p-adic Modular Forms: Serre, Katz, Coleman,
Kassaei

Nadim Rustom
University of Copenhagen

June 17, 2013



Serre p-adic modular forms

» Formes modulaires et fonctions zéta p-adiques, Modular
Functions of One Variable Il (Antwerp 1972)

» Motivation: Study special values of p-adic L-functions.

> Idea is to capture congruences between modular forms
topologically.



Serre p-adic modular forms

» Example: For p > 5, Epm-1(p_1) = E,f_l =
» Example:
6= -2 4y nna
27 o4 qina
n=1
G == G — pF G|V,
Then:

oo
G=Y p"Gs|V".
m=0

» Gy is a " p-adic modular form” .



Serre p-adic modular forms

v

f= ano anq" € Qp[[q]]-
vp(f) = inf vp(an).
Definition:
1. For a sequence {fi}ien € Qp[[q]], we say fi — f if
vp(fi — ) — oo.
2. f € Qp[lq]] is a p-adic modular form if there exists
{f; € Mk,-}ieN such that f; — f.

Remark: f € My, g € My,

v

v

v

f=g (modp™) = k=k (modp™ (p-1)).



Serre pMF: Properties

> X =17, x Z/(p — 1)Z.
» {fi € My }ien, fi — f, then 3k € X, independent of f;, k; such
that k; — k.

» Elements of X can be considered as characters Z; — (C;';.



Serre pMF: Spectral theory?

v

Can define operators U, V, T;.
» Let A € Cp, v(A) > 0. Pick a p-adic modular form fy:
1. eigenform for all T;, I # p,
2. flU=0,
3. Note that fy|U = 0 < a,(fp) = 0 whenever p|n.
» Example: fo = (1 - VU)A.
> fi=D 2o A"f|V" is a p-adic modular form.
» Then a,(fy) = an(f\) whenever p{ n, and f,|U = Afy.
(UV =id).
» This rules out a good spectral theory: cannot hope to write a
modular form as a sum of eigenforms.



Katz pMF: moduli of elliptic cuves

» Katz (Antwerp 1972). Atkin, Swinnerton-Dyer, and Serre on
congruence properties of g-expansions of modular forms.

» Approach: moduli of elliptic curves, Igusa, Deligne.

» P Sch/Z[1/N] — Sets, P(S) = {(E/S, P)}, elliptic curves
with '1(/N)-structures.

> For N > 5, P is representable by an affine scheme
Y = Y1(N)z/ny, universal family £.

=] Jo

Y

» w = 0"Qg/y invertible sheaf.
» X = X1(N) compactifies Y1(N), moduli scheme of
"generalized elliptic curves”’, w extends to X.



Katz pMF: modular forms

v

Ais a Z[1/N]-algebra, Xa = X @718 A, wa = w Qz1/n] A.
A modular form over A of weight k and level ['1(N) is a
sections f € HO(Xa,w§X).

Alternatively: f is a rule assigning to each triple (E/R,w, P)
an element of R depending only on the isoclass of

(E/R,w, P), commuting with base change, and

f(E/R,Aw, P) = A\"Kf(E/R,w, P) for A € R*.

Evaluating f at (Tate(q), wean), get the g-expansion of f.
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Katz pMF: Hasse invariant

> w € H(E,Qp ), 1 € HY(E, O) its dual,
Fops : O — Og,f — P, induces
F2.: HY(E, Og) — HY(E, Og), has rank 1.
» Define the Hasse invariant A(E/R, w) by
Fro(n) = A(E/R, w)n, hence A(E/R,Aw) = A\1"PA(E/R, w)
for A € R*.
» A is a modular form of level 1 and weight p — 1 with

A(Tate(q), wean) = 1. By g-expansion principle,

A= (Ep—1 (mod p)).



Katz pMF: going p-adic

» p-adic modular forms: " HO(X ® Z,, w®k)"?
» Recall: for p>5, Ejm-1(p—1) = ng;l =1 (mod p™).

A lift of the Hasse invariant should be invertible.

v

v

Problem 1: A vanishes at the supersingular points.

v

Solution 1: throw away elliptic curves which are supersingular
or have supersingular reduction.
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Katz pMF: going rigid-analytic

>

Consider X ®@p, X° the locus corresponding to elliptic
curves with good ordinary, or multiplicative, reduction.

Problem 2: X° and SS := X \ X° both have infinitely
many points, so cannot be subvarieties (Since X is a curve).

Solution 2: Forget the Zariski topology. SS is isomorphic to a
finite union of p-adic discs corresponding to supersingular
j-invariants in char p. Hence X has the structure of a rigid
analytic space X>p, and inherits an invertible analytic sheaf
wan,

p-adic modular forms as HO(X>q, (w?")®k): these are the
convergent modular forms.

Theorem (Katz): Space of convergent modular forms =
Serre p-adic modular forms (as a Banach space and Hecke
module).

We are throwing away too many elliptic curves.

11



Katz pMF: modular forms

>

Ro ring of integers in a finite extension of Q,, R an

R — algebra in which p is nilpotent

f can alternatively be seen as a rule acting on (E/R,w,P,Y)
where YE, ;1 = 1.

Definition: A p-overconvergent modular form is a rule
acting on (E/R,w, P, Y) where YE,_1 = p € Ry \ {0}.

> YEp1(E,w) = p = vp(Ep1(E.w)) < 1 = vp(p).
» If r < 1, this definition is independent of the lift of the Hasse

invariant.

Definition: X>, := X \ {xcorrespondingtoE : v,(E) > r}. If
r < 1, this definition is independent of the lift of the Hasse
invariant. Then p-overconvergent modular forms of weight k
are HO(XZVp(p), (wean)®k).,

If r < ﬁ, we have a continuous action of the Hecke
operators, and U is a compact operator, hence a good
spectral theory.
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Rigid geometry

» Tate: elliptic curves with multiplicative reduction.

» Qp-analytic manifold: locally ring space locally isomorphic to
Zp, sheaf of locally analytic functions.

> It's totally disconnected. Too many locally constant functions.
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Rigid geometry: affinoid algebras

» Definition: T, =Qp < x1, - ,Xn >C Qp[[x1, -, xn]] such
that if f =) a.t® € T, then a, — 0 in Q, as |a| — oo.

» These are the rigid analytic functions on Z7. An affinoid
algebra is A= T,/I for some ideal | of T,.

> Close to polynomial algebras.

» Proposition (Tate): T, is Noetherian, Jacobson, UFD,

regular of equidimension n, and the Nullstellensatz holds: if m
is a maximal ideal in Tj, then [T,/m : Qp] < co.
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Rigid geometry: "weak” G-topology

» The maximum spectrum: X = Max(A).

» Since NSS holds, a morphism of Q,-algebras A — B induces
a morphism Max(B) — Max(A).

» Admissible opens: affinoid subdomains, i.e. U C X such that
X’ = Max(A") — U C X which is universal: if
X" = MaxA"” — U C X then this factors through X’.

» Admissible open coverings: finite coverings by affinoid
subdomains.

» Presheaf: Ox(X(f/g)) =A< f/g > where
X(f/g) = Max(A < f/g >). By Tate acyclicity, Ox is a
sheaf.
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Rigid geometry: "strong” G-topology

» There exists a Grothendieck topology on X satisfying:

1. GO: 0 and X are admissible opens.

2. G1: if U C X admissible open, V C X, and there exists an
admissible covering {U;} of U such that V N U; is admissible
open in X for all i, then V is admissible open.

3. G2: if {U;}ics be some covering of an admissible open U such
that U; is admissible open for all /, and if it has a refinment,
then it is an admissible covering.

» Ox extends uniquely to a sheaf Ox in the strong topology.
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Rigid geometry: rigid analytic varieties

» Definition:

1. An affinoid variety over Q, is a pair (X, Ox), X = Max(A) for
an affinoid Q,-algebra A equipped with the strong topology
and a sheaf Ox with respect to it. Write
Sp(A) = (MaX(A)’ OMax(A))'

2. A rigid analytic variety is a set X with a Grothendieck
topology satisfying GO — G2 and a sheaf Ox of Q,-algebras
such that there exists an admissible covering X = J;., X
where each (X;, Ox|x;) is isomorphic to an affinoid variety.
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Rigid geometry: "an" functor

» Proposition: X = [J;; X a set, X; has Grothendieck
topology satisfying GO — G2 for each 7, and compatible, then
there exists a Grothendieck topology on X satisfying:

1. X; is admissible open in X, resticts to the Grothendieck
topology on X;.
2. GO - G2.
3. {Xi}ies is an admissible covering of X.
There exists a functor an from the category of schemes X
over Q, locally of finite type to the category of rigid analytic
varietiyes X over Q.

(SpecA)?" = Sp(A).
There exists a functor an from Ox-modules to Oxar-modules

which is exact, faithful, takes coherent sheaves to coherent
sheaves, and F" =0« F = 0.
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Back to classical modular forms

» We have a nice theory of overconvergent modular forms, with
analytic tools at our disposal.

» How can we get back to the classical case?

» Fix p, N coprime.

» Definition: Let v, be the p-adic valuation in @p, normalized
so that v,(p) = 1. For a p-adic modular form f over @p, the
slope vp(f) 1= vp(ap(f)).

» Proposition: Let f be a classical eigenform for U := U,.
Then f has slope at most kK — 1

» Proof (sketch): If f is a newform, a computation shows that
vo(f) = 552, If f is an oldform, it's in the span of g(z) and
g(pz) for some g, and this span is stable under Up,. On this
space U, has the characteristic polynomial x? — a,(g) + p*~1,
of which ap(f) is a root.

» Theorem (Hida): if f is a p-adic U-eigenform of weight
k > 2 and slope 0, then f is classical.
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Coleman, Kassaei

» Theorem (Coleman, 96): Let f be a p-adic overconvergent
modular form of level I';(Np) weight k, with slope
vp(f) < k — 1, and which is a generalized eigenvector for U.
Then f is classical.

» Theorem (Coleman, 96): Let f be a p-adic overconvergent
Hecke eigenform of weight of level I'1(N) and k > 2 and slope
k — 1 such that f ¢ 0= M5_,. Then f is classical.

> In fact we have a stronger result due to Kassaei:

» Theorem (Kassaei 06): Let f be an overconvergent modular
form of level ['1(Np™) of weight k, defined over K, a finite
extension of Q,. Let R(x) € K[x] whose roots in C, have
valuation < k — 1. If R(U)f is classical, then so is f.

» Coleman's theorem follows from this by taking
R(x) = (x — A\)" (since 0 a classical).
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Coleman, Kassaei

» Proof idea: This relies on a result of Buzzard and Taylor on
analytic continuation of modular forms. For simplicity, take
m =1, assume Uf = af, vp(a) < k — 1.
1. Z> and Z° are the connected components of X1(Np)3 which
contain the cusp co and 0 respectively.
2. Buzzard: Can extend f to U; the rigid analytic part of
X1(Np)% whose noncuspidal points correspond to (E, i, P), i a
1 (N)-structure and P a point of order p, and either E has
supersingular reduction or E has ordinary reduction and P
generates the canonical subgroup of E (equivalentely
(E,i,P) € Z*).
3. Using a gluing lemma, show that f extends to the complement
70, so that f is defined on all of X;(Np)3.
4. By rigid-analytic GAGA, f is classical.
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