
Research seminar on p-adic Galois
representations

Luxembourg, Winter term 2015–2016

The aim of this seminar is to give an introduction to Fontaine’s theory of p-adic Galois
representations of the absolute Galois group GK a local field K of residue characteristic
p. Such representations arise from the cohomology of p-adic étale sheaves on varieties over
number fields, when restricting the representation to the decomposition group at p. Concrete
examples are the Galois representations attached to modular forms.

One aim of Fontaine’s theory is to recover arithmetic information contained in these p-adic
representations, for instance the de Rham filtration of de Rham cohomology, or the crystalline
Frobenius of crystalline cohomology. Thus geometry motivates the definition of a hierarchy
among these representations (Hodge-Tate, de Rham, semistable, crystalline).

We will follow the program designed by G. Böckle and G. Wiese, corresponding to the
Forschungsseminar on p-adic Galois representations that took place during the Winter term
2008/2009 at the University Duisburg-Essen. The program, that is reproduced below 1, con-
sists of 15 talks distributed in four sections. It follows closely the book manuscript by Fontaine
and Ouyang [FO], supplemented by a nice survey of Berger [Be]. Large parts of the seminar
were devoted to studying the infrastructure necessary to state some key results of the theory.
The seminar ended with the main theorems proved in [FO]: Theorem A Every de Rham rep-
resentation is potentially semi-stable. Theorem B There is an equivalence between semistable
representations of GK and filtered admissible (ϕ,N)-modules over K. More information on
this seminar can be found at http://math.uni.lu/ wiese/pAdicGR/index.html

b c

Program for the seminar

`-adic Galois representations

Talk 1: `-adic representations of local fields

Level: The talk is not difficult if one feels comfortable using words like étale cohomology.
In this talk and in parts of the following talk we survey briefly the much simpler case

of `-adic Galois representations before we pass to the p-adic case. [There is a convention
regarding the use of ` and p that is observed by most, but not all authors.]

Generalities (30 min) This is [FO, §1.1]. Recall Def’s 1.1, 1.4, 1.6 and 1.7. Explain
why every `-adic Galois representation V is isomorphic to T ⊗Z`

Q` for a Z`-representation T .
[Since the notation Kn and K∞ will have a completely different meaning in later talks, it
might be better not to introduce it.] There are obvious constructions (1.1.3) from linear
algebra which need to be mentioned. Perhaps this is a good place to introduce RepQ`

(G) and
discuss [FO, bottom p. 53]. Remind us briefly of the examples in 1.1.4.

`-adic representations of GK for K finite (30 min) This is [FO, §1.2]. For finite K,
an `-representation of GK is completely characterized by the image of the Frobenius automor-
phism (1.2.1). [recall geometric versus arithmetic]. Such representations arise naturally from
étale cohomology (1.2.2). Define Weil-number and pure of weight w as in 1.15 and 1.17. In
the course of the proof of the Weil-conjectures, Deligne (1.13) showed that Hm

ét (X,Q`) is pure
of weight m for X/K smooth projective and geometrically connected. Recast Theorem 1.13

in terms of étale cohomology: ZX =
∏2d
i=0 P

(−1)i

Hm
ét (X,Q`). State conjecture 1.20 and comment on

it.

1Note we added the new reference [BrCo]; the reader can benefit from a different presentation of the
material and some geometric motivation for the theory.
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`-adic representations of GK for K local of residue characteristic p 6= ` (30 min)
This is [FO, §1.3.1]. Recall PK ≤ IK ≤ GK and what we know about IK/PK . Then introduce
and motivate the notation GK,` and PK,`. In this section one can actually prove some things
(perhaps Thms 1.24 and 1.26)! The proof of Thm 1.26 is surprisingly simple. If time remains
say something about [FO, 1.3.3].

Talk 2: B-representations and regular G-rings

Level: Mostly self-contained and rather elementary.
This talk introduces an important method, perhaps introduced by Fontaine (?), to pass

from one description of a representation to another one. In this seminar we always want to
pass from a Galois representation (via a period ring B) to some ‘linear algebra type datum’.
However, the most classical case is somewhat different: Let X be a smooth projective geo-
metrically connected variety over Q. Via its complex of differentials Ω•X , we can attach to X
its (algebraic) de Rham cohomology Hm

dR(X) = Hm(X,Ω•X) (see e.g. [FO, p. 149]). There is
an obvious formalism for de Rham cohomology under base extension from Q to any extension
field. At the same time algebraic topology yields the Betti cohomology Hm

Be(X(C),Q). The
de Rham theorem states the isomorphism

Hm
dR(X)⊗Q C ∼= Hm

Be(X,Q)⊗Q C.

Let us fix Q-bases {e1, . . . , en} and {f1, . . . , fn′} of Hm
dR(X) and Hm

Be(X), respectively. Then
the above isomorphism says that n = n′ and that there is an invertible matrix (bij)

n
i,j=1 ∈

GLn(C) expressing the above isomorphism with respect to the chosen bases. The elements
bij ∈ C are called periods. The matrix (bij) is not unique, unless we have canonical choices of
bases. But: The field Q(bij : i, j = 1, . . . , n) is an invariant of X and so is its transcendence
degree over Q. The de Rham isomorphism says in particular that C contains all periods of
all smooth projective geometrically connected varieties over any subfield of C.

Explain [FO, 2.1] (60 min) Before proving Prop. 2.6 it might be helpful to recall
without proof 0.5.2 on Hi

cont(G,M) for M . Note that in the course of the proof of Thm. 2.13,
the following is shown for B-admissible V : If we fix bases {e1, . . . , en} of V over F and
{f1, . . . , fn} of DB(V ) over E, then the period matrix defining B ⊗F V ∼= B ⊗E DB(V ) lies
in GLn(B). (The inclusions E,F ⊂ B are part of Def 2.8.) See also [Be, I.2.3].

Recast pst-`-adic representations in the above formalism (30 min) As a first
example in the spirit of later examples in this seminar, give the characterization of potentially
semistable `-adic representation in terms of the (Q`, GK)-regular ring B` as presented in [FO,
1.3.2]. It might be helpful to make B` with its GK-action and the differential operator
N (matricially) more explicit than done in [FO]. The ring B` also has a description as
SymQ`

(V`(E)(−1)) modulo a relation 1 = x where x is a generator of Q` ⊂ V`(E)(−1). If
time remains, say something about the conjectures [FO, §1.3.4] (which requires parts of [FO,
§1.3.3]).

The theory of (Φ,Γ)-modules

Talk 3: Mod p Galois representations of GE with charE = p

Level: Mostly self-contained.
For a p-adic field K let Kcyc =

⋃
nK(ε(n)) where ε(n) is a primitive pn-th root of unity.

The Galois group Gal(Kcyc/K) is a subgroup of Z∗p ∼= F∗p × Zp. Let K∞ denote its unique
subfield with Gal(K∞/K) mapping surjectively to Zp. Consider

1 −→ HK = Gal(Kalg/K∞) −→ GK = Gal(Kalg/K) −→ ΓK = Gal(K∞/K) −→ 1.

It is a key insight (due to Fontaine?) that the group HK is (canonically) isomorphic to
Gal(Esep

K /EK) where EK is the field of norms of Fontaine and Wintenberger (this need not
be explained). It satisfies char EK = p. So as an intermediate step to understanding p-
adic representations of GK we need to study those of GE for E a field with charE = p.
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[Unfortunately [FO] and [Be] use almost disjoint notations. The ring E in [Be] is different
from E in [FO].] Before turning to p-adic representations of GE one needs to understand mod
p representations, since they occur naturally as subquotients of Zp-representations.

Mod p representations of GE (60 min) This is [FO, 2.2]. The presentation in [FO]
is fairly complete. The key result is Thm. 2.21 which asserts an equivalence of categories
between RepFp

(GE) and the category Mét
ϕ (E) whose definition is part of the present talk.

The equivalence is given by explicitly described functors. Lemma 2.22 is also called Lang’s
theorem or the Lang torsor, and so one may choose another proof of Lang’s theorem (from
the literature).

The field Êur (30 min) This is a preparation for the following talk. Following [FO, 2.3.1

and 2.3.2] the field Êur should be introduced. One can and should say a few words about
Cohen rings (e.g. Thms. 0.42 and 0.43) but not too much. The referencing to 0.43 in the 3rd
paragraph of 2.3.2, I find confusing. Thms. 2 and 3 and Cor. 1 of [Se, §III.5] seem more to
the point.

Talk 4: p-adic Galois representations of GE with charE = p

and the ring R

Level: Rather elementary, depends on Talk 3.
The first aim of this lecture is to extend the results of the previous talk to p-adic repre-

sentations. The second aim is to lay foundations for the desired application of the results for
GE to GK where K has residue characteristic p and E = EK (see the introduction to the
previous talk). Note that since GE ∼= HK , the field E is much larger than the residue field of
K.

p-adic Galois representations of GE (30 min) This is [FO, 2.3.3 and 2.3.4]. One
should recall the results and notation from the previous talk. The proofs of the main results,
Thm. 2.32 and 2.33 seem to be straightforward.

The ring R (60 min) This is [FO, 4.1]. Let C be the completion of a fixed algebraic
closure of K. As we shall prove later, it is also the completion of the separable closure of
K. Fontaine defines the ring R as lim←−(C/pC ← C/pC ← C/pC ← . . .) with transition map
x 7→ xp. Its elements are denoted by (xn). It is important to have a second description as
R = lim←−(C ← C ← C ← . . .) where again the transition map is x 7→ xp. This time the
elements are denoted by (x(n)). The definition of addition via the second limit is not so
apparent. However the second description provides a valuation on R. It is shown that FracR
is complete and algebraically closed. The meaning of R will reveal itself in the next talk. To
acquire some familiarity with the notations (xn) and (x(n)) and the conversion between them,
it will be good to see a fair number of computations as in [FO, 4.1].

Talk 5: The action of GK on FracR and (ϕ,Γ)-modules

Level: Rather elementary, depends on Talks 3 and 4.
It is the Galois action on FracR that will provide the important link back to K. Once it

is understood, the definition of (ϕ,Γ)-module will be natural, as will be the equivalence of the
category of such with that of p-adic Galois representations. Note: The term field of norms
does not appear in [FO] and neither its original construction. It is the field EK in (4.6).

The action of GK on R (60 min) This is [FO, 4.2]. From the construction of R it is
clear that it carries a continuous action ofGK . In [FO, 4.2.1], for any closed subgroupH ≤ GK
the Galois invariants RH are studied: Associate to an unramified extension K0 of Qp with
residue field k the field E0 := k((π)) and let Kcyc

0 be defined as in the introduction to Talk 3.
Then for H = Gal(Kalg/Kcyc) it is shown that (FracR)H is identified with the topological
completion of the radicial completion of E0. In [FO, 4.2.2] the fundamental isomorphism
HK → Gal(Esep

0 /E0) is established. Note that the right hand side is also isomorphic to
Gal(FracR/RH). To help our intuition it might be good to quote [FO, Prop. 3.8] whose proof
will be given in Talk 6.
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Let me say a word about Lem. 4.18: If L/K is a totally ramified extension of local fields and
f is an Eisenstein polynomial in OK [x] with L ∼= K[x]/f , then δL/K =

∏
f(α)=f(α′)=0(α−α′)

where the product is over all pairs of roots of f which are distinct (see 0.73). Since all α are
integral but not units, all differences have positive valuation. So if one knows that v(DL/K)
is very close to zero (and hence also 1

[L:K]v(δL/K)), then all valuations of all differences are
close to zero. This essentially proves that Lem 4.18 is implied by Prop. 0.88 which is covered
in Talk 7.

[Note: The assertion of Prop. 4.15 is wrong – the right hand sides of the s.e.s.’s should be
1 + pOC and 1 + mC , respectively, I believe.]

(ϕ,Γ)-modules (30 min) This is mainly [FO, 4.4]. The aim for the remaining talk is
to introduce (ϕ,Γ)-modules (Def. 4.22) and to prove Thm. 4.23. One should display some
of the content and some of the diagrams of [FO, 4.3] but only in as far as they are relevant
for Thm. 4.23. In particular, due to the way [FO] introduce E0, one has to comment on the
meaning of EK0

and on EK for general finite extensions K/Qp (see [FO, 3.4]).

The theory of Sen and Tate

Talk 6: The field C

Level: Self contained and rather elementary.
In the previous talks, we have given a description of p-adic Galois representations as

modules over Êur carrying a continuous action of Zp. We well see in the next so many talks
that those representations that come (or seem to come) ‘from geometry’ are characterized in
a different way. A first natural question (if one thinks of C as the p-adic analog of C) is:
Which are those p-adic representations for which C is a period ring (or more precisely, which
are those which are C-admissible)? Much of this was question was solved by Sen. The work
is somewhat technical. But the pain is worth it, since we will learn some important methods.
The first talk will clarify a number of relevant properties of C.

Krasner’s Lemma (20 min) This is [FO, 3.1.1]. The lemma should be stated and proved
(easy!). It has the following ‘well-known’ consequence: If K is a complete nonarchimedean

field. Then K̂sep ∼= K̂alg and both are algebraically closed.
The Ax-Sen Lemma (40 min) This is [FO, 3.1.2]. Given a finite extension E/K of

complete nonarchimedean fields and an element α ∈ E, the Ax-Sen Lemma gives a uniform
expression in terms of α of how well it can be approximated by elements of K. One should
give the proof of the lemma in characteristic zero and p. As a consequence one should prove
Proposition 3.8.

Remedial course on the higher ramification filtrations (30 min) This is in [FO,
0.3], but see also [Se, IV]. We assume some basic knowledge of local fields (by which we
mean finite extensions of Qp). Let L/K be a finite Galois extension of local fields and
G = Gal(L/K). By [Se, III.6.Prop.12], there exists x ∈ L such that OL = OK [x]. Introduce
the function iG(s) and the higher ramification groups Gi in lower indexing and their basic
properties 0.50, 0.51, 0.52 (no proofs), and note that G0/G1 is cyclic of order prime to p
and G1 is a p-group. As an important example, compute the higher ramification groups Gi
for Gal(Q(ε(n))/Q) for ε(n), see Talk 3. [FO, Prop. 0.60] asserts that the lower numbering
behaves well with respect to passing to subgroups. It does not do so with respect to quotients.
Therefore one introduces the upper numbering which behaves well with respect to passing
to quotients. Formally one defines the function Φ : [−1,∞) → [−1,∞) as in (0.18). It is
piecewise linear and continuous and starts at (−1,−1). A way to remember its definition is
via its slopes: The slope on (i−1, i) is [G0 : Gi]

−1. Thus Φ is strictly increasing and hence has
an inverse, called Ψ. One defines Gv := GΨ(v) and where Gu for u ≥ −1 is defined as Gdue.
A computation of the higher ramification filtration of the groups Gal(Q(ε(n))/Q) and the
deduction of that of Gal(Q∞/Q) would be marvelous. Without proof state now Formula [FO,
(0.38), p.35].
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Talk 7: C-representations I

Level: Okay, rather self-contained, depends on Talk 6.
Having understood some basics about C, we next turn to C-representations. But before

that, we have a
Remedial course on the different (50 min) The aim is to give a proof of [FO, Prop.

0.88]. To do so first recall [FO, 0.3.5]. Let L/K be a finite separable extension of local fields.
Then L × L → K : (x, y) 7→ Tr(xy) is a non-degenerate K-bilinear form on L. Define the
different DL/K as the inverse of the fractional ideal {x ∈ L | Tr(xOK) ⊂ OK} ⊃ OL. State
the relation between DL/K and δL/K without proof as well as 0.70, 0.71, 0.72 and 0.73. Now
state and prove 0.75 and Cor. 0.76, as well as Prop. 0.88 and Cor. 0.89, and comment on
Rem. 0.90.

It should be discussed with the speaker of the following talk whether Prop. 0.91 and Cor
0.92 should be covered rather in this or the following talk.

Almost étale descent (40 min) The aim is the proof of [FO, Prop. 3.12]. Recall why
this might be interesting ([FO, Prop. 2.6]). Then give the proof, following [FO, §3.2.1]. If
needed, recall some facts about H1

cont from [FO, 0.5].

Talk 8: C-representations II

Level: More advanced, depends on Talks 6 and 7.
The aim of this talk is [FO, Prop. 3.16] which for obvious reasons can be called decomple-

tion. Together with the previous talk [FO, Thm 3.17] will be immediate. (It might be good
to state this at the beginning.)

Tate’s normalized Trace map (40 min) This is [FO, 0.91-0.97]. One should make a
good selection of the material which to present and which to quote.

Decompletion (40 min) Following [FO, 3.2.2], give the proof of [FO, Prop. 3.16]
Consequences for C-representations (10 min) This is [FO, 3.2.3]. The main task

is to state the results. The proofs are really straightforward at this point. (One could also
begin the talk with this part assuming Prop. 3.16.)

Talk 9: Sen’s Θ-operator and C-admissible representations

Level: Easier than Talk 8, depends on Talks 6, 7 and 8.
Given a C-representation, we have learned in the previous talk that it descends to a K∞-

representation with an action of ΓK ∼= Zp. Sen’s idea is to linearize this action, i.e., to study
the induced Lie algebra action. This is his Θ-operator.

Basic properties of Θ (40 min) This is described in [FO, 3.2.4]. I suggest to cover
3.23-3.28 fairly completely and perhaps 3.29 and 3.30 without proof.

The main theorem on Θ (20 min) State and explain the important Theorem 3.31. To
give its proof would take another session. (It needs further build up on the upper ramification
filtration for p-adic Lie type Galois extensions of local fields.) Deduce Cor. 3.33 from the
main theorem and present Rem. 3.34.

Consequences for C-admissible representations (40 min) This is [FO, 3.5]. Con-

sider Kalg ⊂ P alg := K̂ur
alg
⊂ C. The key results to be presented are: A p-adic representation

(ρ, V ) of GK is admissible for Kalg, for P alg, for C, respectively, iff ρ(GK), or ρ(IK), or ρ(IK)
is finite. The latter two cases are also equivalent to Θ = 0. With our preparations the proofs
are fairly straightforward. Moreover one should state Cor. 3.57

While, as a ring of periods, C turned out to be of little use, the methods developed by
Sen and the operator Θ are really important!
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Crystalline, semistable and de Rham representations

Talk 10: Witt vectors

Level: Survey talk, self-contained.
Before we come to the definition of the rings of periods by Fontaine, it is perhaps a good

idea to recall the construction of the Witt vectors and their main properties as described in
[FO, 0.2]. Personally, I prefer Serre’s approach in [Se, II.4-6], where one first studies p-rings
and then follows Lazard to prove basic results on Witt vectors. The speaker can also choose
a third approach, e.g. [Ha]. But all results of [FO, 0.2.1-0.2.4] have to be covered in some
way. The talk should include Thms. 0.42 and 0.43. The more can be said about 0.2.4, the
better. For instance one could try to explain how to find the Cohen ring{∑∞

n=−∞
anx

n | ∀n : an ∈ Zp, lim
n→∞

a−n = 0
}

with residue field k := Fp((x)) inside W (k).

Talk 11: The period field BdR

Level: Depends on Talks 4, 5 and 10.
In this talk we will introduce the first of Fontaine’s period rings, BdR (and its associated

graded ring BHT).
The ring BHT (10 min) Following [FO, 5.1], introduce the ring BHT (Def. 5.1) and

state and prove Prop. 5.2. The other parts of 5.1 will be treated later.
The ring BdR (55 min) Give a complete presentation of the results and remarks in

[FO, 5.2.1-5.2.3]. Not all proofs have to be given. Some representative arguments will be

appreciated, since they give the audience an idea on how to compute within W (R) and B
(+)
dR .

The two topologies on BdR are important, as is the fact that BdR is complete with respect to
the finer topology.

The cohomology of BdR (25 min) Present [FO, Prop. 5.24] with its proof as well as
Prop. 5.25 (note thatHi = Hi

cont). The proof of 5.24 may require some work. For instance, the
reduction step to a finite extension L/K∞ in the proof of Prop. 5.24 needs some justification
in the case of continuous cohomology (is it true?).

Talk 12: de Rham representations

Level: Advanced.
de Rham and Hodge-Tate representations (30 min) Follow [FO, 5.1.1, 5.2.5] to

give a brief discussion of Hodge-Tate and de Rham representations. In particular, define these
terms, define Hodge-Tate numbers, define FilK and state and prove [FO, Thm. 5.28]. Observe
[FO, Prop. 5.29] that every deRham representation is Hodge-Tate. Another characterization
of being Hodge-Tate is that the operator Θ of Sen is diagonalizable with integral eigenvalues,
cf. [Be, II.1.2]. [FO, Prop. 5.30] gives an example of a representation which is not Hodge-Tate.
Another perspective on this is given in [Be, II.1.2].

A comparison isomorphism(10 min) The real importance of BdR is explained in [FO,
Thm. 5.32], which gives BdR the meaning of a period ring. It might be nice to state the result
as well as 5.33, 5.34. The proof of 5.32 is much beyond the scope of the seminar. In Talk 13
we will see the isomorphism of Thm. 5.32 for an elliptic curve with semistable reduction. Here
one could mention that the element t = log[ε] is a period for the cyclotomic character.

de Rham representations as overconvergent (ϕ,Γ)-modules (50 min) The content
of this part is a survey on the role and meaning of overconvergent (ϕ,Γ)-modules. Sources are
[Be, III.3, IV.1, IV.2] and [FO, 5.3]. The results are due to Berger, Cherbonnier and Colmez,
[Be1, CC]. The question is: How can one describe de Rham representations in terms of (ϕ,Γ)-
modules? The tools in its solution are overconvergence and the observation, due to Colmez,
that one can axiomatize the Sen-Tate method (almost étale descent and decompletion) so
that it applies to other situations.
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A (ϕ,Γ)-module is an étale ϕ-module over E with a continuous ΓK-action, where E =
AK [1/p] and AK = {

∑∞
n=−∞ an[πK ]n | ∀n : an ∈ OF , limn→∞ a−n = 0} is the Cohen ring

of EK and F is the maximal subextension of K which is unramified over Qp. Thinking
of

∑∞
n=−∞ anX

n as a Laurent series on C, it follows that its principal part converges on

|X| ≥ 1 and its power series part on |X| < 1. The overconvergent ring A†,rK is defined
so that the principal part converges for |X| ≥ p−1/reK (while still all an lie in Zp) and

A†K := ∪r>0A
†,r
K . The main result of [CC] is that there is an isomorphism between (ϕ,Γ)-

modules and overconvergent (ϕ,Γ)-modules, where the latter are defined by replacing AK [1/p]
by A†K [1/p]. The proof is an adaption of the Sen-Tate method, cf. [FO, Thm.5.55].

Now Berger goes further with the method. He wants to study the differential operator of
Sen in this theory. The problem is that not even on the trivial object A†K [1/p] this operator

is defined. The reason is that elements of A†K [1/p] have bounded coefficients, a property

not preserved by Sen’s differentiation of power series. Berger’s solution is to enlarge A†,rK to

A†,rrig,K , where the latter ring consists of Laurent series with coefficients in F which converge

on p−1/reK ≤ |X| < 1. On the resulting ‘rigid’ (ϕ,Γ)-modules the operator ∂ := 1
log(1+[πK ])Θ

is well-defined except for poles at ‘X = ε(n) − 1’. Berger’s key theorem is: The de Rham
representations V are precisely those for which these poles for the corresponding rigid (ϕ,Γ)-
modules are ‘resolvable’ by passing to a suitable subobject NdR(V ) ⊂ D†rig(V ), cf. [Be1].

Talk 13: The period rings Bcris and Bst

Level: Advanced.
The definitions of Bcris and Bst (40 min) Following [FO, 6.1.1] define Acris and

identify it as a subring of B+
dR. The latter should be well-explained since Acris is a p-adic

completion of A0
cris while B+

dR was obtained by completing W (R)[1/p] with respect to the
principal ideal which was the kernel of the surjection θ : W (R)[1/p] → C. Props. 6.4, 6.5
and 6.6 describe basic properties of Acris. Their proofs may further our understanding of the
structure of Acris. Then define B+

cris and Bcris. Unlike for BdR, there is a natural Frobenius
endomorphism on Bcris defined in [FO, 6.1.2]. Then [FO, 6.1.3] gives the steps to define a
logarithm U+

R → Bcris. To extend it to (FracR)∗ → one needs to introduce Bst, cf. Prop. 6.11.
If it is not too technical, one might attempt to give the proof of 6.11. Then state the remaining
properties of Bst as given in [FO, 6.1.4].

The fundamental exact sequence relating Bcris and BdR (25 min) The material
[FO, 6.2], which stems from [Fo], is quite technical. Its main purpose is to prove Thm. 6.26.
I suggest not to give this proof, but to explain the meaning of a few of the intermediate and
the final result. The main problem of the matter seems to be that the filtration on Bcris

coming from BdR is highly incompatible with the Frobenius ϕ, cf. [Be, II.3.4]. Here are
some suggestions: Introduce the T {n}, define Λ and explain Thm. 6.21. Another important
intermediate result is Prop. 6.24. which one should take on faith. Perhaps building on this,
one can indicate (some) proofs (and the meaning) of Thm 6.25 and Thm. 6.26. (see also
Rem. 6.27)

Examples (25 min) Given a p-adic representation V of GK , one can associate to it
D?(V ) := (B? ⊗K V )GK for ? ∈ {dR, cris, st}. If B? has some additional structure which
commutes with GK this structure is passed on to D?(V ). An instructive example is the
case where V arises from the Tate-module of an elliptic curve with semistable reduction.
Following [Be, II.4] this example should be discussed in some detail. As Berger says, it was
this example which motivated Fontaine to define Bst as Bcris[log[$]]. The example computes
a period matrix of V for BdR and Bst.

Talk 14: Semi-stable representations and filtered (ϕ,N)-

modules

Level: Okay.
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Semistable p-adic representations (10 min) Following [FO, 6.3] it is straightforward
to define the notion semistable and crystalline representation. It is obvious that any crystalline
representation is semistable. The only result of this section where something needs to be
proved in Prop. 6.31 which asserts that semistable representations are de Rham.

(Admissible) filtered (ϕ,N)-modules (40 min) This is [FO, 6.4]. Once the definition
of filtered (ϕ,N)-module is given, it is straightforward to see that Dst maps to the category
of filtered (ϕ,N)-modules. An important question is whether one can characterize the image!

A subcategory of the category of filtered (ϕ,N)-modules is that of admissible filtered
(ϕ,N)-modules. Its definition is in terms of Newton and Hodge numbers (or polygons). This
subcategory is abelian, cf. Prop. 6.50. It was shown by Totaro in [To] (following work of
Faltings in the crystalline case) that the category is Tannakian (i.e. that it has duals and
a tensor structure). The theorem of Colmez-Fontaine shows that, in fact, the functor Dst

defines an equivalence of categories between semistable p-adic representations of GK and
admissible filtered (ϕ,N)-modules over K. This is Theorem B in [FO, 6.5.2] whose proof
occupies a large portion of [FO, Ch. 7]. At this point, following [FO, 6.4] the basic properties
of MFad

K (ϕ,N) should be presented, and Theorem B should be stated.
Examples (40 min) To gain more familiarity with the objects of MFad

K (ϕ,N), I rec-
ommend at this point to present as much as possible of [FO, 7.1]. (Admissibility in terms
of Newton and Hodge polygons and examples in dimension 1 and 2). If more examples are
wanted one can also consult [GM] (where however the coefficient field is a finite extension of
Qp).

Talk 15: Main Theorems

Level: Advanced.
Theorem B1 (45 min) Following [FO, 7.2], a proof of Theorem B1 which is the simpler

part of the equivalence stated in Theorem B should be attempted. Once the book manuscript
[FO, Ch.7] will be complete, the interested audience of the seminar may finish the proof of B
in independent study.

Theorem A (45 min) There is a second important theorem clarifying further the
relations among the types of representations we have encountered in the seminar. This is
Theorem A of [FO, p.193]. It says that any de Rham representation over K becomes
semistable over a finite extension K ′ of K. (Or in other words, every de Rham representation
is potentially semistable). So perhaps one can start out with a few basic facts from [FO, 6.5.1].
Most of the time could be dedicated to complete the survey begun in Talk 12, following [Be,
IV.3 and IV.5]:

The approach (again due to Berger) is to express crystalline and semistable representations
in terms of rigid (and hence in particular overconvergent) (ϕ,Γ)-modules. Berger proves that
Dcris(V ) ∼= (D†rig(V )[1/t])ΓK (and the variant Dst(V ) ∼= (D†rig(V )[1/t, log[$]])ΓK ). There are
some hints about why this works in [Be, IV.3.3] and some motivational words on how to
imagine all the rings B∗? in [Be, IV.3.2]. This gives rigid (ϕ,Γ)-modules a central role in the
entire theory. They describe all p-adic Galois representations of GK and at the same time,
for these it is ‘easy’ to characterize the subclasses of de Rham, semistable and crystalline
representations.

At this point, we remember that a de Rham representation gave rise to a module NdR(V )
together with a differential operator ∂. Any potentially semistable representation is de Rham
and if V is semistable then ∂ on NdR(V ) turns out to be unipotent. At this point the question
is transferred to a conjecture in the theory of p-adic differential equations, namely Crew’s
conjecture. It says that any ∂ is quasi-unipotent, i.e., that it becomes unipotent after a finite
extension of K. Thus Crew’s conjecture implies Theorem A. As it turns out, around the time
of Berger’s ‘translation’, Crew’s conjecture was proved independently and simultaneously by
André, Kedlaya and Mebkhout, [An, Ke, Me]. (Note the analogy between Crew’s conjecture
and Grothendieck’s theorem of Talk 1 on potential semistability!).
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