p-adic Modular Forms: Serre, Katz, Coleman, Kassaei

Nadim Rustom University of Copenhagen

June 17, 2013

Serre p-adic modular forms

- Formes modulaires et fonctions zêta p-adiques, Modular Functions of One Variable III (Antwerp 1972)
- Motivation: Study special values of p-adic L-functions.
- Idea is to capture congruences between modular forms topologically.

Serre p-adic modular forms

• Example: For
$$p \ge 5$$
, $E_{p^{m-1}(p-1)} = E_{p-1}^{p^{m-1}} \equiv 1 \pmod{p^m}$.

• Example: $1 \quad \sum_{n=1}^{\infty}$

$$G_2 = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma_1(n) q^n,$$

$$G_2^* := G_2 - p^{k-1}G_2|V,$$

Then:

$$G_2 = \sum_{m=0}^{\infty} p^m G_2^* | V^m.$$

• G_2 is a "*p*-adic modular form".

Serre p-adic modular forms

•
$$f = \sum_{n \leq 0} a_n q^n \in \mathbb{Q}_p[[q]].$$

- $v_p(f) = \inf v_p(a_n)$.
- Definition:
 - 1. For a sequence $\{f_i\}_{i\in\mathbb{N}}\in\mathbb{Q}_p[[q]]$, we say $f_i\to f$ if $v_p(f_i-f)\to\infty$.
 - 2. $f \in \mathbb{Q}_p[[q]]$ is a *p*-adic modular form if there exists $\{f_i \in M_{k_i}\}_{i \in \mathbb{N}}$ such that $f_i \to f$.
- Remark: $f \in M_k, g \in M_{k'}$,

$$f \equiv g \pmod{p^m} \Rightarrow k \equiv k' \pmod{p^{m-1}(p-1)}.$$

Serre pMF: Properties

- $\blacktriangleright X := \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}.$
- ▶ $\{f_i \in M_{k_i}\}_{i \in \mathbb{N}}, f_i \to f$, then $\exists k \in X$, independent of f_i, k_i such that $k_i \to k$.
- Elements of X can be considered as characters $\mathbb{Z}_p^* \to \mathbb{C}_p^*$.

Serre pMF: Spectral theory?

• Can define operators U, V, T_I .

▶ Let $\lambda \in \mathbb{C}_p$, $v(\lambda) > 0$. Pick a *p*-adic modular form f_0 :

1. eigenform for all
$$T_I$$
, $I \neq p$,

2. $f_0|U=0$,

3. Note that $f_0|U = 0 \Leftrightarrow a_n(f_0) = 0$ whenever p|n.

• Example:
$$f_0 = (1 - VU)\Delta$$
.

•
$$f_{\lambda} := \sum_{n=0}^{\infty} \lambda^n f_0 | V^n$$
 is a p-adic modular form.

- Then $a_n(f_0) = a_n(f_\lambda)$ whenever $p \nmid n$, and $f_\lambda | U = \lambda f_\lambda$. (UV = id).
- This rules out a good spectral theory: cannot hope to write a modular form as a sum of eigenforms.

Katz pMF: moduli of elliptic cuves

- ▶ Katz (Antwerp 1972). Atkin, Swinnerton-Dyer, and Serre on congruence properties of *q*-expansions of modular forms.
- Approach: moduli of elliptic curves, Igusa, Deligne.
- P : Sch/ℤ[1/N] → Sets, P(S) = {(E/S, P)}, elliptic curves with Γ₁(N)-structures.
- ► For $N \ge 5$, \mathcal{P} is representable by an affine scheme $Y = Y_1(N)_{\mathbb{Z}[1/N]}$, universal family \mathcal{E} .

$$\mathcal{E} \\ \pi \downarrow \hat{} 0 \\ \mathbf{Y}$$

- $\omega = 0^* \Omega_{\mathcal{E}/Y}$ invertible sheaf.
- X = X₁(N) compactifies Y₁(N), moduli scheme of "generalized elliptic curves", ω extends to X.

Katz pMF: modular forms

- A is a $\mathbb{Z}[1/N]$ -algebra, $X_A = X \otimes_{\mathbb{Z}[1/N]} A$, $\omega_A = \omega \otimes_{\mathbb{Z}[1/N]} A$.
- A modular form over A of weight k and level Γ₁(N) is a sections f ∈ H⁰(X_A, ω_A^{⊗k}).
- Alternatively: f is a rule assigning to each triple (E/R, ω, P) an element of R depending only on the isoclass of (E/R, ω, P), commuting with base change, and f(E/R, λw, P) = λ^{-k}f(E/R, w, P) for λ ∈ R[×].
- Evaluating f at $(Tate(q), w_{can})$, get the q-expansion of f.

Katz pMF: Hasse invariant

▶
$$w \in H^0(E, \Omega^1_{E/R}), \eta \in H^1(E, O_E)$$
 its dual,
 $F_{abs} : O_E \to O_E, f \mapsto f^p$, induces
 $F^*_{abs} : H^1(E, O_E) \to H^1(E, O_E)$, has rank 1.

- Define the Hasse invariant A(E/R, w) by $F^*_{abs}(\eta) = A(E/R, w)\eta$, hence $A(E/R, \lambda w) = \lambda^{1-p}A(E/R, w)$ for $\lambda \in R^{\times}$.
- ► A is a modular form of level 1 and weight p − 1 with A(Tate(q), w_{can}) = 1. By q-expansion principle,

$$A = (E_{p-1} \pmod{p}).$$

Katz pMF: going p-adic

- *p*-adic modular forms: " $H^0(X \otimes \mathbb{Z}_p, \omega^{\otimes k})$ "?
- Recall: for $p \ge 5$, $E_{p^{m-1}(p-1)} = E_{p-1}^{p^{m-1}} \equiv 1 \pmod{p^m}$.
- A lift of the Hasse invariant should be invertible.
- Problem 1: A vanishes at the supersingular points.
- Solution 1: throw away elliptic curves which are supersingular or have supersingular reduction.

Katz pMF: going rigid-analytic

- ► Consider X ⊗ Q_p, X^{ord} the locus corresponding to elliptic curves with good ordinary, or multiplicative, reduction.
- Problem 2: X^{ord} and SS := X \ X^{ord} both have infinitely many points, so cannot be subvarieties (Since X is a curve).
- ► Solution 2: Forget the Zariski topology. SS is isomorphic to a finite union of *p*-adic discs corresponding to supersingular *j*-invariants in char *p*. Hence X^{ord} has the structure of a *rigid analytic space* X_{≥0}, and inherits an invertible analytic sheaf w^{an}.
- ▶ p-adic modular forms as H⁰(X_{≥0}, (w^{an})^{⊗k}): these are the convergent modular forms.
- ► Theorem (Katz): Space of convergent modular forms ≃ Serre p-adic modular forms (as a Banach space and Hecke module).
- We are throwing away too many elliptic curves.

Katz pMF: modular forms

- ▶ R_0 ring of integers in a finite extension of \mathbb{Q}_p , R an R algebra in which p is nilpotent
- f can alternatively be seen as a rule acting on (E/R, ω, P, Y) where YE_{p-1} = 1.
- Definition: A ρ-overconvergent modular form is a rule acting on (E/R, ω, P, Y) where YE_{p-1} = ρ ∈ R₀ \ {0}.
- $YE_{p-1}(E,\omega) = \rho \Rightarrow v_p(E_{p-1}(E,\omega)) \le r := v_p(\rho).$
- If r < 1, this definition is independent of the lift of the Hasse invariant.
- Definition: X≥r := X \ {x correspondingtoE : v_p(E) > r}. If r < 1, this definition is independent of the lift of the Hasse invariant. Then ρ-overconvergent modular forms of weight k are H⁰(X≥v_p(ρ), (w^{can})^{⊗k}).
- If r < p/(p+1), we have a continuous action of the Hecke operators, and U is a compact operator, hence a good spectral theory.

Rigid geometry

- ► Tate: elliptic curves with multiplicative reduction.
- \mathbb{Q}_p -analytic manifold: locally ring space locally isomorphic to \mathbb{Z}_p^n , sheaf of locally analytic functions.
- It's totally disconnected. Too many locally constant functions.

Rigid geometry: affinoid algebras

- ▶ **Definition:** $T_n = \mathbb{Q}_p < x_1, \cdots, x_n > \subseteq \mathbb{Q}_p[[x_1, \cdots, x_n]]$ such that if $f = \sum_{\alpha} a_{\alpha} t^{\alpha} \in T_n$ then $a_{\alpha} \to 0$ in \mathbb{Q}_p as $|\alpha| \to \infty$.
- ► These are the rigid analytic functions on \mathbb{Z}_p^n . An affinoid algebra is $A = T_n/I$ for some ideal I of T_n .
- Close to polynomial algebras.
- ▶ Proposition (Tate): T_n is Noetherian, Jacobson, UFD, regular of equidimension n, and the Nullstellensatz holds: if m is a maximal ideal in T_n, then [T_n/m : Q_p] < ∞.</p>

Rigid geometry: "weak" G-topology

- The maximum spectrum: X = Max(A).
- Since NSS holds, a morphism of Q_p-algebras A → B induces a morphism Max(B) → Max(A).
- Admissible opens: affinoid subdomains, i.e. $U \subset X$ such that $\exists X' = Max(A') \rightarrow U \subset X$ which is universal: if $X'' = MaxA'' \rightarrow U \subset X$ then this factors through X'.
- Admissible open coverings: finite coverings by affinoid subdomains.
- ▶ Presheaf: O_X(X(f/g)) = A < f/g > where X(f/g) = Max(A < f/g >). By Tate acyclicity, O_X is a sheaf.

Rigid geometry: "strong" G-topology

▶ There exists a Grothendieck topology on X satisfying:

- 1. G0: \emptyset and X are admissible opens.
- 2. G1: if $U \subset X$ admissible open, $V \subset X$, and there exists an admissible covering $\{U_i\}$ of U such that $V \cap U_i$ is admissible open in X for all i, then V is admissible open.
- 3. G2: if $\{U_i\}_{i \in I}$ be some covering of an admissible open U such that U_i is admissible open for all i, and if it has a refinment, then it is an admissible covering.
- O_X extends uniquely to a sheaf O_X in the strong topology.

Rigid geometry: rigid analytic varieties

Definition:

- 1. An affinoid variety over \mathbb{Q}_p is a pair (X, O_X) , X = Max(A) for an affinoid \mathbb{Q}_p -algebra A equipped with the strong topology and a sheaf O_X with respect to it. Write $Sp(A) = (Max(A), O_{Max(A)}).$
- 2. A rigid analytic variety is a set X with a Grothendieck topology satisfying G0 - G2 and a sheaf O_X of \mathbb{Q}_p -algebras such that there exists an admissible covering $X = \bigcup_{i \in I} X_i$ where each $(X_i, O_X|_{X_i})$ is isomorphic to an affinoid variety.

Rigid geometry: "an" functor

- ▶ Proposition: X = ⋃_{i∈I} X_i a set, X_i has Grothendieck topology satisfying G0 G2 for each i, and compatible, then there exists a Grothendieck topology on X satisfying:
 - 1. X_i is admissible open in X, resticts to the Grothendieck topology on X_i .
 - 2. G0 G2.
 - 3. $\{X_i\}_{i \in I}$ is an admissible covering of X.
- ► There exists a functor an from the category of schemes X over Q_p locally of finite type to the category of rigid analytic varietiyes X over Q_p.
- $(SpecA)^{an} = Sp(A).$
- ▶ There exists a functor *an* from O_X -modules to $O_{X^{an}}$ -modules which is exact, faithful, takes coherent sheaves to coherent sheaves, and $\mathcal{F}^{an} = 0 \Leftrightarrow \mathcal{F} = 0$.

Back to classical modular forms

- We have a nice theory of overconvergent modular forms, with analytic tools at our disposal.
- How can we get back to the classical case?
- Fix *p*, *N* coprime.
- ▶ Definition: Let v_p be the p-adic valuation in Q_p, normalized so that v_p(p) = 1. For a p-adic modular form f over Q_p, the slope v_p(f) := v_p(a_p(f)).
- ▶ Proposition: Let f be a classical eigenform for U := U_p. Then f has slope at most k - 1
- Proof (sketch): If f is a newform, a computation shows that v_p(f) = k-2/2. If f is an oldform, it's in the span of g(z) and g(pz) for some g, and this span is stable under U_p. On this space U_p has the characteristic polynomial x² − a_p(g) + p^{k-1}, of which a_p(f) is a root.
- ► Theorem (Hida): if f is a p-adic U-eigenform of weight k ≥ 2 and slope 0, then f is classical.

Coleman, Kassaei

- Theorem (Coleman, 96): Let f be a p-adic overconvergent modular form of level Γ₁(Np) weight k, with slope v_p(f) < k - 1, and which is a generalized eigenvector for U. Then f is classical.
- Theorem (Coleman, 96): Let f be a p-adic overconvergent Hecke eigenform of weight of level Γ₁(N) and k ≥ 2 and slope k − 1 such that f ∉ θ^{k−1}M_{2−k}. Then f is classical.
- In fact we have a stronger result due to Kassaei:
- ► Theorem (Kassaei 06): Let f be an overconvergent modular form of level Γ₁(Np^m) of weight k, defined over K, a finite extension of Q_p. Let R(x) ∈ K[x] whose roots in C_p have valuation < k − 1. If R(U)f is classical, then so is f.</p>
- Coleman's theorem follows from this by taking $R(x) = (x \lambda)^n$ (since 0 a classical).

Coleman, Kassaei

- ▶ Proof idea: This relies on a result of Buzzard and Taylor on analytic continuation of modular forms. For simplicity, take m = 1, assume Uf = af, v_p(a) < k − 1.</p>
 - 1. Z^{∞} and Z^{0} are the connected components of $X_{1}(Np)_{K}^{an}$ which contain the cusp ∞ and 0 respectively.
 - 2. Buzzard: Can extend f to U_1 the rigid analytic part of $X_1(Np)_K^{an}$ whose noncuspidal points correspond to (E, i, P), i a $\Gamma_1(N)$ -structure and P a point of order p, and either E has supersingular reduction or E has ordinary reduction and P generates the canonical subgroup of E (equivalentely $(E, i, P) \in Z^{\infty}$).
 - 3. Using a gluing lemma, show that f extends to the complement Z^0 , so that f is defined on all of $X_1(Np)^{an}_{\kappa}$.
 - 4. By rigid-analytic GAGA, f is classical.