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Abstract

This talk is the last one in the Essen seminar on quaternion algebras. It is based on the

paper by Takeshi Saito on Hilbert modular forms andp-adic Hodge theory, but I also used talk

notes by Gerard van der Geer and Theo van den Bogaart. However, I made some changes in the

presentation, which may have led to the introduction of errors. The reader be warned.

1 Hilbert modular forms and automorphic representations

Notation 1.1 (First part) We fix the following data.

• F/Q, a totally real number field with[F : Q] = n > 1.

• I = {τ1, . . . , τn} = Hom(F, R), the embeddings ofF into R.

• OF , the ring of integers ofF .

• D−1 = {b ∈ F |TrF/Q(OF b) ⊂ Z}, the codifferent ideal.

• v �OF , a fixed place which we only need and define ifn is even.

• (k) = (k1, . . . kn, w) ann + 1-tuple of integers such thatw ≥ ki ≥ 2 andki ≡ w mod 2.

• X = P1(C) − P1(R), the union of the upper and the lower half planes,X+ the upper half

plane.

Adelic Hilbert modular forms

We quickly recall the definition of adelic modular forms, following Saito.

Let XI be then-fold product ofX with the leftGL2(R)I -action

γ.z =
(

a b
c d

)
z =

az + b

cz + d
=

(aizi + bi

cizi + di

)
i
∈ XI

for
(

a b
c d

)
=

( (
ai bi

ci di

) )
i

andz = (zi)i. Note that

GL2(AF ) = GL2(R)I ×GL2(AF,f ).
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Via the embeddings(τi) and the diagonalF →֒ AF,f , we obtain a natural left action ofGL2(F )

on XI × GL2(AF,f ) by γ.(z, g) = (γz, γg). There is also a right action ofGL2(AF,f ) on XI ×

GL2(AF,f ) by right multiplication on the second factor.

A functionXI ×GL2(AF,f )→ C is calledholomorphicif it induces a locally constant map

GL2(AF,f )
g 7→(z 7→f(z,g))
−−−−−−−−−→ Hol(XI , C).

There is a rightGL2(F )-action and a leftGL2(AF,f )-action onHol(XI × GL2(AF,f ), C), which

are defined as follows. Letf ∈ Hol(XI × GL2(AF,f ), C), γ =
(

a b
c d

)
∈ GL2(F ), z ∈ XI and

g ∈ GL2(AF,f ):

(γ∗f)(z, g) =
det(γ)

w+k−2
2

(cz + d)k
f(γz, γg) =

( ∏

i

det(γi)
w+ki−2

2

(cizi + di)ki

)
f(γz, γg).

Let g′ ∈ GL2(AF,f ),

(g′∗f)(z, g) = f(z, gg′).

ForK ⊂ GL2(AF,f ) open compact subgroup, the space ofadelic Hilbert modular form of multi-

weight(k) onK is

M
(k)
C,K = {f ∈ Hol(XI ×GL2(AF,f ), C) | γ∗f = f, g∗f = f ∀γ ∈ GL2(F ) ∀g ∈ GL2(AF,f )}.

The union (direct limit) over all open compactK is denoted byM(k)
C .

As explained in Hai’s talk, such adelic Hilbert modular forms have a Fourier expansion, which,

however, I do not intend to recall. Let us just say that for a Hecke eigenform (to be defined in a

moment) the Fourier coefficients are (up to some normalisation factor) equal toHecke eigenvalues.

We letS(k)
C,K andS

(k)
C be thecuspidal subspaces, i.e. the subspaces where all0-th Fourier coefficients

vanish.

For the applications to Galois representations we introduce one special open compact subgroup

for each integral idealn ⊂ OF . Let T̂ = ÔF ⊕D−1ÔF be a lattice ofA2
F,f . Let

K1(n) = {g ∈ GL2(AF,f )|gT̂ = T̂ , g ( 1
0 ) ≡ ( 1

0 ) mod nT̂}.

Hecke operators

Here we present two points of view on Hecke operators. Letg ∈ GL2(AF,f ). To g we attach the

operatorTg defined as follows:

S
(k)
C,K

res
−→ S

(k)
C,g−1Kg∩K

g∗
−→ S

(k)
C,K∩gKg−1

Tr
−→ S

(k)
C,K ,

where thetrace mapis given byf 7→
∑

h∈K/K∩gKg−1 h∗f , supposing, of course, thatK is such that

this sum is finite. This description of Hecke operators is nice because it will be very similar to the

description on Shimura curves to be given later on. But, there is also the equivalent double coset point
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of view: Let T = Tg = KgK or let T be any other subsetK-invariant from the left and the right.

Then we have/put

T : f 7→
∑

h∈T/K

h∗f.

We define two important types of Hecke operators:

• Let p be a prime ofF andπp a uniformiser of(OF )p. Let

Tp := Tg with g =
(

πp 0
0 1

)
.

• Let p be a prime ofF andπp a uniformiser of(OF )p. Let

Rp := Tg with g =
(

πp 0
0 πp

)
.

(It may be that one has to impose some conditions onK. But for sure, the definition is correct

with K1(n) and(p, n) = 1.)

Let L ⊂ C be a field containing the Galois closure ofF overQ.

Fact 1.2 There areL-structuresS(k)
L,K andS

(k)
L in S

(k)
C,K andS

(k)
C , respectively.

Moreover, eachS(k)
L,K is a finite dimensionalL-vector space.

Definition 1.3 TheHecke algebraof S(k)
L,K is defined as

T
(k)
L,K = 〈Tp, Rp ∈ EndL

(
S

(k)
L,K

)
|p ⊂ OF 〉L-algebra= 〈Tp, Rp ∈ EndC

(
S

(k)
C,K

)
|p ⊂ OF 〉L-algebra.

Fact 1.4 The Hecke algebraT(k)
L,K is a finite dimensional commutativeL-algebra.

Hence, there existHecke eigenforms, i.e. elements ofS(k)
C,K that are eigenvectors for all elements of

the Hecke algebra. Letf be a Hecke eigenform. Thesystem of eigenvalues attached tof is described

by theL-algebra homomorphism

Θf : T
(k)
L,K → C, T 7→ λT ,

whereλT is the eigenvalue ofT , i.e.Tf = Tf = λT f .

As already said above, iff is suitably normalised, the eigenvalue ofTp is equal to the Fourier

coefficient atp (times the norm ofp, according to Saito). But, we will not need Fourier coefficients

here (not explicitly, at least).

We letL(f) = im(Θf ), thecoefficient field off (with respect toL). It is a finite extension ofL

due to the finite dimensionality of the Hecke algebra. In particular, ifL is a number field (e.g. the

Galois closure ofF ), then so isL(f).
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The automorphic representation attached to a Hilbert newform

We letπf be theGL2(AF,f )-orbit of f in S
(k)
C and call it theautomorphicGL2(AF,f )-representation

attached tof .

Fact 1.5 AsGL2(AF,f )-representations (overC) we have an isomorphism

S
(k)
C
∼=

⊕

f newform

πf .

The termnewformhere only refers to the fact that we do not distinguish between systems of eigenval-

ues such that theΘf differ only at finitely manyp.

Eachπf can be defined overL(f). To be precise, we sometimes writeπf,L(f). Then we have by

definitionπf,L(f) ⊗L(f) C = πf .

We do not need the following for the sequel but list it nevertheless: We call two Hecke eigenforms

f1 andf2 Galois conjugateif there exist embeddingsιi : L(fi) →֒ C such thatι1(f1) = ι2(f2), i.e.

ι1 ◦Θf1 = ι2 ◦Θf2 . TheGL2(AF,f )-orbit of 〈ι(f)|ι : L(f) →֒ C, ι|L = id〉 defines an automorphic

representationπL(f) overL such that

πL(f) ⊗L C =
∏

ι

πι(f)

with the product running through theι as above. This yields an isomorphism ofGL2(AF,f )-represen-

tations (overL)

S
(k)
L
∼=

⊕

f newform up to Galois conjugacy

πL(f).

2 Main Theorem

We now come to Galois representations.

We fix algebraic closuresQ andQp for all p and we considerF as a subfield ofQ (i.e. we fix an

embedding) andFp as a subfield ofQp (also by fixing an embedding) for every primep of F . We

choose embeddings

ιp : Q →֒ Qp

whose restriction toF is equal to

F →֒ Fp →֒ Qp

via the natural (resp. fixed) embeddings. Note that the choice ofιp corresponds to the choice of a

prime ideal for each finite extensionF ⊆ M ⊂ Q which are compatible with intersection. We also

obtain an embedding of absolute Galois groups

Gal(Qp/Fp) →֒ Gal(Q/F ), σ 7→ ι−1
p ◦ σ ◦ ιp.

Note that this definition makes sense, sinceQ/F is a normal extension. If we have two such embed-

dingsιp1 andιp2 , then the two embeddings of Galois groups are conjugate byιp1 ◦ ι−1
p2

.
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Call Fp the residue field ofp. We have the natural exact sequence

0→ Ip→ Gal(Qp/Fp)→ Gal(Fp/Fp)→ 0,

whereIp is the inertia group atp. Of course, we suppose thatp divides the rational primep. The

right hand side map is the natural one. ByFrobp we denote thearithmetic Frobenius elementin

Gal(Fp/Fp), i.e. the one given byx 7→ xq with q = #Fp. (There is always some confusion about

geometric and arithmetic Frobenius elements. I prefer the latter.) We also denoteby Frobp any

preimage inGalQp/Fp
, which is, of course, not well defined. So we have to handle it with care,but

we will...

Theorem 2.1 Let f ∈ S
(k)
C,K1(n) be a newform corresponding to theL-algebra homomorphismΘf :

T
(k)
L,K1(n) → C. Let Λ be a prime ofL(f). Then there is aGalois representation, i.e. a continuous

group homomorphism

ρf,Λ = ρ : Gal(Q/F )→ GL2(L(f)Λ)

which satisfies:

• It is unramified outsidenℓ with (ℓ) = Λ ∩ Z, i.e.ρ(Ip) = 0 for all p with (p, nℓ) = 1; hence,

ρ(Frobp) is well-defined for thesep.

• Tr(ρ(Frobp)) = Θf (Tp) for all (p, nℓ).

• det(ρ(Frobp)) = Θf (Rp)Nm(p) for all (p, nℓ).

This theorem is due to many people, in particular Carayol, Blasius, Rogawski and Taylor. I think

it is proved in the above generality, but I have not checked it. In this lecture we will need the additional

assumption (if[F : Q] is even) thatπf is discrete series atv. I won’t explain what this means.

The theorem is, in fact, more precise. The restriction ofρ to Gal(Qp/Fp) can be described at

all placesp, not only the unramified ones. This can be formulated in terms of Weil-Deligne repre-

sentations (see the seminar a year ago). For the places aboveℓ, this is the result proved in Saito’s

article.

3 Quaternionic automorphic forms and epresentations

Notation 3.1 (Second part) • B, the quaternion algebra (unique up to isomorphism) overF

which is split atτ1 and ramified atτ2, . . . , τn (andv, if n is even). I.e. we have

B ⊗Q R = Mat2(R)×H× · · · ×H︸ ︷︷ ︸
n−1 copies

with H the Hamiltonian quaternion algebra.

• G = ResF/QB×, the Weil restriction.
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• L/Q, a Galois number field containingF and splittingB, i.e.

B ⊗F L ∼= Mat2(L).

Note that

G(Af ) =
∏

p

∏

p|p,p6=v

GL2(Fp)× (B ⊗F Fv)
×.

Recall the Shimura curve

MK(C) = G(Q)\
(
X ×G(Af )/K

)

of levelK. It has a modelMF overF . We let

M(C) = G(Q)\
(
X ×G(Af )

)
.

Kay defined several objects. We shall only list them here (maybe, we even slightly change them),

but will not recall the precise definitions.

• P
(k)
K,L, a constructible sheaf ofL-vector spaces onMK(C).

• P
(k)
L , a sheaf ofL-vector spaces onM(C).

• P
(k)
λ , an étale sheaf ofLλ-vector spaces onMF for some maximal idealλ �OF such that

Hi(M(C),P
(k)
L )⊗L Lλ

∼= Hi
et(MF ×Q,P

(k)
λ ).

• V
(k)
K , a locally freeOMK(C)-module of rank1.

• V(k), a locally freeOM(C)-module of rank1.

• LetW(k)
K := V

(k)
K ⊗OMK (C)

Ω1
MK(C).

• LetW(k) := V(k) ⊗OM(C)
Ω1

M(C).

The principal result from Kay’s talk is the following theorem.

Theorem 3.2 (Analog of Eichler-Shimura) There is an isomorphism:

H1(M(C),P
(k)
L )⊗L C ∼= H0(M(C),W(k))⊕H0(M(C),W(k)).

A similar result holds at finite levelK.

Definition 3.3 We call

S′(k)
C,K = H0(MK(C),W

(k)
K )

the space ofquaternionic automorphic forms of levelK and multi-weight(k). Analogously, we let

(takinglim−→
K

)

S′(k)
C = H0(M(C),W(k)).

This definition is unsatisfactory, it should be made explict. But that is impossibleduring this talk,

for time reasons (also time reasons during preparation...). I think/hope that one will find a description

similar to that of adelic Hilbert modular forms.
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Hecke operators

The definition is analogous to the one given for adelic Hilbert modular forms.Let g ∈ G(Af ). We

start on the Shimura curve (onC-points, but also on the model overF ; the mapg is right multiplication

by g on the second factor):

MK ←MK∩g−1Kg
g
←−MgKg−1∩K →MK ,

where the outer maps are the natural projections.

On the quaternionic automorphic forms and, more generally, on cohomology these maps induce

an operatorTg, as follows:

Hi(MK , ·)
π∗−→ Hi(MK∩g−1Kg, ·)

g∗
−→ Hi(MgKg−1∩K , ·)

π∗

−→ Hi(MK , ·).

Of course, theTg also give maps onlim−→
K

, i.e. aG(Af )-action, in particular onS′(k)
K and on theH1(·).

The naturality of all maps in the above theorem makes the following theorem believable.

Theorem 3.4 The map from Theorem3.2 is compatible with theG(Af )-action.

Let p 6= v. SinceB⊗F Fp = GL2(Fp), it makes sense to defineTp andRp as for Hilbert modular

forms, i.e. asTg for g =
(

πp 0
0 1

)
or g =

(
πp 0
0 πp

)
, respectively. However, we won’t need them for the

sequel.

Automorphic representation of G(Af )

An automorphic representation ofG(Af ) is an irreducible constituent ofS′(k)
C = H0(M(C),W(k)).

4 The Jacquet-Langlands correspondence and hint on the proof

Theorem 4.1 (Jacquet-Langlands)Let f be an adelic Hilbert newform andπf the associated au-

tomorphicGL2(AF,f )-representation such thatπf,v is discrete series (if[K : Q] is even). Then

there exists a unique automorphic representationπ′
f of G(Af ) such thatπf,p

∼= π′
f,p as GL2(Fp)-

representations for allp 6= v. Moreover,π′
f has a model overL(f), denoted byπ′

f,L(f) (as hasπf ,

see above).

Theorem 4.2 (Multiplicity one) There is an isomorphism ofG(Af )-representations (overC)

S′(k)
C = H0(M(C),W(k)) ∼=

⊕

f newform, not discrete series atv

π′
f .

Corollary 4.3 There is an isomorphism ofG(Af )-representations (overC)

H1(M(C),P
(k)
L )⊗L C ∼=

⊕

f newform, not discrete series atv

(π′
f ⊕ π′

f ).
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Hence,H1(M(C),P
(k)
L ) ⊗L L(f) containsπ′

f,L(f) precisely twice, sinceπ′
f,L(f) = π′

f,L(f)
and

all other constituents are non-isomorphic toπ′
f,L(f).

Corollary 4.4 (a) HomG(Af )

(
π′

f,L(f), H
1(M(C),P

(k)
L )⊗L L(f)

)
= L(f) ⊕ L(f) (sinceπ′

f,L(f) is

absolutely irreducible).

(b) LetΛ be a prime ideal ofL(f) dividingλ. Then

HomG(Af )

(
π′

f,L(f) ⊗L(f) L(f)Λ, H1(M(C),P
(k)
L )⊗L L(f)Λ

)
= L(f)Λ ⊕ L(f)Λ.

Now we use the comparison from above (after tensoring withL(f)Λ overLλ):

Hi(M(C),P
(k)
L )⊗L L(f)Λ ∼= Hi

et(MF ×Q,P
(k)
λ )⊗Lλ

L(f)Λ.

Corollary 4.5 The2-dimensionalL(f)Λ-vector space

HomG(Af )

(
π′

f,L(f) ⊗L(f) L(f)Λ, H1
et(MF ×Q,P

(k)
λ )⊗Lλ

L(f)Λ
)

= L(f)Λ ⊕ L(f)Λ

carries a continuous linearGal(Q/F )-action.

This is theGal(Q/F )-representation that we are looking for. Unfortunately, we cannot check the

claimed properties in this talk.
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