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Introduction

Generic Fourth Moment Theorem:

Xn
d−→ X ∼ µ ⇐⇒ P(E[Xn], E

[
X2n
]
, E
[
X3n
]
, E
[
X4n
]
) → 0

• Nualart-Peccati (2005): Xn = Ip(fn), µ ∼ N (0, σ2), P = X4n − 3

• Peccati-Tudor (2005): Extension to multivariate case for
µ ∼ Nd(0,Σ)

• Nualart-Ortiz-Latorre (2008): New proof using Malliavin calculus

• Nourdin-Peccati (2009): Quantitative FMT via Malliavin-Stein for
µ ∼ N (0, σ2) and µ ∼ Gamma(ν).

• Nourdin-Peccati-Revéillac (2010): Quantitative FMT via
Malliavin-Stein for µ ∼ Nd(0,Σ)



Introduction

• Ledoux (2012): new, pathbreaking proofs by spectral methods

• Azmoodeh-C.-Poly (2014): FMT for chaotic eigenfunctions of
generic Markov diffusion generators, µ ∼ N (0, σ2),
µ ∼ Gamma(ν) or µ ∼ Beta(α, β)

• C.-Nourdin-Peccati-Poly (2015+): Multivariate extension for
µ ∼ Nd(0,Σ)

• In this talk: Extension to complex valued random variables and
µ ∼ CN d(0,Σ)



Complex normal distribution

• Z ∼ CN d(0,Σ) if its density f is given by

f(z) =
1

πd|detΣ|
exp

(
−zTΣ−1z

)
• E[ZZ

T
] = Σ and E[ZZT] = 0

• Completely characterized by its moments E
[∏

j Z
pj
j Z

qj
j

]
• For Z ∼ CN 1(0, 1):

E
[
Zp Z

q
]
=

{
p! if p = q

0 if p ̸= q.



Wirtinger calculus

• ∂z =
1
2

(
∂x − i∂y

)
and ∂z =

1
2

(
∂x + i∂y

)
Wirtinger derivatives

• ∂z and ∂z satisfy product and chain rules

• Heuristic: z and z can be treated as algebraically independent
variables when differentiating, for example:

∂z zpzq = pzp−1zq and ∂z z
pzq = qzpzq−1



Stein’s method for the complex normal distribution

Lemma
Z ∼ CN 1(0, 1) if, and only if,

E[∂z f(Z)]− E
[
Z f(Z)

]
= 0

for suitable f : C → C.

Looks nice, but associated Stein equation can not be solved in general.



Stein’s method for the complex normal distribution

Lemma
Z ∼ CN 1(0, 1) if, and only if,

2 E[∂zz f(Z)]− E
[
Z ∂z f(Z)

]
− E[Z ∂z f(Z)] = 0

for suitable f : C → C.

For W ∼ CN 1(0, 1), associated Stein equation

2∂zz f(z)− z ∂z f(z)− z ∂z f(z) = h(z)− E[h(W)]

has nice solution for suitable h.



Abstract setting

• Symmetric diffusion Markov generator L acting on L2(E,F , µ)

• Discrete spectrum

S = {· · · < −λ2 < −λ1 < −λ0 = 0}

• Spectral theorem:

L2(E,F , µ) =
∞⊕
k=0

ker(L+λk Id)

• Eigenspaces closed under conjugation as L F = L F



Carré du champ operator

• Carré du champ operator Γ:

Γ(F,G) =
1

2

(
L(FG)− F LG− G L F

)
• Integration by parts:

∫
L(FG)dµ =

∫
L(1)FGdµ = 0∫

E
Γ(F,G)dµ = −

∫
E
F LGdµ

• Diffusion property:

Γ(φ(F1, . . . , Fd),G) =
d∑

j=1

(
∂zj φ(F) Γ(Fj,G) + ∂zj φ(F) Γ(Fj,G)

)



Pseudo inverse of the generator

• L−1 pseudo-inverse of generator (compact)

• Bears its name as

L L−1 F = F−
∫
E
Fdµ

• In particular:∫
E
Γ(F,− L−1 G)dµ =

∫
E
F L L−1 Gdµ

=

∫
E
FGdµ−

∫
E
Fdµ

∫
E
Gdµ



Quantitative bound for the Wasserstein distance

Theorem

Let Z ∼ CN 1(0, 1) and denote by F a centered smooth complex random
variable. Then it holds that

dW(F, Z) ≤
√
2

(
1

2

∫
E

∣∣Γ(F,− L−1 F
∣∣2 dµ

+

∫
E

(
Γ(F,− L−1 F)− 1

)2 dµ
)1/2

.



Quantitative bound for the Wasserstein distance

Theorem

Let Z ∼ CNd(0,Σ) and denote by F a centered smooth complex random
vector. Then it holds that

dW(F, Z) ≤
√
2 ∥Σ−1∥op∥Σ∥

1/2
op

(
1

2

∫
E

∥∥Γ(F,− L−1 F)
∥∥2
HS dµ

+

∫
E

∥∥Γ(F,− L−1 F)− Σ
∥∥2
HS dµ

)1/2

,

where Γ(F,− L−1 F) =
(
Γ(Fj,− L−1 Fk)

)
1≤j,k≤d and ∥A∥HS = tr(A A

T
).



Abstract Markov chaos

Definition
• F ∈ ker

(
L+λp Id

)
and G ∈ ker

(
L+λq Id

)
are jointly chaotic, if

FG ∈
p+q⊕
j=0

ker
(
L+λj Id

)
and FG ∈

p+q⊕
j=0

ker
(
L+λj Id

)
.

• F ∈ ker
(
L+λp Id

)
is chaotic, if F is jointly chaotic with itself.

• A vector of eigenfunctions is chaotic, if any two components are
jointly chaotic.



Key lemma

Lemma
For chaotic eigenfunctions F,G it holds that∫

E

∣∣Γ(F,− L−1 G)
∣∣2 dµ ≤

∫
E
FGΓ(F,− L−1 G)dµ

Consequence of general principle from Azmoodeh-C.-Poly (2014).



Quantitative Fourth Moment Theorem

Theorem
For Z ∼ CN 1(0, 1) and chaotic eigenfunction F, it holds that

dW(F, Z) ≤

√∫
E

(
1

2
|F|4 − 2|F|2 + 1

)
dµ

Similar bound for Z ∼ CN d(0,Σ) and chaotic vector F involving∫
E FjFk dµ and

∫
E|FjFk|

2 dµ.



Quantitative Fourth Moment Theorem

Corollary

For Z ∼ CN 1(0, 1) and normalized sequence Fn of chaotic eigenfunctions,
the following two assertions are equivalent:

(i) Fn
d−→ Z

(ii)
∫
E|Fn|

4 dµ → 2



Proof of moment bound

By key lemma, diffusion property and integration by parts:∫
E
Γ(F,− L−1 F)2 dµ ≤

∫
E
FFΓ(F,− L−1 F)dµ

=
1

2

(∫
E
Γ(F2F,− L−1 F)dµ−

∫
E
F2 Γ(F,− L−1 F)dµ

)
=

1

2

∫
E
|F|4 dµ− 1

2

∫
E
F2 Γ(F,− L−1 F)dµ

Key lemma also implies that∫
E

∣∣Γ(F,− L−1 F)
∣∣2 dµ ≤

∫
E
F2 Γ(F,− L−1 F)dµ.



Proof of moment bound

Therefore,∫
E

(1
2

∣∣Γ(F,− L−1 F)
∣∣2 + (

Γ(F,− L−1 F)− 1
)2 ) dµ

=

∫
E

(
1

2

∣∣Γ(F,− L−1 F)
∣∣2 + Γ(F,− L−1 F)2 − 2|F|2 + 1

)
dµ

≤
∫
E

(
1

2
|F|4 − 2|F|2 + 1

)
dµ



Complex Peccati-Tudor Theorem

Theorem
Let Z ∼ CN d(0,Σ) and (Fn) be sequence of chaotic vectors satisfying
E
[
F2n
]
→ 0 and E

[
FnFn

]
→ Σ. Under some technical conditions on

underlying generator, the following two assertions are equivalent:

(i) Fn
d−→ Z jointly

(ii) Fn
d−→ Z componentwise

Proof: Adaptation of real version in C.-Nourdin-Peccati-Poly (2015+)



Complex Ornstein-Uhlenbeck generator

• S = −N0, Γ(F,G) = ⟨DF,DG⟩H
• Real and imaginary parts of any eigenfunction are themselves
eigenfunctions of the real OU-generator.

• However, eigenspaces have much richer algebraic structure:

ker(L+ k Id) =
⊕

p,q∈N0

p+q=k

Hp,q

with Hp,q = Hq,p.



Complex Hermite Polynomials (Itô, 1952)

Hp,q(z) = (−1)p+qe|z|
2

(∂z)
p (∂z)

q e−|z|2

=

p∧q∑
j=0

(
p
j

)(
q
j

)
j! (−1)j zp−j zq−j

First few:

1

z z

z2 |z|2 − 1 z2

z3 z2z− 2z z2z− 2z z3



Orthonormal basis forHp,q

• Let {Z(h) : h ∈ H} be complex isonormal Gaussian process and (ej)
orthonormal basis of H.

• Orthonormal basis of Hp,q is given by√
mp!mq!

∞∏
j=1

Hmp(j),mq(j)(Z(ej)) : (mp,mq) ∈ Mp ×Mq


• In particular: Z(ej)p ∈ Hp,0

• Thus, Hp,0 is sub-algebra of Dirichlet domain induced by Γ



Concluding remarks

• For OU generator and d = 1, a (non-quantitative) FMT and
Peccati-Tudor Theorem have been proven by Chen-Liu (2014+) and
Chen (2014+), respectively, by separating real and imaginary parts

• Our method can also yield FMT for other target laws (usual
complexified Gamma and Beta distributions are not interesting as
these are real valued)

Applications:

• Quantitative CLT for spin random fields (joint project with D.
Marinucci and M. Rossi)

• New proof and generalization of de Reyna’s complex Gaussian
product inequality; advances for complex unlinking conjecture
(forthcoming paper with G. Poly)


