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Introduction

Generic Fourth Moment Theorem:

Xo SXmop = PEXEPE]LEX]EX]) — 0

« Nualart-Peccati (2005): Xp = Ip(fn), L ~ N(0,02), P= X3 — 3

« Peccati-Tudor (2005): Extension to multivariate case for
o~ Nd(07 E)

+ Nualart-Ortiz-Latorre (2008): New proof using Malliavin calculus

« Nourdin-Peccati (2009): Quantitative FMT via Malliavin-Stein for
w~ N(0,0?) and u ~ Gamma(v).

» Nourdin-Peccati-Revéillac (2010): Quantitative FMT via
Malliavin-Stein for p ~ Ny (0, %)



Introduction

Ledoux (2012): new, pathbreaking proofs by spectral methods

Azmoodeh-C.-Poly (2014): FMT for chaotic eigenfunctions of

generic Markov diffusion generators, i ~ N(0,0?),

p ~ Gamma(v) or u ~ Beta(a, 3)

« C.-Nourdin-Peccati-Poly (2015+): Multivariate extension for
p~ Ng(0,%)

« In this talk: Extension to complex valued random variables and

p~ CN¢(0,%)



Complex normal distribution

« Z~CNy4(0,) if its density f is given by

f(2) exp (-Z'27'z)

~ nd|det 3|

- E[ZZ) = s and E[zZT] = 0
- Completely characterized by its moments E [szfffj‘.”}
« ForZ ~CN+(0,1):

i} | ifp=
e[ 27| ={§' ;fz7éz.



Wirtinger calculus

« 0, =3 (0 —10)) and 9; = L (Ox + 19,) Wirtinger derivatives
+ 0, and 05 satisfy product and chain rules

 Heuristic: z and Z can be treated as algebraically independent
variables when differentiating, for example:

0,2°7z9 = pz"~'z2% and = 0;2°77 = qz°Z7!



Stein’s method for the complex normal distribution

Lemma
Z ~ CN1(0,1) if, and only if,

E[0.f(2)] — E[Zf(2)] =

for suitable f: C — C.

Looks nice, but associated Stein equation can not be solved in general.



Stein’s method for the complex normal distribution

Lemma
Z ~ CN1(0,1) if, and only if,

[ zzf E?&f ] E[Z@Zf(Z)] =0
for suitable f: C — C.

For W ~ CN1(0, 1), associated Stein equation

20,2(2) — 20, f(2) — 28, f(2) = h(z) — E[(W)]

has nice solution for suitable h.



Abstract setting

- Symmetric diffusion Markov generator L acting on L%(E, F, 11)
- Discrete spectrum

S={ -<-X<-A<—-X=0}

« Spectral theorem:

L*(E, F, ) = @D ker(L -+, 1d)
k=0

- Eigenspaces closed under conjugation as LF = LF



Carré du champ operator

« Carré du champ operator I":

- Diffusion property:

T(p(Fy,. .. F = Z( ,, ©(F)L(Fj,G) + 05, SD(F)F(’_'—]’G))



Pseudo inverse of the generator

« L=! pseudo-inverse of generator (compact)
- Bears its name as

LL_1F=F—/Fd,u
E

« In particular:

/F(F,—L—l G)d,u:/FLL_lﬁdu

E E

=/FEd,u—/Fd,u/Ed,u
E E E



Quantitative bound for the Wasserstein distance

Theorem

Let Z ~ CN1(0,1) and denote by F a centered smooth complex random
variable. Then it holds that

dw(F,Z) <2 (%/\F(F,— L! F|2du
E

_ 2 1/2
-I-/E(F(F,—L 'F) —1) du) :



Quantitative bound for the Wasserstein distance

Theorem

Let Z ~ CN,4(0,X) and denote by F a centered smooth complex random
vector. Then it holds that

dw(F,Z) < V2|5~ 1\|op||zyl/2( /HF (F, =L F)| [ dp
) 1/2
e e s
E

_ _ —T
where I'(F, — L' F) = (I'(Fj, — L' Fk))lgﬁkgd and ||Al|,;s = tr(AA").



Abstract Markov chaos

Definition
« Feker(L+X,1d) and G € ker(L+)q1d) are jointly chaotic, if

p+q p+q
FG € @ ker(L+A\;1d) and FG € @ ker(L+A;1d).
j=0 j=0

« F € ker(L+X, Id) is chaotic, if F is jointly chaotic with itself.

- A vector of eigenfunctions is chaotic, if any two components are
jointly chaotic.



Key lemma

Lemma
For chaotic eigenfunctions F,G it holds that

/{r(F,—L—1 G)|*du < /FEI‘(F,—L_lc)d,u
E E

Consequence of general principle from Azmoodeh-C.-Poly (2014).



Quantitative Fourth Moment Theorem

Theorem
For Z ~ CN1(0,1) and chaotic eigenfunction F, it holds that

dw(F,2) < \/ / (%!FI4—2!F|2+1) dp
E

Similar bound for Z ~ CN 4(0, ) and chaotic vector F involving
fE Fij d/L and fE|Fij|2 du.




Quantitative Fourth Moment Theorem

Corollary

For Z ~ CN1(0, 1) and normalized sequence F, of chaotic eigenfunctions,
the following two assertions are equivalent:

(i) Fo % Z
(i) [o|Fal* dp — 2



Proof of moment bound

By key lemma, diffusion property and integration by parts:

/F(F, — Lt R)2du < /FFF(F, —L 'R dp

E E

_1 (/P(F2F YF)ydu — /EFZF(F,—LlF) du)
/\F| du / D(F,— L' F)dp

Key lemma also implies that

/|F(F,—L—1F)\2du < /F2F(I_-',—L_1 F)dp.
E E



Proof of moment bound

Therefore,
/E <%|I‘(F, LR (D - L ) — 1)2) dp

1, - _ 2 - 2
:/E(ilF(F,—L ")+ T(F,— L7 F)? — 2/F| +1) dp

1
< / (—|F|4 —2|F]* + 1) du
F\2



Complex Peccati-Tudor Theorem

Theorem

Let Z ~ CN 4(0,X) and (F,) be sequence of chaotic vectors satisfying
E[F2] — 0 and E[F,F,] — X. Under some technical conditions on
underlying generator, the following two assertions are equivalent:

(i) Fa % Z jointly

(ii) Fn 4 z componentwise

Proof: Adaptation of real version in C.-Nourdin-Peccati-Poly (2015+)



Complex Ornstein-Uhlenbeck generator

« §=—Ny, I'(F,G) = (DF,DG)

+ Real and imaginary parts of any eigenfunction are themselves
eigenfunctions of the real OU-generator.

+ However, eigenspaces have much richer algebraic structure:

kerL+k|d @ Hpq

p,q9€Ng
p+q=k



Complex Hermite Polynomials (Itd, 1952)

First few:

Hpq(2) =

(—1

pA

=2
j=0

z

1P+l (9,)P (95)7 12
( )( ) 1Y Pz
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z z
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z z°Z — 27 Z°z — 27



Orthonormal basis for #,

Let {Z(h): h € 5} be complex isonormal Gaussian process and (e;)
orthonormal basis of .

« Orthonormal basis of H, 4 is given by

{\/ mp! mg! [ | Hiny(g).mq(1)(Z2(€))) : (mp, mg) € My Mq}
=1

« In particular: Z(e;)P € Hp o
« Thus, Hpp is sub-algebra of Dirichlet domain induced by T’



Concluding remarks

« For OU generator and d = 1, a (non-quantitative) FMT and
Peccati-Tudor Theorem have been proven by Chen-Liu (2014+) and
Chen (2014+), respectively, by separating real and imaginary parts

» Our method can also yield FMT for other target laws (usual
complexified Gamma and Beta distributions are not interesting as
these are real valued)

Applications:
+ Quantitative CLT for spin random fields (joint project with D.
Marinucci and M. Rossi)
« New proof and generalization of de Reyna’s complex Gaussian
product inequality; advances for complex unlinking conjecture
(forthcoming paper with G. Poly)



