A LEVEL RAISING RESULT FOR MODULAR GALOIS REPRESENTATIONS MODULO PRIME POWERS.

PANAGIOTIS TSAKNIAS

ABSTRACT. In this work we provide a level raising theorem for \(\lambda^n \) modular Galois representations. It allows one to see such a Galois representation that is modular of level \(N \), weight 2 and trivial Nebentypus as one that is modular of level \(Np \), for a prime \(p \) coprime to \(N \), when a certain local condition at \(p \) is satisfied. It is a generalization of a result of Ribet concerning mod \(\ell \) Galois representations.

1. Introduction

Let \(N \) and \(k \) be positive integers, \(S_k(\Gamma_0(N)) \) be the space of modular forms of level \(N \) and weight \(k \), and \(T_k(N) \) be the \(\mathbb{Z} \)-algebra of Hecke operators acting faithfully on this space. Let also \(R \) be a complete Noetherian local ring with maximal ideal \(\mathfrak{m}_R \) and residue field of characteristic \(\ell > 0 \). A (weak) eigenform of level \(N \) and \(k \) with coefficients in \(R \) is then defined to be a ring homomorphism \(\theta : T_k(N) \rightarrow R \) (One can find a discussion on the various notions of modularity modulo prime powers as well as a comparison between them in [CKW11]). We will denote by \(\bar{\theta} \) its composition with \(R \rightarrow R/\mathfrak{m}_R \), i.e. the residual reduction of \(\theta \). Then one has the following theorem of Carayol (Theorem 3 in [Car94]):

Theorem 1.1 (Carayol). Let \(k \geq 2 \) and \(N > 4 \) or assume that 6 is invertible in \(R \) (i.e. that \(\ell \geq 5 \)). If the representation attached to \(\bar{\theta} \) is absolutely irreducible, then one can attach a Galois representation \(\rho : G_\mathbb{Q} \rightarrow \text{GL}_2(R) \) to \(\theta \) in the following sense: For every prime \(q \nmid N\ell \), \(\rho \) is unramified at \(q \) and

\[
\text{tr}(\rho(\text{Frob}_q)) = \theta(T_q).
\]

A representation that arises in the way described by the previous theorem is called modular. If one wants to explicitly mention a specific eigenform \(\theta \) due to which the representation \(\rho \) is modular one can say that \(\rho \) is attached to or associated with \(\theta \).

One can then ask if the converse is true: Given a Galois representation \(\rho : G_\mathbb{Q} \rightarrow \text{GL}_2(R) \), when is it modular? Furthermore can one have a hold on what the level and weight of this eigenform will be?

Let \(p \) be a rational prime. Then one has a natural inclusion map

\[
S_k(\Gamma_0(N)) \oplus S_k(\Gamma_0(N)) \rightarrow S_k(\Gamma_0(Np))
\]
whose image is called the \(p \)-old subspace. This subspace is stable under the action of \(T_k(Np) \) and so is its orthogonal complement through the so-called Peterson product. We call this complementary subspace the \(p \)-new subspace and we denote by \(T_k^{p-\text{new}}(Np) \) the quotient of \(T_k(Np) \) that acts faithfully on it. We will call this quotient the \(p \)-new quotient of \(T_k(Np) \). There is also the \(p \)-old
Let $n \geq 2$ be an integer and $\rho : G_\Q \to \GL_2(\O/\lambda^n)$ be a continuous Galois representation that is modular, associated with a Hecke map $\theta : \mathcal{T}_2(N) \to \O/\lambda^n$, and residually absolutely irreducible. Let also p be a prime such that $(\ell N, p) = 1$ and assume that $\text{tr}(\rho(Frob_p)) \equiv \pm (p + 1) \mod \lambda^n$. Then ρ is also associated with a Hecke map $\theta' : \mathcal{T}_2(Np) \to \O/\lambda^n$ which is new at p, i.e. θ' factors through the $\mathcal{T}_2^{N_{p \text{-new}}}(Np)$.

Remark: For $n = 1$ this is Theorem 1 of Rib90b.

Remark: The theorem does not exclude the case $\ell | N$.

Remark: As with the case $n = 1$, one can also prove the theorem in the case $p = \ell$ by assuming the condition $\theta(T_p) \equiv \pm (p + 1) \mod \lambda^n$ instead of the one involving the trace of the representation.

Corollary 1.3. Let p be as in Theorem 1.2. Then there exist infinitely many primes p (coprime to N) such that ρ is modular of level Np, new at p.

Proof. Immediate consequence of Lemma 7.1 in Rib90a. \qed

In what follows we set $\mathcal{T}_N := \mathcal{T}_2(N)$ and $\mathcal{T}_{Np} := \mathcal{T}_2(Np)$. We will also denote the p-th Hecke operator in \mathcal{T}_{Np} by U_p in order to emphasize the different way of acting compared to the one in \mathcal{T}_N.

2. Jacobians of modular curves

In this section we gather the necessary results from Rib90b that we will need in the proof of the main result.

Let N be a positive integer. Let $X_0(N)_{\C}$ be the modular curve of level N and $J_0(N) := \text{Pic}^0(X_0(N))$ its Jacobian. There is a well defined action of the Hecke operators T_n on $X_0(N)$ and hence, by functoriality, on $J_0(N)$ too. The dual of $J_0(N)$ carries an action of the Hecke algebra as well and can be identified with $S_2(\Gamma_0(N))$. This implies that one has a faithful action of \mathcal{T}_N on $J_0(N)$.

Let now p be a prime not dividing N. In the same way one has an action of Hecke operators on $X_0(Np)$ and its Jacobian $J_0(Np)$ and the latter admits a faithful action of \mathcal{T}_{Np}. The interpretation of $X_0(N)$ and $X_0(Np)$ allows us to define the two natural degeneracy maps $\delta_1, \delta_p : X_0(Np) \to X_0(N)$ and their pullbacks $\delta_1^*, \delta_p^* : J_0(N) \to J_0(Np)$.

There is a map
\[
\alpha : J_0(N) \times J_0(N) \to J_0(Np), \quad (x, y) \mapsto \delta_1^*(x) + \delta_p^*(y).
\]
whose image is by definition the p-old subvariety of $J_0(Np)$. We will denote this by A. This map α is almost Hecke-equivariant:
\[
\alpha \circ T_q = T_q \circ \alpha \quad \text{for every prime } q \neq p,
\]
\[
\alpha \circ \begin{pmatrix} T_p & p \\ -1 & 0 \end{pmatrix} = U_p \circ \alpha
\]
Of course, the first one makes sense only if one interprets the operator T_q as acting diagonally on $J_0(N) \times J_0(N)$. Consider also the kernel Sh of the map $J_0(N) \to J_1(N)$ induced by $X_1(N) \to
$X_0(N)$. If we inject it into $J_0(N) \times J_0(N)$ via $x \mapsto (x, -x)$ then its image, which we will denote by Σ, is the kernel of the previous map α (see Proposition 1 in [Rib90b]). Furthermore Sh, and therefore Σ too, are annihilated by the operators $\eta_r = T_r - (r + 1) \in T_N$ for all primes $r \not| Np$. (see Proposition 2 in [Rib90b]).

We make a small parenthesis here to introduce a useful notion.

Definition 2.1. A maximal ideal m of the Hecke algebra T_N is called Eisenstein if it contains the operator $T_r - (r + 1)$ for almost all primes r.

We need a few more definitions and facts (see Corollary in [Rib90b] and the discussion after that):

Let Δ be the kernel of $\begin{pmatrix} 1 + p & T_p \\ T_p & 1 + p \end{pmatrix} \in M^{2 \times 2}(T_N)$ acting on $J_0(N) \times J_0(N)$. Δ is finite and comes equipped with a perfect \mathbb{G}_m-valued skew-symmetric pairing ω. Furthermore Σ is a subgroup of Δ, self orthogonal, and $\Sigma \subset \Sigma^+ \subset \Delta$. One can also see Δ/Σ and therefore its subgroup Σ^+/Σ, as a subgroup of A.

Let B be the p-new subvariety of $J_0(Np)$. It is a complement of A, i.e. $A + B = J_0(Np)$ and $A \cap B$ is finite. The Hecke algebra acts on it faithfully through its p-new quotient and it turns out (see Theorem 2 in [Rib90b]) that

$$A \cap B \cong \Sigma^+ / \Sigma.$$

as groups, with the isomorphism given by the map α.

3. Proof of Theorem 1.2

Let $\theta : T_N \to \mathcal{O}/\lambda^n$ be the eigenform associated with ρ, $\bar{\theta} : T_N \to \mathcal{O}/\lambda$ its reduction mod λ (which is associated with \mathfrak{p}, the mod λ reduction of ρ) and let I and m be the kernels of θ and $\bar{\theta}$ respectively. It will be enough to find a weak modular form $\theta' : T_2(Np) \to \mathcal{O}/\lambda^n$ that agrees with θ on T_q for all primes $q \neq p$ (i.e. they define the same Galois representation) and factors through $T_2^{p\text{-new}}(Np)$ (i.e. new at p). In what follows we will be writing $\text{Ann}(M)$ instead of $\text{Ann}_{T_N}(M)$ to denote the annihilator of a T_N-module M.

Let us begin with the following auxiliary result:

Lemma 3.1. m is the only maximal ideal of T_N containing I.

Proof. We will equivalently show that T_N/I is local. The proof actually works for any Artinian ring injecting into a local ring.

By the definition of I, T_N/I injects in \mathcal{O}/λ^n. Since T_N/I is Artinian it decomposes into the product of its localizations at its prime (actually maximal) ideals, which are finitely many, say $s \geq 1$. The set containing the identity e_i of each component then forms a complete set (i.e. $\sum_{i=1}^s e_i = 1$) of pairwise orthogonal (i.e. $e_i e_j = 0$ for $1 \leq i \neq j \leq s$) non-trivial (i.e. $e_i \neq 0, 1$) idempotents for T_N/I. The set $\{\bar{e}_1, \ldots, \bar{e}_s\}$ of their image through the injection of T_N/I into \mathcal{O}/λ^n is clearly a complete set of pairwise orthogonal non-trivial idempotents too. This implies that \mathcal{O}/λ^n is isomorphic to $\prod_{i=1}^s \bar{e}_i(\mathcal{O}/\lambda^n)$. But this cannot happen unless $s = 1$ since \mathcal{O}/λ^n is local. Since $s = 1$ we get that T_N/I is local. \hfill \square
We define:

\[V_I = J_0(N)[I], \]
\[V_\mathfrak{m} = J_0(N)[\mathfrak{m}] \]

We have that \(\mathfrak{m} \subseteq \text{Ann}(V_\mathfrak{m}) \) by the definition of \(V_\mathfrak{m} \). But \(\mathfrak{m} \) is maximal so \(\mathfrak{m} = \text{Ann}(V_\mathfrak{m}) \). We also have that \(\text{Ann}(V_I) \subseteq \text{Ann}(V_\mathfrak{m}) = \mathfrak{m} \), so \(\mathfrak{m} \) is in the support of \(\text{Ann}(V_I) \). Since the representation \(\overline{\rho} \), which is the reduction of \(\rho \) and it is associated to \(\theta \), is irreducible we get that \(\mathfrak{m} \) is not Eisenstein (See for example Theorem 5.2c in \cite{Rib90a}). Since \(I \subseteq \text{Ann}(V_I) \), Lemma 3.1 implies that \(\text{Supp}(V_I) \) is the singleton \(\{ \mathfrak{m} \} \).

As in \cite{Rib90b}, we will consider the case where \(\text{tr}(\rho(Frob_p)) \equiv -(p + 1) \mod \lambda^n \). The other case where \(\text{tr}(\rho(Frob_p)) \equiv p + 1 \mod \lambda^n \) is treated in exactly the same case, with some minor alterations which we explicitly mention. Since \(\rho \) is modular, associated with \(\theta \), this translates to

\[\theta(T_p) \equiv -(p + 1) \mod \lambda^n. \]

Now consider the composite map

\[J_0(N) \to J_0(N) \times J_0(N) \xrightarrow{\alpha} A \subseteq J_0(Np), \]

where the first map is the diagonal embedding (in the case of \(\text{tr}(\rho(Frob_p)) \equiv p + 1 \mod \lambda^n \) we pick the anti-diagonal map) and the second is the map \(\alpha \) defined in the previous section. By abuse of notation, we will also denote by \(V_I \) the image of \(V_I \) in \(J_0(N) \times J_0(N) \) via the diagonal embedding. We then claim that its intersection with \(\Sigma \) is zero: Assume that it is not, and denote it by \(V'_I \). It is easy to see that \(V'_I \) is preserved by the action of \(\mathbb{T}_N \) so it can be seen as a \(\mathbb{T}_N \)-module: For an \((x, x) \in V'_I \) we have (using relation (2))

\[\alpha(T_q(x, x)) = T_q(\alpha(x, x)) = T_q(0) = 0 \quad \text{for primes } q \neq p \]

and (using relation (3))

\[\alpha(T_p(x, x)) = \alpha(T_p(x), T_p(x)) = \alpha(-(p + 1)x, -(p + 1)x) = -(p + 1)\alpha(x, x) = 0. \]

In the case where \(\theta(T_p) \equiv p + 1 \mod \lambda^n \), the elements of \(V'_I \) are of the form \((x, -x)\) but the reasoning is the same. Since \(\Sigma \) is annihilated by almost all operators \(T_r - (r + 1) \), \(V'_I \) is annihilated by almost all of them too. This implies that every maximal ideal containing \(\text{Ann}(V'_I) \) is Eisenstein. But \(\text{Ann}(V_I) \subseteq \text{Ann}(V'_I) \) so \(V_I \) has an Eisenstein ideal in its support. On the other hand the only maximal ideal in the support of \(V_I \) is \(\mathfrak{m} \) which is non-Eisenstein, so we get a contradiction. One can therefore see \(V_I \) as a subgroup of \(A \) and we will abuse notation to denote its image through the above map by \(V_I \) too. We have the following Lemma:

Lemma 3.2. \(V_I \) is stable under the action of \(\mathbb{T}_{Np} \) and the action is given by a ring homomorphism \(\theta' : \mathbb{T}_{Np} \to \mathcal{O}/\lambda^n \).

Proof. This is nothing but a straightforward calculation:

First note that the action of \(\mathbb{T}_N \) on \(V_I \) factors through \(\mathbb{T}_N/I \) so we obtain a map \(\theta(\mathbb{T}_N/I) \to \text{End}(V_I) \). Let \(y \) be a non-trivial element of the image of \(V_I \) in \(A \). Then there exists \(x \in V_I \) such that \(\alpha(x, x) = y \). Let now \(q \) be a prime other than \(p \). In view of relation (2) and we have that:

\[T_q(y) = T_q(\alpha(x, x)) = \alpha(T_q(x), T_q(x)) = \alpha(\theta(T_q)x, \theta(T_q)x) = \theta(T_q)\alpha(x, x) = \theta(T_q)y. \]

For \(q = p \) we have (using relation (3) and (5)):

\[U_p(y) = U_p(\alpha(x, x)) = \alpha(\begin{pmatrix} T_p & p \\ p & 0 \end{pmatrix} (x, x)^T) = \alpha(T_p(x) + px, -x) = \alpha(\theta(T_p)x + px, -x) = \alpha(-x, -x) = -\alpha(x, x) = -y \]
It turns out that y is an eigenvector and that the action of T_{Np} on it defines a ring homomorphism $	heta': \mathbb{T}_{Np} \to \mathcal{O}/\lambda^n$ via:
\[
\theta'(T_q) = \theta(T_q) \quad \text{for all primes } q \neq p \text{ and }
\theta'(U_p) = -1
\]

To treat the other case one has to keep in mind for the formulas above that $y = \alpha(x,-x)$ and proceed in the same way to get the same result except that $U_p(y) = y$ this time and therefore $\theta'(U_p) = 1$. \hfill \Box

Remark: Since the θ and θ' actually agree on almost all primes, it is clear that they are associated with the same Galois representation, so θ' is the candidate map we were looking for.

To finish of the proof of the main result it remains to show that the map factors through the \mathfrak{p}-new quotient of the Hecke algebra. To this end, it is enough to show that V_I, when viewed as a subgroup of $J_0(Np)$ is a subgroup of $(A \cap B)$. We again proceed according to Ribet. It is easy to see that V_I, when considered as a subgroup of $J_0(N) \times J_0(N)$, is a subgroup of Δ. Let \bar{V}_I be the image of V_I in Δ/Σ^\perp. Then, in view of [1], we just need to show that \bar{V}_I is trivial.

First notice that \bar{V}_I is preserved by the action of \mathbb{T}_N. For this it is enough to check that if $z \in V_I \cap \Sigma^\perp$ then $T_q(z) \in \Sigma^\perp$ and $T_p(z) \in \Sigma^\perp$ (clearly they will also be in V_I). Let $x \in \Sigma$. We then have the following: $\omega(x,T_q(z)) = \omega(T^\vee_q(x),z)$. Now the subalgebras of generated by T_q and T^\vee_q are isomorphic (see p444 in [Rib90a]). Since the subalgebra generated by T_q preserves Σ as shown in [6], we get that $T_q^\vee(x) \in \Sigma$ and therefore $\omega(T^\vee_q(x),z) = 0$. Finally, using (5), again, $\omega(x,T_p(z)) = \omega(x,-(p+1)z) = -(p+1)\omega(x,z) = 0$.

Now according to Ribet in the proof of Lemma 2 in [Rib90b], Δ/Σ^\perp is dual to Σ which is annihilated by almost all operators $T_r - (r+1)$, so Δ/Σ^\perp, and therefore \bar{V}_I, is annihilated by them too. This implies that any maximal ideal containing $\text{Ann}(\bar{V}_I)$ is Eisenstein. Recall that V_I is not Eisenstein. Now assume for contradiction that \bar{V}_I is non-zero. Since $\text{Ann}(\bar{V}_I)$ contains $\text{Ann}(V_I)$, we get that the support of \bar{V}_I also contains Eisenstein ideals. This is the desired contradiction that completes the proof of Theorem [2].

Acknowledgments: I would like to thank Gabor Wiese for many useful comments and discussions, and for helping me with the proof of Lemma [3,4]. During the time this research was done I was being supported by the SPP 1489 of the Deutsche Forschungsgemeinschaft (DFG).

References

