Jacquet-Langlands in weight 1

In this section we will prove the main theorem of our paper. Firstly, we introduce the concept of overconvergent modular forms, which will be useful for us. Let \(f \) be a normalized eigenform; either a classical modular form or an overconvergent modular form. We define the slope of \(f \) to be the normalized \(p \)-valuation of the eigenvalue of \(U_p \) acting on \(f \).

Theorem 1 (Coleman) Let \(f \) be a classical modular eigenform of weight \(k \). Then the normalized \(p \)-slope of \(f \) is less than or equal to \(k-1 \).

Conversely, if \(f \) is a \(p \)-adic overconvergent modular form of weight \(k \) with normalized slope strictly less than \(k-1 \), then \(f \) is a classical modular form.

We see that there is a slight asymmetry in this result; if an overconvergent modular eigenform of weight \(k \) has normalized slope exactly \(k-1 \), then it can be either classical or non-classical. There are examples of both; we will see this in weight 1 in Section 1. The question of telling whether an overconvergent form of weight \(k \) and slope \(k-1 \) is classical or not is raised by Coleman, and is still open in general.

We now state the main theorem of this paper; that the standard Jacquet-Langlands correspondence can be extended to weight 1.

Theorem 2 Let \(N \) be a positive odd integer and let \(b \) be either 0 or 1. If \(f \in S^N_{\text{new}}((1-10^9)!) \), then there exists an overconvergent automorphic form \(f_* \) in \(S^N_{\text{new}}((1-10^9)!) \) with the same Hecke eigenvalues as \(f \) if \(b = 0 \), and there is no extra level structure at 2, and if \(b = 1 \) then \(G = 1 + n \). Conversely, if \(f_* \) is an overconvergent modular form of weight 1, then there exists an overconvergent modular form \(f \) of weight 1 with the same Hecke eigenvalues as \(f_* \).

We note that this version of the theorem is true in more generality, for other subgroups of \(D^* \) of finite index, but we will not need this for the section on approximation eigenforms.

Approximating eigenforms

In this section we will give an account of how to actually find approximations to overconvergent automorphic eigenforms of weight 1, using \(\Gamma_0 \)-programs. We also indicate how this method can be generalized to find other forms.

This method is a development of the work of Gouvêa and Mazur, where they find overconvergent \(5 \)-adic modular eigenforms of weight 0 by iterating the action of the \(U_p \) operator. This in turn builds on the work of Atkin and O’Brien which pioneered this technique for finding \(p \)-adic eigenforms for \(p = 13 \).

On the automorphic side, we will consider the space of classical modular forms \((1-10^9)!) \); this can be checked to be one-dimensional, and it is in fact generated by the \(p \)-product \(f = q \eta(q)q^{2k} \), which is necessarily a Hecke eigenform. This has Fourier expansion at \(\infty \) given by

\[
f(q) = q \prod_{n=1}^{\infty} \left(1 - q^{2n} + q^{11n} - q^{22n} + q^{33n} + q^{44n} + q^{55n} + q^{66n} + q^{77n} + q^{88n} + q^{99n} + q^{110n} + q^{111n} + q^{112n} \right),
\]

in particular, it has 11-slope 0, which shows that it is in the interesting case left open by the theory of Coleman, where the slope is \(k-1 \). By the Ramanujan-Petersson Conjecture, the Fourier coefficients \(a_n \) of \(f(q) \) satisfy \(|a_n| \leq 2 \).

We use this fact to find such \(f \), and then to find other forms of weight 1 with the same \(p \)-product. We note here that the methods we have outlined will also work for higher weights; let \(k \) be a positive integer. We can find any automorphic forms of slope 0 using exactly this procedure; these will be classical automorphic forms, so they will be determined by a tuple of polynomials. After subtracting these out, we will be able to find forms of higher slope, and this will enable us to approximate overconvergent automorphic eigenforms of weight 1.

Future developments

It would be interesting if one could find simultaneous eigenforms for \(U_p \), and for some other Hecke operators. We consider the action of the \(U \) operator, the analogue of a diamond operator in the classical setting.

\[
W_f = U(1) + \mathbb{C} \cdot f
\]

The action of this operator splits the 2-dimensional eigenspace for \(U_1 \) into two one-dimensional eigenspaces. Basis elements for each of these eigenspaces are eigenforms for all of the Hecke operators \(T_p \), for \(k \) is prime not equal to 2 or 11) and \(U_1 \).

We now choose a second random element \(\gamma \), and compute \(U_1^\gamma \). This will also be congruent to a linear combination of \(h \) and \(h \) modulo \(p \); with very high probability, these two linear combinations are linearly independent, and we can now use linear algebra to find \(h \) and \(h \) modulo \(p \) from them.

Finally, to find eigenforms for all of the Hecke operators, we consider the action of the \(W \) operator, which is defined to be

\[
W_f = (U(1) + \mathbb{C} \cdot f) \cdot W
\]

We can write down similar recurrence relations for each of the \(T_p \) and the \(U \).

Acknowledgments

This paper was written while I was the GCHQ Research Fellow at Merton College, Oxford, and a Research Fellow at the University of Bristol. I would like to thank the College and the University for their hospitality during my terms.

I would like to thank Kevin Buzzard for many helpful conversations and for much help and guidance with this project.

I would also like to thank Daniel Jacobs for his help and for his work on classical and overconvergent automorphic forms.

I would also like to thank William Stein for giving me an account on his machine MECCH, on which many of the computations were performed.