∈ Γ(Ht) by

(6.26) Ξt = ]Ptψ, ⇔ [σtΞt = i(Ξt)σt = −ψ.

The vector field Ξt yields the autonomous vector field Ξ̃ = Ξt + ∂/∂t on G∗ × R,
and we prove that the flow Φt of Ξ̃ preserves the lift of the tensor field Pt to
G∗×R. Then, the projection of the diffeomorphism Φ1 onto G∗ will be the required
equivalence of coupling Poisson structures. The proof will be accomplished by
showing that

(6.27) LΞ̃Pt = 0

holds on G∗ × R. Condition (6.27) obviously holds if one of the arguments is
dt. In the other cases, careful computations show that (6.27) is a consequence of
conditions (5.3) for the bivector fields Pt, ∀t ∈ R [9].

Remark 6.1. The equivalence of Poisson structures given by Proposition 6.2 does
not preserve the foliation V .

The Vorobiev-Poisson structures provide geometric information on the embed-
ded leaves S of a Poisson manifold (M,P ). The cotangent Lie algebroid structure
T ∗M |S → S and the kernel of the anchor of this algebroid is the conormal bundle
of S, i.e., the annihilator of TS in T ∗M |S.

Let NS be a normal bundle of S (i.e., TM |S = TS ⊕ NS) and U a tubular
neighborhood of S with the fibers tangent to NS. At the points of S there
exist local adapted coordinates (xα, xκ) (α = 1, ..., codim(S);κ = codim(S) +
1, ..., dim(M)) such that the local equations of S are xα = 0 and

(6.28) N∗S = ann(TS) = span{dxα|S}, T ∗S = ann(NS) = span{dxκ|S}.
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The vector bundles N∗S and T ∗S may play the role of G and Q of Vorobiev’s
construction and the bases (6.28) may play the role of the bases (ga), (qi) of
(6.3). If Pαβ, Pακ, P κν are the local components of P with respect to the local
coordinates defined above, one has Pαβ|S = Pαν |S = 0 , whence

∂P αβ

∂xκ
|S = 0,

∂P αν

∂xκ
|S = 0.

The brackets (6.3) of the present case will be

(6.29)
{dxα|S, dxβ|S} = ∂P αβ

∂xγ |Sdxγ|S, {dxα|S, dxκ|S} = ∂P ακ

∂xγ |Sdxγ|S,
{dxκ|S, dxν |S} = ∂P κν

∂xγ |Sdxγ|S + ∂P κν

∂xθ |Sdxθ|S,

where β, γ have the same domain as α and ν, θ have the same domain as κ.
Therefore, one has a Vorobiev-Poisson structure on a neighborhood of S and,

in view of (4.2), (6.12) and (6.13), the associated triple is given by

(6.30)

P ′′ = 1
2
ξγ ∂P αβ

∂xγ |xγ=0
∂

∂ξα ∧ ∂
∂ξβ ,

H = span
{

∂
∂xκ − ξγ ∂P ακ

∂xγ |xγ=0
∂

∂ξα

}
,

σ = 1
2
(pκν − ξγ ∂P κν

∂xγ |xγ=0)dx
κ ∧ dxν ,

where ξα are fiber coordinates in the normal bundle NS and pκνP
νθ = δθ

κ.
The Vorobiev-Poisson structure (6.30) is defined up to Poisson equivalence and

its S-transversal part may be seen as a linear approximation of the S-transversal
part of the original Poisson structure P .
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