A bridge between numeration systems and graph directed iterated function systems

Julien Leroy
Joint work with E. Charlier and M. Rigo

University of Luxembourg
(julien.leroy@uni.lu)

Floripadynsys 2013
Basic IFSs

\[X_T = \text{usual triadic Cantor set.} \]

\[\phi_0(x) = \frac{x}{3} \]

\[\phi_1(x) = \frac{x + 2}{3} \]

\(X_T \) is the unique attractor of the homogeneous iterated function system \(\Phi = \{ \phi_0, \phi_1 \} \):

\[X_T = \frac{X_T}{3} \cup \frac{X_T + 2}{3}. \]
Basic IFSs

Pascal’s triangle modulo 2

\[\phi_a(x) = \frac{x + a}{2} \]

for \(a \in \{0, 1\}^2 \setminus \{(1, 0)\} \)

Menger’s sponge

\[\phi_a(x) = \frac{x + a}{3} \]

for \(a \in \{0, 1, 2\}^3 \) s.t. \(|a|_1 \leq 1 \)
Initial question

Given a IFS Φ, can we obtain its attractor K_Φ as the attractor of another IFS Ψ?
Feng and Wang answered for homogeneous IFS on \mathbb{R}

Definition
An IFS $\Phi = \{\phi_i\}_{i=1}^N$ satisfies the *Open Set Condition* (OSC) if there is a non-empty open set V such that the sets $\phi_i(V)$ are disjoint subset of V.

Theorem (Feng and Wang 2009)
$\Phi = \{\phi_i\}_{i=1}^N$ and $\Psi = \{\psi_j\}_{j=1}^M$ two homogeneous IFS on \mathbb{R} and that satisfy OSC.
Suppose that $X = K_\Phi = K_\Psi$.

1. Suppose $\dim_H(X) = s < 1$. Then $\frac{\log |r_\Psi|}{\log |r_\Phi|} \in \mathbb{Q}$;

2. Suppose $\dim_H(X) = 1$. If X is not a finite union of intervals, then $\frac{\log |r_\Psi|}{\log |r_\Phi|} \in \mathbb{Q}$.
Feng and Wang's result looks like Cobham's theorem

Definition
A set $X \subseteq \mathbb{N}$ is k-recognizable if there is a finite automaton accepting exactly $\text{rep}_k(X)$.

Example
$X = 2\mathbb{N}$ is 2-recognizable:

```
X = 2\mathbb{N} is 2-recognizable:
```

![Diagram of a finite automaton accepting $\text{rep}_2(X)$](image)
Feng and Wang’s result looks like Cobham’s theorem

Definition
A set $X \subset \mathbb{N}$ is k-recognizable if there is a finite automaton accepting exactly $\text{rep}_k(X)$.

Example
$X = 2\mathbb{N}$ is 2-recognizable:

```
1
\rightarrow
1
\rightarrow
0
\rightarrow
0
```

Theorem (Cobham 1969)

Let $k, \ell \geq 2$ be two integers such that $\frac{\log k}{\log \ell} \not\in \mathbb{Q}$.

A set $X \subset \mathbb{N}$ is simultaneously k- and ℓ-recognizable if and only if it is a finite union of arithmetic progressions.
Two similar results appeared almost simultaneously

Let \(k \geq 2 \) be an integer.

Definition
A compact set \(X \subset [0, 1] \) is *\(k \)-self-similar* if its \(k \)-kernel is finite, where the \(k \)-kernel is the collection of sets

\[
N_{a,b}(X) = (k^aX - b) \cap [0, 1], \quad a, b \in \mathbb{N}, \ 0 \leq b < k^a.
\]

Example
The *Triadic Cantor set* \(X_T \) is 3-self-similar: its 3-kernel is

\[
\{ X_T, \{0\}, \{1\}, \{0, 1\} \}.
\]
Two similar results appeared almost simultaneously

Let $k \geq 2$ be an integer.

Definition
A compact set $X \subset [0, 1]$ is \textit{k-self-similar} if its k-kernel is finite, where the k-kernel is the collection of sets

\[N_{a,b}(X) = (k^a X - b) \cap [0, 1], \quad a, b \in \mathbb{N}, \ 0 \leq b < k^a. \]

Theorem (Adamczewski and Bell 2011)
Let $k, \ell \geq 2$ be two integers such that $\log k / \log \ell \notin \mathbb{Q}$.

A compact set $X \subset [0, 1]$ is \textit{simultaneously k- and \ell-self-similar} if and only if it is a finite union of intervals with rational endpoints.
Two similar results appeared almost simultaneously

Let \(k \geq 2 \) be an integer.

Definition
A compact set \(X \subset [0, 1]^d \) is *\(k \)-self-similar* if its \(k \)-kernel is finite, where the \(k \)-kernel is the collection of sets

\[
N_{a,b}(X) = (k^a X - b) \cap [0, 1]^d, \quad a \in \mathbb{N}, b \in \mathbb{N}^d, \ 0 \leq b_i < k^a.
\]

Conjecture (Adamczewski and Bell 2011)
Let \(k, \ell, d \geq 2 \) be two integers such that \(\frac{\log k}{\log \ell} \notin \mathbb{Q} \).

A compact set \(X \subset [0, 1]^d \) is simultaneously \(k \)- and \(\ell \)-self-similar if and only if it is a finite union of polyhedra with rational vertices.
Two similar results appeared almost simultaneously

Let $k \geq 2$ be an integer.

Example

Pascal’s triangle modulo 2 is 2-self-similar.
Two similar results appeared almost simultaneously

Let $k \geq 2$ be an integer.

Definition

A *Büchi automaton* is an automaton with a procedure of acceptance adapted to infinite words.

Definition

A set $X \subset \mathbb{R}^n$ is *weakly k-recognizable* if there is a weak Büchi automaton accepting exactly $\text{rep}_k(X)$

Example

The *Triadic Cantor set* X_T is weakly 3-recognizable:
Two similar results appeared almost simultaneously

Let \(k \geq 2 \) be an integer.

Definition
A Büchi automaton is an automaton with a procedure of acceptance adapted to infinite words.

Definition
A set \(X \subset \mathbb{R}^n \) is weakly \(k \)-recognizable if there is a weak Büchi automaton accepting exactly \(\text{rep}_k(X) \)

Theorem (Boigelot, Brusten, Bruyère, Jodogne, Leroux and Wolper (2001 to 2009))

Let \(k, \ell \geq 2 \) be two integers such that \(\frac{\log k}{\log \ell} \notin \mathbb{Q} \).

A set \(X \subset \mathbb{R}^n \) is simultaneously weakly \(k \)- and \(\ell \)-recognizable if and only if it is definable by a first order formula in the structure \(\langle \mathbb{R}, \mathbb{Z}, +, \leq \rangle \).
Two similar results appeared almost simultaneously

Let $k \geq 2$ be an integer.

Definition

A *Büchi automaton* is an automaton with a procedure of acceptance adapted to infinite words.

Definition

A set $X \subset \mathbb{R}^n$ is *weakly k-recognizable* if there is a weak Büchi automaton accepting exactly $\text{rep}_k(X)$

Remark

Sets definable by a first order formula in the structure $\langle \mathbb{R}, \mathbb{Z}, +, \leq \rangle$ are exactly the periodic repetitions of finite unions of polyhedra with rational vertices.
All three notions are not equivalent

The following set is 2-recognizable but not obtained by an IFS.
The notion that unifies everything is GDIFS

Definition
A graph-directed iterated function system (GDIFS) is given by a 4-tuple

$$\mathcal{G} = (V, E, (X_v, \rho_v)_{v \in V}, (S_e)_{e \in E})$$

with (V, E) is a directed graph, (X_v, ρ_v) are metric spaces and S_e are similarities.

An attractor for \mathcal{G} is a collection of compact sets $(K_v \subset X_v)_{v \in V}$ such that for all v,

$$K_v = \bigcup_{e \in E_{v \rightarrow u}} S_e(K_u).$$
Closed Büchi automata and GDIFS

Theorem (Charlier, L., Rigo)

A set \(X \subset [0, 1]^d \) is \(k \)-recognizable by some closed Büchi automaton if and only if it is a union of sets of the attractor of a GDIFS whose similarities are of the form \(\frac{x + a}{k} \) for \(a \in A^d_k \).
Closed Büchi automata and GDIFS

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-recognizable by some closed Büchi automaton if and only if it is a union of sets of the attractor of a GDIFS whose similarities are of the form $\frac{x + a}{k}$ for $a \in A_k^d$.

Sketch of proof

Let A be a closed Büchi automaton accepting $\text{rep}_k(X)$.

- $\forall q$, $W_q := \{\text{infinite words accepted by } A \text{ from } q\}$

 $$W_q = \bigcup_{(q, a, p)} aW_p$$
Closed Büchi automata and GDIFS

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-recognizable by some closed Büchi automaton if and only if it is a union of sets of the attractor of a GDIFS whose similarities are of the form $\frac{x + a}{k}$ for $a \in A_k^d$.

Sketch of proof

Let A be a closed Büchi automaton accepting $\text{rep}_k(X)$.

- $\forall q, W_q := \{\text{infinite words accepted by } A \text{ from } q\}$

\[
W_q = \bigcup_{(q,a,p)} aW_p
\]

- $w = au$ for $a \in A_k^d \Rightarrow \text{val}_k(w) = \frac{\text{val}_k(u) + a}{k}$.

Closed Büchi automata and GDIFS

Theorem (Charlier, L., Rigo)

A set \(X \subset [0, 1]^d \) is \(k \)-recognizable by some closed Büchi automaton if and only if it is a union of sets of the attractor of a GDIFS whose similarities are of the form \(\frac{x + a}{k} \) for \(a \in A_k^d \).

Sketch of proof

Let \(\mathcal{A} \) be a closed Büchi automaton accepting \(\text{rep}_k(X) \).

\(\forall q, W_q := \{ \text{infinite words accepted by } \mathcal{A} \text{ from } q \} \)

\[W_q = \bigcup_{(q,a,p)} aW_p \]

\(w = au \) for \(a \in A_k^d \) \(\Rightarrow \) \(\text{val}_k(w) = \frac{\text{val}_k(u) + a}{k} \).

Thus \((K_q := \text{val}_k(W_q))_q \) are compact and satisfy:

\[\forall q, K_q = \bigcup_{(q,a,p)} \frac{K_p + a}{k} \]
GDIFS and k-self-similar sets

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-self-similar if and only if it belongs to the attractor of a GDIFS whose similarities are of the form $S_a : x \mapsto \frac{x + a}{k}$ for $a \in A_k^d$.
GDIFS and k-self-similar sets

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-self-similar if and only if it belongs to the attractor of a GDIFS whose similarities are of the form

$$S_a : x \mapsto \frac{x + a}{k} \text{ for } a \in A_k^d.$$

Sketch of proof

k-self-similar \Rightarrow GDIFS:

- k-kernel of X: $\{N_{a_i, b_i}\}_{i=1}^n$
- $N_{a, b} = \bigcup_{c \in A_k^d} \frac{N_{a+1, kb+c} + c}{k}$
GDIFS and k-self-similar sets

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-self-similar if and only if it belongs to the attractor of a GDIFS whose similarities are of the form $S_a : x \mapsto \frac{x + a}{k}$ for $a \in A^d_k$.

Sketch of proof

k-self-similar \Rightarrow GDIFS:

- k-kernel of X: $\{N_{a_i, b_i}\}_{i=1}^n$

- $N_{a, b} = \bigcup_{c \in A^d_k} \frac{N_{a+1, kb+c} + c}{k}$

- Draw the following directed graph:

 $V = \{N_{a_i, b_i}\}_{i=1}^n$ $N_{a_i, b_i} \xrightarrow{c} N_{a_j, b_j}$ if $N_{a_j, b_j} = N_{a_i+1, kb_i+c}$.
GDIFS and k-self-similar sets

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-self-similar if and only if it belongs to the attractor of a GDIFS whose similarities are of the form $S_a : x \mapsto \frac{x + a}{k}$ for $a \in A_k^d$.

Sketch of proof

k-self-similar \Rightarrow GDIFS:

- **k-kernel of X:** $\{N_{a_i,b_i}\}_{i=1}^n$
- $N_{a,b} = \bigcup_{c \in A_k^d} \frac{N_{a+1,kb+c} + c}{k}$
- **Draw the following directed graph:**
 $V = \{N_{a_i,b_i}\}_{i=1}^n \quad N_{a_i,b_i} \xrightarrow{c} N_{a_j,b_j}$ if $N_{a_j,b_j} = N_{a_i+1,kb_i+c}$.
- $X = N_{0,0}$.
GDIFS and k-self-similar sets

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-self-similar if and only if it belongs to the attractor of a GDIFS whose similarities are of the form $S_a : x \mapsto \frac{x + a}{k}$ for $a \in A_k^d$.

Sketch of proof

GDIFS \Rightarrow k-self-similar:

- $X = K_1$ where $K_i = \bigcup_{i \to j} S_a(K_j)$ for all i
- for all ℓ: $X = \bigcup_{1 \to \cdots \to j} S_{a_1} \circ \cdots \circ S_{a_\ell}(K_j)$
GDIFS and k-self-similar sets

Theorem (Charlier, L., Rigo)

A set $X \subset [0, 1]^d$ is k-self-similar if and only if it belongs to the attractor of a GDIFS whose similarities are of the form $S_a : x \mapsto \frac{x + a}{k}$ for $a \in A_k^d$.

Sketch of proof

GDIFS \Rightarrow k-self-similar:

- $X = K_1$ where $K_i = \bigcup_i S_a \circ \cdots \circ S_a(K_j)$ for all i
- for all ℓ: $X = \bigcup_{1 \rightarrow \cdots \rightarrow j} S_{a_1} \circ \cdots \circ S_{a_\ell}(K_j)$
- $N_{\ell, b} = (k^\ell X - b) \cap [0, 1]^d = \left(\bigcup_i S_{a_1} \circ \cdots \circ S_{a_\ell} K_j + c \right) \cap [0, 1]^d$

with $c \in \mathbb{N}^d$
Advantages and disadvantages of the methods

Automata results are better for:
- multidimensional setting
- GDIFS constructions
- logical characterization

IFSs results are better for:
- larger class of contraction ratios
- stability under affine maps
- possibility to consider non-homogeneous IFSs (Elekes, Keleti, Máthé)
Further work

Try to handle other sets such as Rauzy fractals.
Further work

Try to handle other sets such as Rauzy fractals.

Thank you