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Serre p-adic modular forms

I Formes modulaires et fonctions zêta p-adiques, Modular
Functions of One Variable III (Antwerp 1972)

I Motivation: Study special values of p-adic L-functions.

I Idea is to capture congruences between modular forms
topologically.
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Serre p-adic modular forms

I Example: For p ≥ 5, Epm−1(p−1) = Epm−1

p−1 ≡ 1 (mod pm).

I Example:

G2 = − 1

24
+
∞∑
n=1

σ1(n)qn,

G ∗2 := G2 − pk−1G2|V ,

Then:

G2 =
∞∑

m=0

pmG ∗2 |Vm.

I G2 is a ”p-adic modular form”.
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Serre p-adic modular forms

I f =
∑

n≤0 anq
n ∈ Qp[[q]].

I vp(f ) = inf vp(an).
I Definition:

1. For a sequence {fi}i∈N ∈ Qp[[q]], we say fi → f if
vp(fi − f )→∞.

2. f ∈ Qp[[q]] is a p-adic modular form if there exists
{fi ∈ Mki}i∈N such that fi → f .

I Remark: f ∈ Mk , g ∈ Mk ′ ,

f ≡ g (mod pm)⇒ k ≡ k ′ (mod pm−1(p − 1)).
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Serre pMF: Properties

I X := Zp × Z/(p − 1)Z.

I {fi ∈ Mki}i∈N, fi → f , then ∃k ∈ X , independent of fi , ki such
that ki → k .

I Elements of X can be considered as characters Z∗p → C∗p.
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Serre pMF: Spectral theory?

I Can define operators U,V ,Tl .
I Let λ ∈ Cp, v(λ) > 0. Pick a p-adic modular form f0:

1. eigenform for all Tl , l 6= p,
2. f0|U = 0,
3. Note that f0|U = 0⇔ an(f0) = 0 whenever p|n.

I Example: f0 = (1− VU)∆.

I fλ :=
∑∞

n=0 λ
nf0|V n is a p-adic modular form.

I Then an(f0) = an(fλ) whenever p - n, and fλ|U = λfλ.
(UV = id).

I This rules out a good spectral theory: cannot hope to write a
modular form as a sum of eigenforms.
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Katz pMF: moduli of elliptic cuves
I Katz (Antwerp 1972). Atkin, Swinnerton-Dyer, and Serre on

congruence properties of q-expansions of modular forms.
I Approach: moduli of elliptic curves, Igusa, Deligne.
I P : Sch/Z[1/N]→ Sets,P(S) = {(E/S ,P)}, elliptic curves

with Γ1(N)-structures.
I For N ≥ 5, P is representable by an affine scheme

Y = Y1(N)Z[1/N], universal family E .
I

E

Y

π 0

I ω = 0∗ΩE/Y invertible sheaf.
I X = X1(N) compactifies Y1(N), moduli scheme of

”generalized elliptic curves”, ω extends to X .
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Katz pMF: modular forms

I A is a Z[1/N]-algebra, XA = X ⊗Z[1/N] A, ωA = ω ⊗Z[1/N] A.

I A modular form over A of weight k and level Γ1(N) is a
sections f ∈ H0(XA, ω

⊗k
A ).

I Alternatively: f is a rule assigning to each triple (E/R, ω,P)
an element of R depending only on the isoclass of
(E/R, ω,P), commuting with base change, and
f (E/R, λw ,P) = λ−k f (E/R,w ,P) for λ ∈ R×.

I Evaluating f at (Tate(q),wcan), get the q-expansion of f .
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Katz pMF: Hasse invariant

I w ∈ H0(E ,Ω1
E/R), η ∈ H1(E ,OE ) its dual,

Fabs : OE → OE , f 7→ f p, induces
F ∗abs : H1(E ,OE )→ H1(E ,OE ), has rank 1.

I Define the Hasse invariant A(E/R,w) by
F ∗abs(η) = A(E/R,w)η, hence A(E/R, λw) = λ1−pA(E/R,w)
for λ ∈ R×.

I A is a modular form of level 1 and weight p − 1 with
A(Tate(q),wcan) = 1. By q-expansion principle,

A = (Ep−1 (mod p)).
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Katz pMF: going p-adic

I p-adic modular forms: ”H0(X ⊗ Zp, ω
⊗k)”?

I Recall: for p ≥ 5, Epm−1(p−1) = Epm−1

p−1 ≡ 1 (mod pm).

I A lift of the Hasse invariant should be invertible.

I Problem 1: A vanishes at the supersingular points.

I Solution 1: throw away elliptic curves which are supersingular
or have supersingular reduction.
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Katz pMF: going rigid-analytic

I Consider X ⊗Qp, X ord the locus corresponding to elliptic
curves with good ordinary, or multiplicative, reduction.

I Problem 2: X ord and SS := X \ X ord both have infinitely
many points, so cannot be subvarieties (Since X is a curve).

I Solution 2: Forget the Zariski topology. SS is isomorphic to a
finite union of p-adic discs corresponding to supersingular
j-invariants in char p. Hence X ord has the structure of a rigid
analytic space X≥0, and inherits an invertible analytic sheaf
wan.

I p-adic modular forms as H0(X≥0, (w
an)⊗k): these are the

convergent modular forms.

I Theorem (Katz): Space of convergent modular forms ∼=
Serre p-adic modular forms (as a Banach space and Hecke
module).

I We are throwing away too many elliptic curves.
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Katz pMF: modular forms

I R0 ring of integers in a finite extension of Qp, R an
R − algebra in which p is nilpotent

I f can alternatively be seen as a rule acting on (E/R, ω,P,Y )
where YEp−1 = 1.

I Definition: A ρ-overconvergent modular form is a rule
acting on (E/R, ω,P,Y ) where YEp−1 = ρ ∈ R0 \ {0}.

I YEp−1(E , ω) = ρ⇒ vp(Ep−1(E , ω)) ≤ r := vp(ρ).
I If r < 1, this definition is independent of the lift of the Hasse

invariant.
I Definition: X≥r := X \ {xcorrespondingtoE : vp(E ) > r}. If

r < 1, this definition is independent of the lift of the Hasse
invariant. Then ρ-overconvergent modular forms of weight k
are H0(X≥vp(ρ), (w

can)⊗k).
I If r < p

p+1 , we have a continuous action of the Hecke
operators, and U is a compact operator, hence a good
spectral theory.
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Rigid geometry

I Tate: elliptic curves with multiplicative reduction.

I Qp-analytic manifold: locally ring space locally isomorphic to
Zn
p, sheaf of locally analytic functions.

I It’s totally disconnected. Too many locally constant functions.
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Rigid geometry: affinoid algebras

I Definition: Tn = Qp < x1, · · · , xn >⊆ Qp[[x1, · · · , xn]] such
that if f =

∑
α aαt

α ∈ Tn then aα → 0 in Qp as |α| → ∞.

I These are the rigid analytic functions on Zn
p. An affinoid

algebra is A = Tn/I for some ideal I of Tn.

I Close to polynomial algebras.

I Proposition (Tate): Tn is Noetherian, Jacobson, UFD,
regular of equidimension n, and the Nullstellensatz holds: if m
is a maximal ideal in Tn, then [Tn/m : Qp] <∞.
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Rigid geometry: ”weak” G-topology

I The maximum spectrum: X = Max(A).

I Since NSS holds, a morphism of Qp-algebras A→ B induces
a morphism Max(B)→ Max(A).

I Admissible opens: affinoid subdomains, i.e. U ⊂ X such that
∃X ′ = Max(A′)→ U ⊂ X which is universal: if
X ′′ = MaxA′′ → U ⊂ X then this factors through X ′.

I Admissible open coverings: finite coverings by affinoid
subdomains.

I Presheaf: OX (X (f /g)) = A < f /g > where
X (f /g) = Max(A < f /g >). By Tate acyclicity, OX is a
sheaf.
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Rigid geometry: ”strong” G-topology

I There exists a Grothendieck topology on X satisfying:

1. G0: ∅ and X are admissible opens.
2. G1: if U ⊂ X admissible open, V ⊂ X , and there exists an

admissible covering {Ui} of U such that V ∩ Ui is admissible
open in X for all i , then V is admissible open.

3. G2: if {Ui}i∈I be some covering of an admissible open U such
that Ui is admissible open for all i , and if it has a refinment,
then it is an admissible covering.

I OX extends uniquely to a sheaf OX in the strong topology.
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Rigid geometry: rigid analytic varieties

I Definition:
1. An affinoid variety over Qp is a pair (X ,OX ), X = Max(A) for

an affinoid Qp-algebra A equipped with the strong topology
and a sheaf OX with respect to it. Write
Sp(A) = (Max(A),OMax(A)).

2. A rigid analytic variety is a set X with a Grothendieck
topology satisfying G0− G2 and a sheaf OX of Qp-algebras
such that there exists an admissible covering X =

⋃
i∈I Xi

where each (Xi ,OX |Xi ) is isomorphic to an affinoid variety.

17



Rigid geometry: ”an” functor

I Proposition: X =
⋃

i∈I Xi a set, Xi has Grothendieck
topology satisfying G0− G2 for each i , and compatible, then
there exists a Grothendieck topology on X satisfying:

1. Xi is admissible open in X , resticts to the Grothendieck
topology on Xi .

2. G0− G2.
3. {Xi}i∈I is an admissible covering of X .

I There exists a functor an from the category of schemes X
over Qp locally of finite type to the category of rigid analytic
varietiyes X over Qp.

I (SpecA)an = Sp(A).

I There exists a functor an from OX -modules to OX an -modules
which is exact, faithful, takes coherent sheaves to coherent
sheaves, and Fan = 0⇔ F = 0.
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Back to classical modular forms
I We have a nice theory of overconvergent modular forms, with

analytic tools at our disposal.
I How can we get back to the classical case?
I Fix p, N coprime.
I Definition: Let vp be the p-adic valuation in Qp, normalized

so that vp(p) = 1. For a p-adic modular form f over Qp, the
slope vp(f ) := vp(ap(f )).

I Proposition: Let f be a classical eigenform for U := Up.
Then f has slope at most k − 1

I Proof (sketch): If f is a newform, a computation shows that
vp(f ) = k−2

2 . If f is an oldform, it’s in the span of g(z) and
g(pz) for some g , and this span is stable under Up. On this
space Up has the characteristic polynomial x2 − ap(g) + pk−1,
of which ap(f ) is a root.

I Theorem (Hida): if f is a p-adic U-eigenform of weight
k ≥ 2 and slope 0, then f is classical.
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Coleman, Kassaei

I Theorem (Coleman, 96): Let f be a p-adic overconvergent
modular form of level Γ1(Np) weight k , with slope
vp(f ) < k − 1, and which is a generalized eigenvector for U.
Then f is classical.

I Theorem (Coleman, 96): Let f be a p-adic overconvergent
Hecke eigenform of weight of level Γ1(N) and k ≥ 2 and slope
k − 1 such that f 6∈ θk−1M2−k . Then f is classical.

I In fact we have a stronger result due to Kassaei:

I Theorem (Kassaei 06): Let f be an overconvergent modular
form of level Γ1(Npm) of weight k , defined over K , a finite
extension of Qp. Let R(x) ∈ K [x ] whose roots in Cp have
valuation < k − 1. If R(U)f is classical, then so is f .

I Coleman’s theorem follows from this by taking
R(x) = (x − λ)n (since 0 a classical).
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Coleman, Kassaei

I Proof idea: This relies on a result of Buzzard and Taylor on
analytic continuation of modular forms. For simplicity, take
m = 1, assume Uf = af , vp(a) < k − 1.

1. Z∞ and Z 0 are the connected components of X1(Np)anK which
contain the cusp ∞ and 0 respectively.

2. Buzzard: Can extend f to U1 the rigid analytic part of
X1(Np)anK whose noncuspidal points correspond to (E , i ,P), i a
Γ1(N)-structure and P a point of order p, and either E has
supersingular reduction or E has ordinary reduction and P
generates the canonical subgroup of E (equivalentely
(E , i ,P) ∈ Z∞).

3. Using a gluing lemma, show that f extends to the complement
Z 0, so that f is defined on all of X1(Np)anK .

4. By rigid-analytic GAGA, f is classical.
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