p-adic Modular Forms: Serre, Katz, Coleman, Kassaei

Nadim Rustom
University of Copenhagen

June 17, 2013
Serre p-adic modular forms

- Formes modulaires et fonctions zêta p-adiques, Modular Functions of One Variable III (Antwerp 1972)
- Motivation: Study special values of p-adic L-functions.
- Idea is to capture congruences between modular forms topologically.
Example: For $p \geq 5$, $E_{p^{m-1}(p-1)} = E_{p-1}^{p^{m-1}} \equiv 1 \pmod{p^m}$.

Example:

$$G_2 = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma_1(n) q^n,$$

$$G_2^* := G_2 - p^{k-1} G_2|_V,$$

Then:

$$G_2 = \sum_{m=0}^{\infty} p^m G_2^*|_V^m.$$

G_2 is a "p-adic modular form".
Serre p-adic modular forms

- $f = \sum_{n \leq 0} a_n q^n \in \mathbb{Q}_p[[q]]$.
- $v_p(f) = \inf v_p(a_n)$.
- **Definition:**
 1. For a sequence $\{f_i\}_{i \in \mathbb{N}} \in \mathbb{Q}_p[[q]]$, we say $f_i \to f$ if $v_p(f_i - f) \to \infty$.
 2. $f \in \mathbb{Q}_p[[q]]$ is a p-adic modular form if there exists $\{f_i \in M_{k_i}\}_{i \in \mathbb{N}}$ such that $f_i \to f$.
- **Remark:** $f \in M_k, g \in M_{k'}$,

 $f \equiv g \pmod{p^m} \Rightarrow k \equiv k' \pmod{p^{m-1}(p-1)}$.

Serre pMF: Properties

- $X := \mathbb{Z}_p \times \mathbb{Z}/(p - 1)\mathbb{Z}$.
- $\{f_i \in M_{k_i}\}_{i \in \mathbb{N}}, f_i \rightarrow f$, then $\exists k \in X$, independent of f_i, k_i such that $k_i \rightarrow k$.
- Elements of X can be considered as characters $\mathbb{Z}_p^* \rightarrow \mathbb{C}_p^*$.
Can define operators U, V, T_l.

Let $\lambda \in \mathbb{C}_p$, $v(\lambda) > 0$. Pick a p-adic modular form f_0:

1. eigenform for all T_l, $l \neq p$,
2. $f_0|U = 0$,
3. Note that $f_0|U = 0 \iff a_n(f_0) = 0$ whenever $p|n$.

Example: $f_0 = (1 - VU)\Delta$.

\[f_\lambda := \sum_{n=0}^{\infty} \lambda^n f_0|V^n \text{ is a } p \text{-adic modular form.} \]

Then $a_n(f_0) = a_n(f_\lambda)$ whenever $p \nmid n$, and $f_\lambda|U = \lambda f_\lambda$.

$(UV = id)$.

This rules out a good spectral theory: cannot hope to write a modular form as a sum of eigenforms.
Katz pMF: moduli of elliptic cuves

- Approach: moduli of elliptic curves, Igusa, Deligne.
- $\mathcal{P} : \text{Sch}/\mathbb{Z}[1/N] \rightarrow \text{Sets}, \mathcal{P}(S) = \{(E/S, P)\}$, elliptic curves with $\Gamma_1(N)$-structures.
- For $N \geq 5$, \mathcal{P} is representable by an affine scheme $Y = Y_1(N)_{\mathbb{Z}[1/N]}$, universal family \mathcal{E}.

$$
\begin{array}{c}
\mathcal{E} \\
\pi \\
\downarrow \\
Y
\end{array}
$$

- $\omega = 0^*\Omega_{\mathcal{E}/Y}$ invertible sheaf.
- $X = X_1(N)$ compactifies $Y_1(N)$, moduli scheme of ”generalized elliptic curves”, ω extends to X.
Katz pMF: modular forms

- A is a $\mathbb{Z}[1/N]$-algebra, $X_A = X \otimes_{\mathbb{Z}[1/N]} A$, $\omega_A = \omega \otimes_{\mathbb{Z}[1/N]} A$.
- A modular form over A of weight k and level $\Gamma_1(N)$ is a sections $f \in H^0(X_A, \omega_A^\otimes k)$.
- Alternatively: f is a rule assigning to each triple $(E/R, \omega, P)$ an element of R depending only on the isoclass of $(E/R, \omega, P)$, commuting with base change, and $f(E/R, \lambda \omega, P) = \lambda^{-k} f(E/R, \omega, P)$ for $\lambda \in R^\times$.
- Evaluating f at $(\text{Tate}(q), w_{can})$, get the q-expansion of f.
Katz pMF: Hasse invariant

- $w \in H^0(E, \Omega^1_{E/R})$, $\eta \in H^1(E, O_E)$ its dual,
 $F_{abs}: O_E \to O_E$, $f \mapsto f^p$, induces
 $F^*_{abs}: H^1(E, O_E) \to H^1(E, O_E)$, has rank 1.

- Define the Hasse invariant $A(E/R, w)$ by
 $F^*_{abs}(\eta) = A(E/R, w) \eta$, hence $A(E/R, \lambda w) = \lambda^{1-p} A(E/R, w)$
 for $\lambda \in R^\times$.

- A is a modular form of level 1 and weight $p - 1$ with
 $A(Tate(q), w_{can}) = 1$. By q-expansion principle,

 \[A = (E_{p-1} \pmod{p}). \]
Katz pMF: going p-adic

- p-adic modular forms: "$H^0(X \otimes \mathbb{Z}_p, \omega \otimes k)$"?
- Recall: for $p \geq 5$, $E_{p^{m-1}(p-1)} = E_{p^{m-1}}^{p^{m-1}} \equiv 1 \pmod{p^m}$.
- A lift of the Hasse invariant should be invertible.
- Problem 1: A vanishes at the supersingular points.
- Solution 1: throw away elliptic curves which are supersingular or have supersingular reduction.
Katz pMF: going rigid-analytic

- Consider $X \otimes \overline{\mathbb{Q}}_p$, X^{ord} the locus corresponding to elliptic curves with good ordinary, or multiplicative, reduction.
- Problem 2: X^{ord} and $SS := X \setminus X^{ord}$ both have infinitely many points, so cannot be subvarieties (Since X is a curve).
- Solution 2: Forget the Zariski topology. SS is isomorphic to a finite union of p-adic discs corresponding to supersingular j-invariants in char p. Hence X^{ord} has the structure of a rigid analytic space $X_{\geq 0}$, and inherits an invertible analytic sheaf w^{an}.
- p-adic modular forms as $H^0(X_{\geq 0}, (w^{an}) \otimes k)$: these are the convergent modular forms.
- **Theorem (Katz):** Space of convergent modular forms \cong Serre p-adic modular forms (as a Banach space and Hecke module).
- We are throwing away too many elliptic curves.
Katz pMF: modular forms

- R_0 ring of integers in a finite extension of \mathbb{Q}_p, R an $R-algebra$ in which p is nilpotent
- f can alternatively be seen as a rule acting on $(E/R, \omega, P, Y)$ where $YE_{p-1} = 1$.

Definition: A ρ-overconvergent modular form is a rule acting on $(E/R, \omega, P, Y)$ where $YE_{p-1} = \rho \in R_0 \setminus \{0\}$.
- $YE_{p-1}(E, \omega) = \rho \Rightarrow v_p(E_{p-1}(E, \omega)) \leq r := v_p(\rho)$.
- If $r < 1$, this definition is independent of the lift of the Hasse invariant.

Definition: $X_{\geq r} := X \setminus \{x \text{corresponding to } E : v_p(E) > r\}$. If $r < 1$, this definition is independent of the lift of the Hasse invariant. Then ρ-overconvergent modular forms of weight k are $H^0(X_{\geq v_p(\rho)}, (w_{\text{can}}) \otimes k)$.
- If $r < \frac{p}{p+1}$, we have a continuous action of the Hecke operators, and U is a compact operator, hence a good spectral theory.
Rigid geometry

- Tate: elliptic curves with multiplicative reduction.
- \mathbb{Q}_p-analytic manifold: locally ring space locally isomorphic to \mathbb{Z}_p^n, sheaf of locally analytic functions.
- It’s totally disconnected. Too many locally constant functions.
Rigid geometry: affinoid algebras

- **Definition:** $T_n = \mathbb{Q}_p < x_1, \cdots, x_n > \subseteq \mathbb{Q}_p[[x_1, \cdots, x_n]]$ such that if $f = \sum a_\alpha t^\alpha \in T_n$ then $a_\alpha \to 0$ in \mathbb{Q}_p as $|\alpha| \to \infty$.

- These are the rigid analytic functions on \mathbb{Z}_p^n. An affinoid algebra is $A = T_n/I$ for some ideal I of T_n.

- Close to polynomial algebras.

- **Proposition (Tate):** T_n is Noetherian, Jacobson, UFD, regular of equidimension n, and the Nullstellensatz holds: if m is a maximal ideal in T_n, then $[T_n/m : \mathbb{Q}_p] < \infty$.
Rigid geometry: "weak" G-topology

- The maximum spectrum: $X = \text{Max}(A)$.
- Since NSS holds, a morphism of \mathbb{Q}_p-algebras $A \to B$ induces a morphism $\text{Max}(B) \to \text{Max}(A)$.
- Admissible opens: affinoid subdomains, i.e. $U \subset X$ such that $\exists X' = \text{Max}(A') \to U \subset X$ which is universal: if $X'' = \text{Max}A'' \to U \subset X$ then this factors through X'.
- Admissible open coverings: finite coverings by affinoid subdomains.
- Presheaf: $\mathcal{O}_X(X(f/g)) = A < f/g >$ where $X(f/g) = \text{Max}(A < f/g >)$. By Tate acyclicity, \mathcal{O}_X is a sheaf.
Rigid geometry: ”strong” G-topology

- There exists a Grothendieck topology on X satisfying:
 1. G_0: \emptyset and X are admissible opens.
 2. G_1: if $U \subset X$ admissible open, $V \subset X$, and there exists an admissible covering $\{U_i\}$ of U such that $V \cap U_i$ is admissible open in X for all i, then V is admissible open.
 3. G_2: if $\{U_i\}_{i \in I}$ be some covering of an admissible open U such that U_i is admissible open for all i, and if it has a refinement, then it is an admissible covering.

- O_X extends uniquely to a sheaf O_X in the strong topology.
Definition:

1. An affinoid variety over \mathbb{Q}_p is a pair (X, O_X), $X = \text{Max}(A)$ for an affinoid \mathbb{Q}_p-algebra A equipped with the strong topology and a sheaf O_X with respect to it. Write $\text{Sp}(A) = (\text{Max}(A), O_{\text{Max}(A)})$.

2. A rigid analytic variety is a set X with a Grothendieck topology satisfying $G0 - G2$ and a sheaf O_X of \mathbb{Q}_p-algebras such that there exists an admissible covering $X = \bigcup_{i \in I} X_i$ where each $(X_i, O_X|_{X_i})$ is isomorphic to an affinoid variety.
Rigid geometry: "an" functor

- **Proposition:** $X = \bigcup_{i \in I} X_i$ a set, X_i has Grothendieck topology satisfying $G_0 - G_2$ for each i, and compatible, then there exists a Grothendieck topology on X satisfying:
 1. X_i is admissible open in X, restricts to the Grothendieck topology on X_i.
 2. $G_0 - G_2$.
 3. \{$X_i\}_{i \in I}$ is an admissible covering of X.

- There exists a functor an from the category of schemes X over \mathbb{Q}_p locally of finite type to the category of rigid analytic varieties X over \mathbb{Q}_p.
- $(Spec A)^{an} = Sp(A)$.
- There exists a functor an from O_X-modules to $O_{X^{an}}$-modules which is exact, faithful, takes coherent sheaves to coherent sheaves, and $\mathcal{F}^{an} = 0 \iff \mathcal{F} = 0$.

18
Back to classical modular forms

- We have a nice theory of overconvergent modular forms, with analytic tools at our disposal.
- How can we get back to the classical case?
- Fix p, N coprime.

Definition: Let v_p be the p-adic valuation in \mathbb{Q}_p, normalized so that $v_p(p) = 1$. For a p-adic modular form f over \mathbb{Q}_p, the slope $v_p(f) := v_p(a_p(f))$.

Proposition: Let f be a classical eigenform for $U := U_p$. Then f has slope at most $k - 1$

Proof (sketch): If f is a newform, a computation shows that $v_p(f) = \frac{k-2}{2}$. If f is an oldform, it’s in the span of $g(z)$ and $g(pz)$ for some g, and this span is stable under U_p. On this space U_p has the characteristic polynomial $x^2 - a_p(g) + p^{k-1}$, of which $a_p(f)$ is a root.

Theorem (Hida): if f is a p-adic U-eigenform of weight $k \geq 2$ and slope 0, then f is classical.
Theorem (Coleman, 96): Let f be a p-adic overconvergent modular form of level $\Gamma_1(Np)$ weight k, with slope $\nu_p(f) < k - 1$, and which is a generalized eigenvector for U. Then f is classical.

Theorem (Coleman, 96): Let f be a p-adic overconvergent Hecke eigenform of weight of level $\Gamma_1(N)$ and $k \geq 2$ and slope $k - 1$ such that $f \not\in \theta^{k-1}M_{2-k}$. Then f is classical.

In fact we have a stronger result due to Kassaei:

Theorem (Kassaei 06): Let f be an overconvergent modular form of level $\Gamma_1(Np^m)$ of weight k, defined over K, a finite extension of \mathbb{Q}_p. Let $R(x) \in K[x]$ whose roots in \mathbb{C}_p have valuation $< k - 1$. If $R(U)f$ is classical, then so is f.

Coleman’s theorem follows from this by taking $R(x) = (x - \lambda)^n$ (since 0 a classical).
Coleman, Kassaei

- **Proof idea:** This relies on a result of Buzzard and Taylor on analytic continuation of modular forms. For simplicity, take \(m = 1 \), assume \(Uf = af \), \(\nu_p(a) < k - 1 \).

1. \(Z^\infty \) and \(Z^0 \) are the connected components of \(X_1(Np)_K^{an} \) which contain the cusp \(\infty \) and 0 respectively.
2. Buzzard: Can extend \(f \) to \(U_1 \) the rigid analytic part of \(X_1(Np)_K^{an} \) whose noncuspidal points correspond to \((E, i, P) \), \(i \) a \(\Gamma_1(N) \)-structure and \(P \) a point of order \(p \), and either \(E \) has supersingular reduction or \(E \) has ordinary reduction and \(P \) generates the canonical subgroup of \(E \) (equivalently \((E, i, P) \in Z^\infty \)).
3. Using a gluing lemma, show that \(f \) extends to the complement \(Z^0 \), so that \(f \) is defined on all of \(X_1(Np)_K^{an} \).
4. By rigid-analytic GAGA, \(f \) is classical.