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1. Definition of a field and first properties of field extensions

DEFINITION 1: A field (German: Kérper, French: corps) K, more precisely denoted by
(K,+, -), is a set K, together with two operations

+:KxK—>K , :KxK-—=K

called addition and multiplication such that the following three laws hold:

(K1) (K,+) is a (commutative) group whose neutral element is called 0 (zero).

(K2) If K* = K\{0} then (K, -) is a commutative group whose neutral element is
called 1 (one).

(K3) The two operations are connected by a distributive law

a-(b+c)=a-b+a-c for all a,b,c € K.

As consequence of these axioms there are two more operations

—: KxK—>K +: KxK*—=K

Y

called subtraction and division, where b — a is defined as solution of a +x = b and g is

the solution of a -z = b.

EXAMPLES:
1. The field @ of rational numbers, the field IR of real numbers, the field C of complex

numbers.

2. To each integral domain R we have a smallest field containing R, the quotient field

Quot(R) = {% a,be R, b+ 0}
Especially to each field K we have the ring K{[z1,. .., x| of polynomials in n variables

and its quotient field
Quot(K(x1,...,xp]) = K(x1,...,2,)

the field of rational functions in n variables. The polynomials induce functions on K™.
The rational functions induce functions on some ,,open* subset in K™ (in the sense of

Zariski topology), they are undefined where denominators vanish.

3. To each prime number p the residue classes of integers modulo p form a finite field
I, = Z/pZ

4. If X is a connected complex manifold or an irreducible algebraic variety then the set of
all meromorphic functions on X is a field under the natural addition and multiplication

of functions.



5. Especially let f(z,y) be an irreducible polynomial in two variables over an algebraically
closed field K. Then the solutions (£,1) € K? of the equation f(&,1) = 0 form an
affine curve C' in the plane K2. The polynomials g € K[z,y] induce on the curve C

functions, which form an integral domain

of holomorphic functions on C', and its quotient field

K(€) = Quot(K[C)) = {2+ pn} /{29 pin) (9,h € K[z, )

is the field of rational functions on C'. Birational equivalent curves lead to isomorphic
function fields.

6. If A is an affine space of at least 3 dimensions then A can be coordinatized with
coefficients in a field, determined by A up to isomorphism, cf. [St1857] and [Hi1899].

7. Fields are the native soil of Linear Algebra, the natural environment where linear
equations can be studied and solved. A central problem and driving force in the
development of algebra is the study of polynomial equations of higher degree. This
usually leads to extension of fields. For polynomials in one variable this leads to Galois
Theory, for polynomials in several variables this leads to Algebraic Geometry.

FIRST CONCEPTS AND PROPERTIES:

DEFINITION 2: A subset K, of a field K is called a subfield, if K, is closed under the two
base operations and satisfies the axioms (K1) and (K2), or equivalently, if K, contains 1
and is closed under subtraction and division. In this case K|K, is called a field extension.

Examples are the extensions
QCcRcC or K C K(z1) C K(z1,22) C ...

A subfield of an extension K|K, is a subfield of K containing K.

K|K, is called a finite extension, if dimg, K < oo. This dimension is then called the
degree [K : K| of the extension.

Maps between two fields ¢ : K — L which respect the operations + and - and map 1 to
1 are injective, and traditionally called isomorphisms. They also respect the operations
— and +, the image p(K) is a subfield of L, isomorphic to K. If K, is a common
subfield of K and L and if [, is the identity on Ko, then the isomorphism ¢ is called
a K,-isomorphism.

PROPOSITION 1: Let K be a field.
a) If M|L and L|K are finite extensions, then M|K is also finite with

M :K|=[M:L]-[L:K]
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b) The intersection of any set of subfields of K is again a subfield.

COROLLARIES TO b):

c) Any field contains a smallest subfield, its prime field, which is either IF, or . We
call p resp. 0 in the latter case the characteristic of K.

d) If L|K is a field extension and S C L a subset, then there is a smallest subfield of
L|K containing S, denoted by K(S). The extension K(S) of K is called generated
by S. The elements of K(S) are exactly the values f(s1,...,sy) of rational functions
f in any number n < |S| of variables with coefficients in K at n-tuples (s,) in S™
with different s, .

If S = {a} consists of only one element, the extension K(a)|K is called simple and a

a primitive element of the extension.

DEFINITION 3: Let L|K be a field extension. An element a € L is called algebraic over
K, if there is a non vanishing polynomial f € K|[x] with f(a) = 0. The monic polynomial
of smallest degree with this property is called the minimal polynomial MinPol(a|K) of a
over K, its degree is the degree [a : K| of a over K. One has [a: K] =[K(a): K]. If a
is not algebraic over K it is called transcendental over K.

The extension L|K is called algebraic, if all a € L are algebraic over K, otherwise
transcendental. The field K is called algebraically closed, if K has no proper algebraic

extension.

PROPOSITION 2:

a) Field extensions of finite degree are algebraic. Adjunction of a set of algebraic elements
gives an algebraic extension. With M|L and L|K also the extension M|K is algebraic.
In any field extension L|K there is a unique maximal algebraic subfield

L., ={a € L; « is algebraic over K}

b) THEOREM OF LUROTH 1876 (cf. [St10]): Let x be transcendental over K. Then
any subfield L, # K of the simple transcendental extension K (x)|K is again simple
transcendental of the form L, = K(p) with

szg . f,g€ Klx] with  ged(f,g) =1

and 0 = max(deg f,degg) > 1. Moreover we have
6 = [K(z) : Lo]

So the primitive elements for K(z)|K are exactly the rational functions

axr +b
cx +d

Y= with ad — bc # 0

¢) If L|K is an algebraic simple extension, every subfield is so too.
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DEFINITION 4: Let P be the set of prime numbers. A supernatural number n is a formal

product

n = H ) with n(p) € Ng U {o0}

peEP

(Steinitz 1910 called them ,,G-Zahlen“, Priifer 1928 called them ,ideale Zahlen“. Serre
1964 called them ,nombres surnaturels®). If almost all n(p) are zero and none is infinite,
then n is a natural number. There is a natural multiplication on the set A/ of supernatural
numbers, making N into a commutative monoid with unit n = 1. From this we get a
notion of divisibility on A . This divisibility is a complete partial ordering on N with
minimum 1 and maximum Hp p°°, such that each subset of NV has an infimum and
supremum. Every supernatural number is the supremum of a set (even a chain) of natural

numbers.

PROPOSITION 3: Let L|K be an algebraic extension. We define the degree of L|K as
the supernatural number

[L:K]=sup [M: K] |,
M

where M runs over all subfields of L|K, finite over K. Then the following holds:

a) If M|L is another algebraic extension, then
M :K|=[M:L]-[L:K]

b) If K is finite and L|K is algebraic, then L is determined up to isomorphism by its
degree n = [L : K|. For each divisor m | n there is exactly one subfield L, of L|K
with [L, : K| =m.

PROPOSITION 4: Let K be a field.

a) (Kronecker 1887): Let f € K|[x] be a polynomial. Then there is a smallest extension
L|K such that f splits completely in L, i.e. is a product of linear polynomials x — «;
and a constant. L is generated by the roots of f and is unique up to K -isomorphism.
It is called the splitting field of f over K.

b) (Steinitz 1910): The same is true for any subset S C K|x| of polynomials. Especially
S = Klz| gives an algebraic extension of K which is algebraically closed, called the

algebraic closure K = K*¢ of K. It is unique up to K -isomorphism.

DEFINITION 5: Let K be a field of characteristic p > 0.

a) A polynomial f € KJ[z] is called separable, if it has no double root in K, ie. if
ged(f, f') =1, otherwise inseparable.

b) If f is an irreducible inseparable polynomial, then f’ = 0, so we have p > 0 and
f(z) = g(zP) for some g € K[z]. The maximal e such that f € K[zP] is called the

exponent of inseparability e = exp, . f of f and p® = deg, . f is called the degree of
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inseparability of f. Then we have f = g(zP") with separable ¢ and degg = deg.., f

is called the degree of separability of f. This deg_, f is the number of different roots
of f in K. We have

deg f = deg.., f-p” P! = deg., f - deg,,

An algebraic element a over K is called separable, if f = MinPol(a|K) is separable,
otherwise inseparable. The element a is called purely inseparable over K, if deg_, f =

1,1i.e.if f has only one root. Remark that the elements in K are separable and purely
inseparable over K.

An algebraic extension L|K is called separable, if all a € L are separable over K,
otherwise inseparable.

The algebraic extension L|K is called purely inseparable, if all a € L are purely
inseparable. If in case p > 0 there is an exponent e with LP° C K, we call the smallest
such e to be the exponent of inseparability exp, (L|K) of L|K, otherwise it is = oco.
If L = K(a) is purely inseparable with f = MinPol(a|K) then exp, (L|K) = exp,_ f.

PROPOSITION 5: Let K be a field, char K = p > 0.

a)
b)

c)

d)
)

If p = 0 then all algebraic extensions are separable.

If p >0 and K = KP then all algebraic extensions are separable.

If p>0 and a € K\KP, then XP" — a is an inseparable irreducible polynomial in
K|[z] of degree p® for any e € IN.

The fields satisfying a) or b), i.e. fields having only separable algebraic extensions, are
called perfect, the other fields imperfect.

EXAMPLE 1: IF, is perfect, the rational function field IF, () not.

ExAMPLE 2: Every field K with char K = p > 0 is contained in a smallest perfect

field, the perfect closure of K, namely the union K? ~ of the ascending sequence of
fields
K C KYp c gUP < .. c KV <. ..

If the algebraic extensions M|L and L|K are separable, so is the extension M|K .

Every algebraic extension of a perfect field is perfect.

PROPOSITION 6: Let K be a field with char K = p > 0, and L|K be an algebraic

a)

extension.

There is a maximal subfield L,,, of L|K such that L.,

K is separable, namely
L., ={a € L; a is separable over K}

Then L
degree of inseparability of the extension L|K by

L.., is purely inseparable. We denote the degree of separability and the

[L: K., = [Le, : K] and [L: Kl =|[L: L,
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The latter is always a power of p (resp. 1it p=0). If L = K(a) and f = MinPol(a|K)
then
[L : K]Sep - degsep f Y [L : K]ins - degins f

b) THEOREM OF THE PRIMITIVE ELEMENT: Let L|K be a finite extension. Then the
following statements are equivalent:

(1) The extension L|K is simple, i.e. has a primitive element.
(2) The extension L|K has only finitely many subfields.
(3) Wehave p=0 orp>0 and

[L: K], = p&Pus (LK)

c¢) COROLLARY: Every separable finite extension is simple. All finite extensions of the
field K are simple iff K is perfect or [K : KP] = p.

EXAMPLE: Let K = IF,(z,y) be the rational function field in 2 variables over IF,.
Then K|KP is not simple, and an infinite family of subfields is given by KP(y + z")
with p{n.

After this crash course in algebraic field extensions let us consider transcendental exten-

sions.

DEFINITION 6: Let L|K be a field extension. A subset A C L is called K -algebraically
independent if no finite subset {a1,...,a,} of A satisfies a polynomial relation, i.e. if

feKxy,...,xs), flar,...,an) =0 = f=0 (a, € A different)
holds.

PROPOSITION 7: Let L|K be a field extension.

a) There are maximal K -algebraically independent sets A in L and all have the same
cardinality.

b) This common cardinality is called the transcendence degree of L|K and every such
maximal A is called a transcendence base of L|K. For any such A the extension
L|K(A) is algebraic. If L = K(A) for one such an A, the extension L|K is called
purely trancendental.

¢) If L|K is finitely generated, say L = K(by,...,by), then a transcendence base can be
choosen among the b,,.

d) Any subextension of a finitely generated field extension is again finitely generated.
e) An algebraically closed field is determined up to isomorphism by the transcendence

degree over the prime field and its characteristic.
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All concepts and results up to now are at least 100 years old and contained in a paper of
Steinitz (cf. 2.4). Let us now come to some newer concepts, developed in the first chapter
of the Foundations of A. Weil. For proofs see also [FJ] or [La93].

DEFINITION 7: Let F' be a field with subfields L and M which contain a common subfield
K.

a) L and M are called linearly disjoint over K if the canonical map L @ x M — F,
given by * ® y — x -y, is injective. We denote this by a rectangular diagram:

L — LM

K — M

If [L: K] < oo, this is equivalent to say that [L : K| = [LM : M]. If L or M is
algebraic over K, the compositum LM of the two fields L and M is exactly the image
of L ®x M, otherwise the image is a subdomain of LM .

b) The extension L|K is called separable if L is linearly disjoint from the perfect closure
K p_oo\K of K. This is equivalent to say that L is linearly disjoint from K /P, For

algebraic extensions this definition of separable coincides with the former definition.

¢) The extension L|K is called regular if L is linearly disjoint from the algebraic closure
K|K of K.

ExAMPLE: If f € Klx1,...,xy] is an irreducible polynomial then the function field of
the hypersurface f = 0 is regular over K iff f is absolutely irreducible, i.e. irreducible
over K.

More generally let X be a scheme of finite type over a field K. If X is reduced and irre-
ducible, the rational functions on X form a finitely generated function field K (X)|K.
This extension is regular iff X is absolutely reduced and absolutely irreducible, i.e. if

X Xk K is reduced and irreducible over K. We call such schemes varieties over K.

PROPOSITION 8: Let F' be a field with subfields K, L, M, N with inclusions
KCL and KCMCN

a) TOWER PROPERTY: L and N are linearly disjoint over K iff L and M are linearly
disjoint over K, and LM and N are linearly disjoint over M :

r —— — LM —— LN

K —M M — N

b) If L and M are linearly disjoint over K then LN M = K. (Therefore one could drop

the term over K in the notion of linear disjointness).
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h)

EXAMPLE: Let o, be different complex roots of the polynomial z3 4+ 2. Then
Q(a) N Q(B) = Q, but the fields are not linearly disjoint over @.

If L|K is Galois and LN M = K, then L and M are linearly disjoint over K.

Let uy, ..., u, be L-algebraically independent elements of F', then L and K (uy, ..., uy)
are linearly disjoint over K .

If L|K and M|L are separable extensions, so is M|K .

The extension L|K is separable iff every finitely generated subfield L, has a transcen-
dence base (ay,...,an) with Lo|K(ay,...,a,) is separable (a separating transcen-

dence base).

If K is algebraically closed in L and M|K is a simple algebraic extension then L and

M are linearly disjoint over K .

EXAMPLE: Let K = IF,(a,b) be the field of rational functions in two variables a, b
over IF,. The equation y” = 2% + aaP + b is irreducible over K, so defines a purely
inseparable field extension L = K(x,y)|K(z) of degree p. K is algebraically closed
in L, but L and K7 are not linearly disjoint over K since [KY/P : K] = p? but
[LKYP : L] = p since bY/P =y — 22 — a/P .

The extension L|K is regular iff L|K is separable and K is algebraically closed in L.



2. Historical remarks about the concept of field

The operations of addition, multiplication, subtraction and division can be found in all
cultures with written tradition, in Egypt, in Sumer, in Babylon, in China, in India, among
the ancient Greeks and so on. But this does not mean that already the concept of field
existed.

2.1. What Wikipedia says

If you open up the english Wikipedia and look for the subentry History in the article
Fields (mathematics) you find at the moment of this talk the following statement:

The concept of field was used implicitly by Niels Henrik Abel and Evariste Galois in their work on the

solvability of polynomial equations with rational coefficients of degree five or higher.
What does that mean? Did they think about fields by preparing their papers but
refused to write down this word? Did they have this concept but no name for it? If
you look at their papers, you see: They are dealing with polynomials and with rational
functions, not with individual ones but with generic ones and sometimes use them as
variables. But they do not form the set of all of them. Moreover they do not specify
the field of coefficients (rationals or complex numbers, but certainly of characteristic
zero) because this is not important for their work. So the environment in which their
mathematics live is not clearly specified. Especially they did not look for solvability
of polynomial equations over the rationals (as Wikipedia claims) but they considered
general polynomials

f=a"+az"?

+...+tap—17+an

over some rational function field Ks(ay,...,a,) in n variables a1, ..., a, (in modern
language).

Abel and Galois, great mathematicians, worked without a general concept of field, just
with polynomials and with rational functions — but used them also in the sense of
generators (proposition 1.1.d) for subfields of rational functions, and here especially
Galois emphasizes the importance of distinguishing between the different subfields. In-
deed Galois in his papers of the years 1828-32 (published only in 1846 by Liouville) sees
the importance of adjoining irrationalities for the study of polynomials in one variable
and their roots. He constructs a Galois resolvent g for a separable polynomial f whose
root generates the splitting field of f, he finds the Galois group of an equation and its
importance for the nature of the roots ..., but all this without the concept of field —
in the same way as Gaufl in 1801 inaugurated the theory of cyclotomic fields without
having the concept of field.

Two things were missing at their time, to come up with a general concept of a
field.
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First the notion of “infinite sets” was absent. Aristotle, the highest authority in logic
and science for 2000 years, denied that the unbounded sequence of natural numbers can
be seen as one quantity, as something finished. It was &neipov, unfinished, unlimited,
something horrible for greek philosophers as the antimonies of Zenon and others showed.
Still in the year 1831 (five year after Abel’s first paper) Carl Friedrich Gaufl agreed with
Aristotle when he wrote to his friend Schumacher, astronomer in Altona:

. so protestire ich zuvorderst gegen den Gebrauch einer unendlichen Groésse als einer Vollendeten,
welcher in der Mathematik niemals erlaubt ist. Das Unendliche ist nur eine facon de parler, indem
man eigentlich von Grenzen spricht, denen gewisse Verhéltnisse so nahe kommen als man will, wahrend
anderen ohne Einschrénkung zu wachsen verstattet ist.

One interpretation of Gauf3’ words, clearer formulated by him in other letters, is the
following: Infinite diverging series are in his mind not part of mathematics, contrary to
the belief of Leonhard Euler, the most important mathematician of the 18th century.
They are infinite objects without any limit attached to them, so of no use. Gauf3 (1812),
Cauchy (1821) and Abel (1826) were the first mathematicians who did substantial and
rigorous investigations about convergence of certain infinite series. For our question
more important is another interpretation of Gaufy’ words: As you know, Gaufl did
invent the notion of congruences in 1801. We interprete congruences as a method to
simplify the infinite set of integers into a finite set of residue classes. This Gaufl never
did; the congruence classes are infinite quantities, so not an object of mathematics;
one has finitely many representatives, but not a finite structure of similar nature as the
integers. His followers like Galois, Serret, Schénemann did the same, and so did Richard
Dedekind 1857 in a paper on higher congruences, where he summarized the results and
simplified the proofs of theorems which we interprete as theorems on finite fields like

The multiplicative group of a finite field is cyclic, or

If F is the family of all irreducible monic polynomials in IF, [z] of degree dividing

n, then we have in IF,[z]

" —z= 1] 1)

feFr
But for them, including Dedekind at that time, these theorems were theorems on con-

gruences between numbers or polynomials with integral coefficients, not as equations in

some new structure. They did not see finite fields.

Let me make two claims:
I. The general concept of field could not be born before the invention of set theory
which was done by a single man, Georg Cantor, in papers between 1874 and

1897, against strong opposition, but with a few excellent supporters like Richard
Dedekind and David Hilbert.

II. The driving motor of mathematics are good problems and good examples. Fruit-

ful abstract concepts are usually an outgrow of interesting examples where the
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definitions, arguments and proofs start to be repeated in similar ways until a

common structure behind them starts to come into existence.

The second claim gives another hint why the concept of a field could not be installed
in the times of Abel and Galois: Good examples were missing.

Already the first example I gave, the field of rational numbers, was unknown at the
time of Abel and Galois, at least in England. Augustus de Morgan, first professor
for mathematics at the University College London and first president of the London
Mathematical Society, still today known by de Morgan’s laws in Boolean algebra, denied
the existence of negative numbers still in the year 1837 (!). In that year 1837 he wrote
a book for the Society for the Diffusion of Useful Mathematics which contained the

following sentences:

The teacher must recollect that the signs + and — are not quantities, but directions to add and subtract.
Above all he must reject the definition still sometimes given of the quantity —a that it is less than nothing.

It is astonishing that the human intellect should ever have tolerated such an absurdity as the idea of a
quantity less than nothing, above all, that the notion should have outlived the belief in judicial astronomy
and the existence of witches, either of which is ten thousand times more probable.

If you do not know rational numbers, you do not have a single example of a field! —

I have to add that until the end of Middle Ages negative numbers were practically
unknown in Europe and also among the Arabs, although Chinese and Indian mathema-
ticians used them already in the middle of the first millennium. In the Renaissance this
slowly changed: Prominent champions for negative numbers were e.g. Michael Stifel,
an Augustinian monk and protestant parson at Martin Luther’s time, Simon Stevin,
founder of the engeneering school at the university of Leiden, and the Italian physician
and polymath Geronimo Cardano. Later Newton accepted them, Leibniz had problems
of understanding them. Vieta, Descartes and John Wallis denied their existence. In
the 18th century the authority of Leonhard Euler and his famous textbooks made the
negative numbers into acceptible mathematical objects, at least at the continent.

So despite de Morgan one can say that the example @, more precisely the concept of
rational numbers, was essentially known and accepted at Abel’s times, although not
as visible as today. Also the example IR of real numbers was more or less known in
Europe through the efforts of Bombelli (1572) and Stevin. The 18th century used them
permanently, although an exact definition was only given during the 19th century by
Bolzano, Méray, Dedekind and Cantor. For the example C, first invented by Cardano
(1545), more precisely by Bombelli (1572), the situation is a little bit more complicate.
At best they were told to be imaginary, i.e. only to exist in the imagination but not in
reality. The question, what a complex number is, was not even answered reasonably by
Leonhard Euler. Despite he was very familiar with complex numbers, the explanation
of “what they are” in his textbook on algebra (1770) is not understandable and is
caricatured in Robert Musil’s first novel Die Verwirrungen des Zdiglings Térlefs (1906).
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Even Cauchy, one of the heroes of complex function theory, did not allow in his famous
Cours d’Analyse (1821) the complex numbers to be numbers. An equation between
complex numbers is, as he says, only a symbolic abbrevation for two real equations;
this does not give the complex numbers an independent existence. He even formulates
(p.175) sentences like
L’équation
cos(a + b) + v/ —1sin(a + b) = (cosa + /—1sina)(cos b + /—1sinb)

elle-méme, prise a la lettre, se trouve inexacte et n’a pas de sens.

Precise definitions of complex numbers were among others given by Gauf3 (1832: points
in the plane), Hamilton (1837: pairs of real numbers), the most interesting algebraic
definition was done 1847 by Cauchy: Complex numbers are residues of real polynomials

modulo the irreducible polynomial 22 + 1:
C = R[z]/ (2% + 1)

(This was the starting point for Kronecker’s construction of root and splitting fields for
arbitrary polynomials in 1887).

So at the time of Abel and Galois at most two or three examples of fields of numbers
were known, and besides them fields of rational functions, which were seen as quite a
different object. This is a too narrow base of examples to create a new concept.

2.2. New Examples

A new class of examples came with the thesis of Bernhard Riemann in 1851 where
he presented his ideas of complex function theory by introducing geometric ideas like
Riemann surfaces. In modern terminology his ideas lead to the following facts: A
compact Riemann surface X, in modern terms: a connected compact one-dimensional
complex manifold, is the same as the desingularization of the projective closure of a plane
affine curve C with an equation f(z,y) =0 over C. The field of rational functions

C(C) = Quot(Clz,y]/(f))

on this curve is exactly the field of meromorphic functions on the complex manifold X :

There is a bijection between compact Riemann surfaces (modulo conform equivalence),
complex curves (modulo birational equivalence) and their functions fields (up to isomor-
phism). These function fields (Riemann calls them Klasse von Functionen) are exactly
the finite extensions of the field rational function C(x), the field of meromorphic func-
tions on Riemann’s x-sphere. They were called algebraic function fields of one variable
and studied thoroughly for the first time by Dedekind and Weber in 1880, in one of

13



the many attempts by many people to lay solid foundations to the splendid visions of

Riemann.

So Riemann’s ideas not only led to a new family of fields, but combined these fields
with important geometrical and analytical objects which stressed their importance. In
our terminology of today we may say: These function fields form a second class of
fields besides the fields of algebraic numbers, which were studied after Gaufl especially
by Kummer, cf. [Ku75]. Kummer was the most eminent pioneer of algebraic number
theory in his time, working since 1844 in rings of algebraic integers without having the
concept of an algebraic integer, not to speak of the concept of field.

Besides these examples, new types of fields occured 1891 in Veronese’s construction of
non archimedean geometries, using fields of formal power series K((2)) = Quot K[[2]].
These fields led Hensel to his creation of p-adic number fields like ®,, which he popu-
larized 1908 in his book on algebraic numbers. Moreover no later than 1893 the finite
fields appear as fields. Now enough examples existed and the need of a general concept
of field was quite obvious.

2.3. The Birth of the Concept of Field and of its Notation

The birth of the concept of a field and its notation took several steps.

The name Kérper was coined by Richard Dedekind in his famous Supplement XI (§159)
to Dirichlet’s lectures on number theory in 1871 ([Di1871]) after he used this term alrea-
dy in his lectures. To be precise, Dedekind defines by the term Koérper or Zahlkérper
subfields of the field of complex numbers. He explains this name in §160 of [Di1894] in
the following way:

Dieser Name soll, dhnlich wie in den Naturwissenschaften, in der Geometrie und im Leben der mensch-
lichen Gesellschaft, auch hier ein System bezeichnen, das eine gewisse Vollstandigkeit, Vollkommenbheit,
Abgeschlossenheit besitzt, wodurch es als ein organisches Ganzes, als eine natiirliche Einheit erscheint.
Anfangs, in meinen Gottinger Vorlesungen (1857 bis 1858) hatte ich denselben Begriff mit dem Namen
eines rationalen Gebietes belegt, der aber weniger bequem ist.
Dedekind also gives fundamental properties of his fields. Firstly he defines basic concepts
of Linear Algebra (only the theory of determinants did exist at his times) like linear
dependence, basis, dimension. He has the first definitions and propositions of §1, gets
the notion of norm and trace in a finite extension. He gets the notion of Galois hull
of a finite field extension, defines the Galois group, shows the linear independence of
automorphisms, gets part of the main theorem of (finite) Galois theory, gets the notion
of the discriminant of a basis and could prove the existence of primitive elements. Only
after these preliminaries on field theory he turns in his Supplement XI to arithmetic, to
the notion of integral elements and to the arithmetic of the rings of algebraic integers in
a finite extension of Q. The notion of Zahlkérper as finite extensions of @) was made
popular especially through Hilbert’s papers on number theory.

In his already mentioned paper [DW1882] with Heinrich Weber, written in 1880, De-
dekind introduced in analogy to his notion of Zahlkérper the notion of Korper alge-
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braischer Funktionen for finite extensions of the field C(z). The most important result
in this seminal paper is the discovery that the arithmetic of these function fields and
of the finite number fields follow nearly the same rules, a fact which 1927 leads Emmy
Noether to her axiomatic treatment of Dedekind domains. In 1901 Hensel and Lands-
berg enlarged this paper to a book, but substituted some of the algebraic arguments of

Dedekind and Weber by analytic ones to come nearer to Riemann’s point of view.

Another approach to a concept of field was done by Kronecker who considered finitely
generated fields in characteristic zero — finite fields he only treated using congruences
like Gaufl and Galois before him. In a paper from 1879 he calls them Rationalitétsbe-
zirke. In his famous paper in Kummer’s Festschrift from 1882 (which Dieudonné called
a first glimpse into Grothendieck’s theory of schemes) he calls the finitely generated
extensions of @) Rationalititsbereiche. This notation, covering a somehow different
class of fields than the fields of Dedekind, was frequently used in the following years,
by Hilbert in his papers on algebra, by Felix Klein and others, even by Weber, until
Weber in August 1893 sent a paper to the Mathematische Annalen, giving the first
general definition of a Korper in the same way as we have done in §1: He first defines
the notion of an abstract group (in the 19th century groups were usually permutation
groups), then the notion of an abstract field with Dedekind’s notation Kérper. He
explicitly said that the finite fields Z/pZ fall under his definition.

In the same month E. H. Moore coined the english expression field for Weber’s Koérper.
Indeed his paper, read in August 1893 at a congress in Chicago, is on finite fields IF,
which he called fields of order ¢ or Galois-fields of order ¢g. The main result of his
paper is that a finite field is determined, up to isomorphy, by the number ¢ of its
elements. Despite the results of Gauf, Galois, ... on congruences in my eyes this paper
is the starting point of the theory of finite fields.

Astonishingly Weber seems to have forgotten his general definition rather soon, at least
partially. In his famous textbook [Wel895] which he wrote in 1894 he defines in §146 the
notion of Korper, first Zahlenkorper, then Funktionenkorper, then the general notion
of Kérper. But then, in the same paragraph, he states (also in the 2. edition from
1898) that @ is contained in every field, because every field contains 1, so 1+ 1 and
so on, so all natural numbers, so all rational numbers. So Weber’s textbook considered
only fields of characteristic zero which simplified his theory of finite field extensions by
avoiding inseparability.

If this happens in the most prominent textbook on algebra at the end of the 19th century
it is not clear if one is allowed to say that the concept of field already was a known
concept in the 19th century.

2.4. The paper of Steinitz

In my eyes the birth of the general notion of a field is a paper from the year 1910,
written by Ernst Steinitz in Berlin, which was initiated as he said by the book of Hensel
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in 1908 with a new class of fields, the p-adic numbers. N. Bourbaki in the historical
notes to the chapter V (Corps commutatifs) in his book Algébre wrote:

Ce travail fondamental de Steinitz peut étre considéré comme ayant donné naissance a la conception
de I’Algebre. Développant systématiquement les conséquences des axiomes des corps commutatifs, il
introduit ainsi les notions de corps premier, d’éléments (algébriques) séparables, de corps parfait, définit
le degré de transcendance et démontre enfin l’existence des extensions algébriquement closes d’un corps
quelconque.

Indeed the paper of Steinitz contains all what I said in §1 except the newer concepts
of linear disjointness etc. The theory of fields was born in full generality. Steinitz had
the right concepts, although partially his notations were changed afterwards, e.g.: The
suggestive notion separable and inseparable for polynomials and field extensions was
invented by van der Waerden in his textbook from 1930, Steinitz called them erster
Art and zweiter Art (polynomials/extensions of first resp. second kind).

Although Steinitz had the right concepts and the basic results, his proofs could be
improved. The reason for this is his dealing with infinite constructions. Of course set
theory had been invented, otherwise he could not have done his general theory. But the
first fundamental book about set theory by Hausdorff only appeared in 1914. So he had
to build up his set theoretical tools by himself, and the reader of today is astonished
seeing that Steinitz did not know the concept of an empty set which made some of
his formulations not so smooth. His essential tool was the well ordering theorem of
Zermelo from 1904. So he well ordered all his field extensions in clever ways and his
proof of the existence of an algebraic closure took 20 (!) pages in Crelle’s journal. He
also saw very clear (much clearer then his later editors Baer and Hasse) that for several
of his statements like existence and uniqueness of the algebraic closure he needed the
use of the axiom of choice on which the theorem of Zermelo was based. He wrote in the
introduction to his paper, that the negative approach of many of his collegues against
the axiom of choice will soon dwindle, since there are natural questions in mathematics
which cannot be handled without this axiom:

Noch stehen viele Mathematiker dem Auswahlprinzip ablehnend gegeniiber. Mit der zunehmenden Er-
kenntnis, dafl es Fragen in der Mathematik gibt, die ohne dieses Prinzip nicht entschieden werden kénnen,
diirfte der Widerstand gegen dasselbe mehr und mehr schwinden. Dagegen erscheint es im Interesse der
Reinheit der Methode zweckméfig, das genannte Prinzip so weit zu vermeiden, als die Natur der Frage
seine Anwendung nicht erfordert. Ich habe mich bemiiht, diese Grenze scharf hervortreten zu lassen.

20 years later, after Steinitz’ premature death, Baer and Hasse reedited this seminal
paper as a book together with an appendix on Galois theory, since Galois theory was
not completely covered by Steinitz, but belongs to the basic elements of the theory of
fields. They tried to simplify some proofs of Steinitz and reduced the mentioned proof
of 20 pages to 2 pages. They still did it using well orderings.

This I find a little strange since the right tool for algebra is Zorn’s lemma which gives
an even shorter and more natural proof and is the usual tool in all textbooks of today.
Why Baer and Hasse did not use Zorn’s lemma? One may answer that Zorn stated his

lemma only in 1935. This is not a very good objection since Zorn’s lemma (the name
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was coined 1939 by Bourbaki who called it le théoréme de Zorn) appeared already in
1922 in a paper by Kuratowski. You may even say that Steinitz himself could have used
Zorn’s lemma in the form of Hausdorff’s maximal chain principle which says that every
ordered set contains a maximal chain (= totally ordered subset). This was stated by
Hausdorff in a paper from 1909. There are more people like L. Brouwer (1910/11), S.
Bochner (1928), R. L. Moore (1932) who used maximality principles of similar nature
as Zorn’s lemma before Zorn. But Zorn in 1935 was the first to apply it to algebra.
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3. Galois theory

The interplay between the study of polynomials in K[x], in modern language: the study
of finite extensions of the field K, and the theory of finite groups was started by Lagrange
and brought to a first culmination by Galois. But Galois’s papers were not understood
by his contemporaries, their publication started 14 years after his death. Many first rate
mathematicians of the 19th century studied them and slowly a clear Galois theory was
fixed. Dedekind gave lectures on Galois theory in Goéttingen in the years 1858 to 1860,
which later entered into his Supplement XI. The first presentation of Galois theory in a
textbook was done 1866 by Serret.

Only in 1893 Weber defined the general notion of field to give the right frame to Galois
theory, but he did not come to the problems with inseparable extensions. Steinitz saw
them 1910 very clearly; but he developed Galois theory only to the extent he needed for
the proofs of the statements given in §1; e.g. he proved Proposition 1.c. In the 1920’s
several textbooks (Hasse, Haupt, ...) developed Galois theory in the frame of separable

field extensions; 1930 van der Waerden’s lucid textbook appeared.

DEFINITION 1: An algebraic field extension L|K is called normal, if for every irreducible
polynomial f € K|[z] the following holds: If f has a zero in L then f splits completely
in L.

An irreducible polynomial f € KJz| is called normal if it splits completely after you
adjoin one root of f to K, i.e. if the root field Kx|/(f) is already a splitting field.

An algebraic field extension resp. an irreducible polynomial is called Galois, if it is normal

and separable.

COROLLARY: If L|K is normal (Galois), then L is normal (Galois) over each subfield of
LK.

PROPOSITION 1: Let K be a field with algebraic closure f(, let L be a subfield of I~(|K
a) If L|K is normal then L is the splitting field of a set of polynomials in K|[z].

b) Conversely a splitting field L' of a set of polynomials in K[x] is normal over K. If all
polynomials are separable then L'|K is Galois.

c) Let L|K be normal, L, be a subfield and ¢ : L, — L be a K -isomorphism. Then
¢ can be extended to a K -automorphism of L. If L|L, is finite, the number of these
extensions is just [L : Lo|.p-

d) L|K is normal iff any K -isomorphism ¢ : L — K maps L into (and then onto) itself.

e) The intersection of normal extensions of K is again normal. Therefore each algebraic
extension L|K is contained in a smallest normal one M|K which is called the normal

hull of L|K . It can be constructed by taking the composite of all conjugate fields of
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L over K:

M= I = ]J] r

ceAut(K|K) o:L = K

If L|K is separable, M|K will be Galois.
f) If L|K is normal and G = Aut(L|K) is the group of automorphisms of this extension
then the fixed field
Fixg(L) ={a€ L; Yo € G: a° =a}

is purely inseparable over K and L|Fixg(L) is Galois.?

DEFINITION 2: Let L|K be a Galois extension. Its automorphism group is called the
Galois group

Gal(L|K) = Aut(L|K) ={o: L — L; o is a K-isomorphism}

of L|K. The orbits of G = Gal(L|K) on L are finite and consist of conjugate elements.
If G is abelian resp. (pro-)cyclic resp. (pro-)nilpotent resp. (pro-)solvable the Galois ex-
tension L|K is called abelian resp. cyclic resp. nilpotent resp. solvable.

If L is the splitting field of the monic separable polynomial f € K[x] with the decompo-

sition
n

f=1]@—a)

i=1

over L, then the group Gal(L|K) acts faithfully on the set of roots {ai,...,an} of f,
and this permutation group is called the Galois group Gal(f|K) of f over K. We say
that the polynomial f whose roots generate L give rise to a faithful representation of
the abstract group G = Gal(L|K) as permutation group. Conversely, if K is infinite,
to every faithful permutation representation p : G — S, of G = Gal(L|K) there is a
separable polynomial f € K[x] of degree n with splitting field L such that G operates
on the roots of f as it does through p.

The groups Gal(f|K) were the Galois groups of the 19th century, the groups Gal(L|K)
are the Galois groups of newer type. The formulation of Galois theory had been much
improved through the switch from Gal(f|K’) to the more invariant objects Gal(L|K'). But
for concrete studies in Galois theory the permutation representations are indispensable
and often used.

Fact: The group Gal(f|K) is transitive iff f is irreducible. It is regular iff f is Galois.

In Proposition 1.6.a we got, without assuming normality of L|K, another splitting of L|K into a tower of two
extensions, the purely inseparable part L|Lsep at top, the separable part Lsep|K at bottom. In the normal case
the properties can be switched: separable at top and purely inseparable at bottom. In general this cannot be
done: Let L = IF, (x,y) be the rational function field in two variables over the field with two elements, and let
K =T, (u,y) the subfield with u = z* + yx?. Here we have Lsep = I (2%,y), 50 [L : Klsep = [L : K]ins = 2, but
no element in L is purely inseparable over K (Exercise!).
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THEOREM 2: (E. Artin 1942) Let K be a field and G < Aut(K) be a finite group of n
automorphisms 0 : K — K. Let K, = Fixg(K) be the fixed field of G. Then K|K,
is a Galois extension of degree n with G = Gal(K|K,).

The classical Galois theory did not use Artin’s view which emancipated the theory com-
pletely from polynomials. It used the permutation groups Gal(f|K). But the terminology
of the 20th century, switching to the abstract groups Gal(L|K), simplified the presenta-
tion of the basic results considerably. The main theorem can be summarized in detail as
follows:

THEOREM 3: Let L|K be a finite Galois extension of degree n. Let G = Gal(L|K) be its
Galois group. Then G has exactly n elements and there is a bijection between the set
S(L|K) of subfields of L|K and the set &(G) of subgroups of G by forming isotropy
groups and fixed fields:

S(LIK)> M +— M°={0€G; o|ly =idy} = Gal(L|M) € &(G)
S(G)sH+—— H°={acL; a’=a} €G&(LIK)
These maps have the following properties for subfields M and subgroups H, if H? =

o~ 'Ho denotes for o € G a conjugate subgroup of H and MM’ denotes the smallest
subfield containing M and M':

0) K°=G, L°={idg}. G°=K, {idg}°=1L

(1) M*=M , H®=H

2) MCM = M°CM°, [M:M]=[M:M"]

(3) HCH = H°CH°, [H :H]=[H":H"]

4) (MM =MAM° |, (MAM)°=(M°M"°)

5)  (HH) =H°NH°® , (HNH) =HH"®

(6) ceG = (MO =(M), (HO)P=(H)
(7) M'|M normal <= M'® normal in M°

and in this case we have Gal(M'|M) ~ M°/M'° = Gal(L|M)/ Gal(L|M")

If L|K is an infinite Galois extension, then G = Gal(L|K) is not only a group but has a
topology, as already Dedekind in 1901 remarked, the topology of pointwise convergence
on L. This makes G into a compact, totally disconnected group, so a profinite group,
which can also seen by representing GG as a projective limit of finite groups:

G = lim Gal(M|K) |
lim

where M runs over the subfields of L|K which are finite Galois over K. Then Theorem 3

(without the statement about the number of elements of G) remains true, as Krull 1928
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showed, if one restricts &(G) to be the set of closed subgroups of G' and understands the
operation (H, H') as building the smallest closed subgroup of G containing H and H'.
This, by the way, was overlooked by Baer and Hasse in their appendix in [St30].

Galois groups are no special projective groups:

PROPOSITION 4 (Leptin): Every profinite group is isomorphic to Gal(L|K) for some
Galois extension L|K .

One main topic in Galois theory, started with Hilbert in 1892, is the so-called inverse
problem of Galois theory. It asks which finite groups are Galois groups over a given field
K, i.e. to find all finite factor groups (= quotient groups) of the absolute Galois group

Gal(K) = Gal(K*

K)

of K where K*" is the separable closure of K, i.e. the maximal separable subfield of
K|K. Originally this question was put for K = Q. A famous deep theorem in this

respect is
THEOREM 5 (Shafarevich 1954): Every finite solvable group is a factor group of Gal(@).
But the “complimentary” question

Which finite simple (nonabelian) groups occur as Galois group over Q 7

is only partially solved with large gaps and a completion of this task is not to be seen. The
methods and results of the 20th century are gathered in a book by Matzat and Malle from
1999, several new results have since appeared, but we are far from a complete answer.
One nice result is already more than 100 years old:

THEOREM 6 (Hilbert 1892): For any n the symmetric group S, and the alternating
group A, are Galois groups over Q.

I will come to Hilbert’s ideas of proof in the next section; they are the best useful tool for

solving the inverse problem we have.

A more general formulation of the inverse problem of Galois theory is the following:

What is the structure of Gal(K) ?

Another important and wide open question is:

Which groups appear as absolute Galois groups ?

EXAMPLES:
1. If Gal(K) =1, then K is separably closed.
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2. (Artin-Schreier 1926) If Gal(K') # 1 is finite, then |Gal(K)| = 2 and K is a field of
characteristic 0 with an ordering and the following properties:

a. Every positive element is a square.
b. Every polynomial in K[x] of odd degree has a zero in K.

Conversely such fields (they are called real closed fields because they have the same
elementary properties as the real numbers) have a 2-element Galois group with K =

K(v=T).

3. (Geyer 1969) Every abelian subgroup of Gal(Q) is procyclic. (In general any abelian
profinite group A can occur as absolute Galois group, if it does not contradict example
2, i.e. if the torsion part of A is 0 or Z/2.)

4. If K =IF, is a finite field, then Gal(K) is a free profinite group with one generator,

namely the Frobenius automorphism

F:xw— a2l

5. 1f K = €((x) is the field of formal power series over C, then K = [J C((#/™) and
n

Gal(K) is again the free procyclic group, a generator is given by

v gV/m s 2/ gl (n € IN).

6. If K = C(x) then Gal(K) is a free profinite group with |C| generators (Riemann).

7. The same is true if C is replaced by any algebraically closed field K of characteristic
zero (Grothendieck).

8. The same is true in any characteristic (Pop 1995, ...)

9. Shafarevich conjecture: The absolute Galois group of the maximal abelian extension
of @, the cyclotomic field

Qab _ Q(e2m’/n; ne ]N) :

is a free profinite group of countable rank.

The question which finite groups are factors of Gal(K) can be refined to the following
question, which gives more insight into the structure of Gal(K') then just the list of finite

factors:

Let L|K be a finite Galois extension with group A, let B be a finite extension of A,
i.e. a finite group with an epimorphism « : B — A. Does there exist an extension
M]|L such that M is Galois over K with group B such that «: B — A becomes the
restriction map resy, : Gal(M|K) — Gal(L|K)?
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We formulate this question usually in the following way: Is the embedding problem

Gal(K)

l

B % A=Gal(llK) —1

solvable? A solution is an epimorphism ~ : Gal(K) — B which makes the diagram
commutative. A weak solution is a not neccessarily surjective homomorphism v with the
same property. Kern «a is called the kernel of the embedding problem.

ExAMPLE: The embedding problem

Gal(Q)

J

7J4 — 7ZJ2 = Gal(Q()|Q) — 0

is not even weakly solvable: Let o € Gal(Q) be a complex conjugation, so an element of

order 2 whose restriction generates Z/2. Then the restricted (local) embedding problem

72

B

Z)4 — )2

has no weak solution, because any weak solution has to be a strong solution (only the full

subgroup of Z/4 maps onto Z /2, we have a Frattini cover) — and there is no epimorphism
7]2 - 7/4.

Solving embedding problems is, besides Hilbert’s theorem of the next section, the most
important tool to construct field extension with a given group. Shafarevich’s proof of
theorem 5 is a very, very long iteration of solving embedding problems with abelian
kernels. One example of solving embedding problems with cyclic kernels of order p to get

cyclic p-groups in characteristic p is given in the last section of this course.
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4. Hilbertian fields

The polynomial 2% + 1 € Z[x] is irreducible over @, but all its reductions modulo p are
reducible over I, (because Gal(z? + 1|Q) is not cyclic).
Absolute irreducible polynomials behave differently, as the following rather elementary

proposition shows, proved several times by different people and called theorem of Bertini-
Noether in [FJ 9.4.3].

PROPOSITION 1: Let R be an integral domain and f € Rlxy,...,x,] be an absolutely
irreducible polynomial. Then for almost all (in the sense of Zariski topology) prime
ideals p € Spec(R) the following holds where k(p) = Quot(R/p) denotes the residue
field of p:

The polynomial f mod p is absolutely irreducible in k(p)[z1,...,%y).

Whereas the reduction of coefficients conserve absolute irreducibility this is in general no
more true for substitution of variables by elements in the field: An absolutely irreducible
polynomial f € Clx,y], monic in y with deg,(f) > 1 obviously becomes a reducible
polynomial f(z,n) € Clz| for all n € C.

There are fields where this phenomenon does not appear, the Hilbertian fields which were
named after Hilbert’s results from 1892 (a modern approach can be found in chap.12, 13
and 15 of [FJ]).

DEFINITION 1: A field K is called Hilbertian, if for any irreducible polynomial f &€
K|[x,y], separable in y, there are infinitely many elements £ € K such that f(£,y) is
irreducible in K[y].

REMARKS:

1. In the language of valuations (places) a field K is Hilbertian, iff vor every finite sepa-
rable field extension L|K(z) — the root field of f — there are infinitely many rational
places v of K(z)|K which are completely inert in L, i.e. they have a (unique) conti-
nuation w on L with [k(w) : k(v)] = [L : K(z)], where x(w) denotes the residue field
of w, so kK(v) = K. Since the ramification of L|K(z) is finite, we may even assume
that k(z)|k(v) is separable.

2. In definition 1 one can assume f is monic, of degree > 2 and Galois in y, i.e. L|K(x)
is a proper Galois extension.

3. In definition 1 one can moreover assume f is absolutely irreducible, i.e. L|K is regular.

4. If K is Hilbertian and f1, ..., f, are finitely many irreducible, in y separable polyno-
mials in K[z, y|, there are infinitely many £ € K such that all polynomials fi(&,y),
.., fr(& y) are irreducible in K[y].

THEOREM 1 (Hilbert’s irreducibility theorem 1892): The field Q and all its finite
extensions K are Hilbertian. More precisely Hilbert showed: Let f € Klxz,y| be
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irreducible. The ¢ € IN which give a reducible polynomial f(&,y) € Kly] form a
subset of IN of density zero:

lim #{&€IN; £ <n, f(&y) is reducible} _

n—o0 n

0

The example f = x — y? shows that there can be infinitely many exceptions, the
square numbers. Later considerations showed that the exceptional set never can be

more dense than the set of squares.
The following theorem gives other examples of Hilbertian fields, for more look at [FJ].

THEOREM 2:

a) For every field K, the rational function field K = K,(t) is Hilbertian. If K, is a
finite field, one gets a density result as in theorem 2. If K, is infinite, one gets an
even better result: If f € K[z,y] is irreducible then the set of (a,b) € K2 such that
f(a+bt,y) is irreducible in K[y] form a Zariski dense subset of K?2.

b) COROLLARY to a): Let K be Hilbertian and f € K[xy,...,xy,y| be irreducible and
separable in y. Then the set

{(a1,...,ap) € K" f(a1,...,an,y) is irreducible in K[y|}

is Zariski dense in K".

c) If K is Hilbertian and L|K is a finite extension, then for each irreducible f € L|X,Y],
separable in Y there are infinitely many £ € K such that f(£,Y) is irreducible in
LIY].”

d) Every finite extension of a Hilbertian field is Hilbertian.

e) Every finitely generated infinite field is Hilbertian.

f) Let K be Hilbertian and L|K be a Galois extension. Then every proper finite separable
extension of L is Hilbertian (Weissauer 1982).

g) Let K be Hilbertian and L|K be a Galois extension with group G. In the following
cases L is again Hilbertian:

1. G is small, i.e. for each n there are only finitely many subgroups of index n in G.

2. G is Abelian (Kuyk 1970). Therefore no algebraic extension of a finite field is
Hilbertian.

3. G is pro-nilpotent, but not a pro-p-group.

h) If K, is an arbitrary field, then the power series field K,((t)) is not Hilbertian, but for
each n > 1 the field K((ty,...,t,)) is Hilbertian (Weissauer 1982).

Proof: Let N|L(z) be a finite separable extension. Let Lgep resp. Nsep be the maximal separable subfield of L|K
resp. N|L(z). Then L and N, are linearly disjoint over Lgep and N = LNgep. Let v be a K -rational place
with a separable totally inert continuation wsep on Ngep. Then the unique extension w of wsep to N is totally
inert with purely inseparable residue field extension, and the restriction w|p(,) is L-rational and totally inert in
N. [ |
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The fact that a field is Hilbertian has strong consequences for the inverse Galois problem
over the field K as already Hilbert stressed in 1892. The reason is the following

THEOREM 3: Let K be an Hilbertian field and L|K (t) be a finite Galois extension with
group G. Then G is also a Galois group over K, i.e. a finite factor group of Gal(K).
If L|K is regular, then also all powers G™ with n € INU{oo} can be realized as Galois
groups over K .

Proof: Let L = K(t,u) with an irreducible polynomial equation f(¢,u) = 0 with f €
K[T,U]. Then f is a separable polynomial in the variable U so there are many 7 € K
(specializations) such that f = f(r,U) € K[U] is irreducible. For almost all 7 the
specialized polynomial f is again Galois over K as f was Galois over K(t). In general
a specialization ¢ — 7 gives an embedding Gal(f|K) — Gal(f|K(T)) of the specialized
Galois group as decomposition group of the situation over K (t). But here both Galois
groups are regular permutation groups of the same degree, so G' = Gal(f|K) which gives
the first claim: We get a Galois extension L|K with group G. If L|K is regular, i.e. f is
absolutely irreducible, then f remains irreducible over L and by Hilbert’s theorem 2.c we
get a specialization ¢ — 75 which lead to a Galois polynomial f(m,U) € K[U] which is
irreducible over L, so gives a linearly disjoint realization of the group G, so a realization

of the group G?. Continuing we get the result. '

EXERCISE: Simplify the above proof by using valuations!

CORLLARY (van der Waerden 1933): Let P, be the space of monic polynomials

1

f=a2"+a2" " +.. . +ap1v+an (a, € Z)

of degree m with integral coefficients. Then the set of polynomials f € P, with
Gal(f|Q) = S, has density 1.

Idea of proof: The generic polynomial f has Galois group S, over Q(ai,...,a,). Spe-

cialising the a, to integers gives usually the same Galois group. '

This corollary shows that it is not an easy task to produce other Galois groups than the
symmetric groups just by trying random polynomials. But theorem 3 says how you can
succeed to find a polynomial over @ with group G: You have to find such a polynomial
over Q(t). Now Q(t) is the rational function field of the line C', and you can apply
methods from geometry to produce coverings of C' with Galois group G. In this way
Hilbert got the alternating groups as Galois groups over Q by first contructing A,-
coverings over the Riemann sphere; then to see that they can be defined over Q, so you
get an A, -covering of Q(t); and then applying the irreducibility theorem.
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5. PAC fields

The examples 5 to 8 (and possibly 9) in §3 are fields whose absolute Galois group is a free
profinite group. Therefore every embedding problem over such a field is weakly solvable.
But these are not the only profinite groups with this property. The following proposition
is taken from Serre (1964) and Gruenberg (1967):

PROPOSITION 1: For a profinite group G the following properties are equivalent:

(i) Every exact sequence
l—P—F—G—1 (%)

of profinite groups splits.
(ii) Sequences of type (x) split it P is a finite elementary abelian group.

(iii) For every exact sequence
l—P—E—W-—1 (1)

of profinite groups, any homomorphism « : G — W can be lifted to a homo-
morphism G — FE.

(iv) This lifting property holds for all sequences (f) for which E is finite, P is
elementary abelian and « is surjective.

(v) For all primes p the p-Sylowgroups of G are free pro-p-groups.

(vi) For all primes p the cohomological p-dimension of G is at most 1,

cdp(G) <1

ie. H"(G,A) =0 for all n > 2 where A is a discrete G-module and a p-primary

abelian group.
(vii) For all primes p we have H%(G, A) = 0 for all simple G-modules A with pA = 0.

DEFINITION 1: A profinite group is called projective, if it satisfies the properties in

theorem 1.

DEFINITION 2: A field K is called a PAC-field or pseudo algebraically closed if every
non-empty variety V over K has a rational point: V(K) # @&. A direct consequence is:
V(K) is Zariki dense in V' if K is PAC.®

THEOREM: (Ax 1968) If K is a PAC-field, then Gal(K) is projective.

Before we can prove this we need a

The concept was seen by James Ax in [Ax67]. He showed that infinite algebraic extensions and non trivial
ultraproducts of finite fields are PAC. The name is from Moshe Jarden in [Fr73].
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LEMMA: Let L|K be a finite Galois extension with Galois group G. Let B be a finite
group with m elements and o be an epimorphism

a: B— G

Then there is a Galois extension F'|E with Galois group B, such that E|K is a finitely
generated regular extension and F|L is a purely transcendental extension of transcendence
degree m, and

a =TeSp; Gal(F|E) — Gal(L|K)

Proof: -
K
F
: |
L — LFE
| |
K —— F

Let X = {27; B € B} be a set of m indeterminates over K. Then B operates on X via
(zP)7" = 2PF" . Put F = L(X). Then B operates on L via a, on X as above, so on F.
Let

F = Fixp(F)

be the fixed field of this action. Then F|E is Galois with group B by Artin, and
respiL(8) = a(8),so LN E = K, so L and E are linearly disjoint over K. The purely
transcendental extension F'|L and K = L are linearly disjoint over L, so especially LE
and L are linearly disjoint over L. From the tower property follows that £ and L=K
are linearly disjoint, so F|K is regular. Moreover F|K as subfield of the finitely generated
extension F'|K is finitely generated. '

Proof of the Theorem (Haran): We have to solve weakly a finite embedding problem of
the following type: Let A and B be finite groups and let

p: Gal(K)—» A and a: B— A

be epimorphisms. Then there exists a homomorphism § : Gal(K) — B such that
p=aof.

Let L be the fixed field of Kern(p) in K**. Then L|K is Galois and the Galois group
can be identified with A such that p: Gal(K) — A = Gal(L|K) is the restriction map
resy,. In the lemma we constructed a field extension F|E with E|K regular, L C F,
Gal(F|E) = B and a = res;,. Now since E|K is regular, E is the function field of
a normal variety V over K. Then V x L is the normalization of V in LE. Let W
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be the normalization of V in F'. Shrinking V' to an open subset we may assume that
W1V is unramified. Let P € V(K) be a rational point (K is PAC) and Q € W be
a point above V' with residue field M = k(Q). Then the extension M|K is Galois,
contains L and Gal(M|K) = Gal(k(Q)|x(P)) is isomorphic to the decomposition group
{0 € B; Q% = @}, a subgroup of B = Gal(W|V'). This gives a homomorphism

3: Gal(K) —% Gal(M|K) — B
such that a o 8 = resy, as desired. '

REMARK: The examples K =IF, or K = C((z)) show that a field whose absolute Galois
group is projective, need not be a PAC field.

ADDENDUM (Lubotzky & v.d.Dries 1981): Every projective profinite group G is the
absolute Galois group of a PAC field.
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6. Construction of cyclic field extensions

The realization of cyclic groups is one of the first exercises in Inverse Galois Theory. I
will treat this here in the case that the base field is a rational function field K (z) over an
arbitrary field K.

THEOREM: For any field K and any natural number n there are Galois extensions L| K (x)
with
Gal(L|K(z)) =Z/n

Moreover one may choose L as a subfield of K ((x)), so L|K is regular.

Indeed there are many solutions as can be seen by keeping track of the ramification.
Our examples are of minimal full ramification; remark that there is no unramified proper

extension of K(z).

NOTATION: Let char K = p > 0. let E = K(z) be the rational function field over K.
Let n > 1. If ptn let ( = (, be a primitive n' root of unity in K.

The proof of the theorem will done in three steps: First by a Kummer extension if ( € K.
Then by a twisted Kummer extension if p 4 n but ( ¢ K. At last the case p|n will be
handled by an iteration of Artin-Schreier extensions y? —y = a.

LEMMA 1: If ( € K and a # b in K™, then there is? a cyclic extension F|FE of degree
n with FF C K((x)), which ramifies only at * = a and x = b, the ramification index
being n.

Proof: Let y € K[[z]] be such that

1—ala T v 2P

e (S B ( )
V= = () (g

Then E(y)|FE is a cyclic extension of degree n, contained in K ((x)), with full ramification

at x =a and x = b. .

REMARK: There is no cyclic extension of degree n > 1 with p t n of K(z) which is
ramified only in one rational place.

LEMMA 2: Let ptn but ( ¢ K, and a € K*. Let L = K(¢) and G = Gal(L|K).
Then there is a cyclic extension F|E of degree n inside K ((x)) which ramifies only at
x = a(? for v € G, and the ramification index is again n.

Proof: For 0 € G let x(0) € IN with (7 = ¢X(?) be the cyclotomic character lifted to IN.
As in the last lemma let y € L[[z]] be with

11— a ¢z

1—alx

n

Y

4 If you wonder where you get two non zero elements in IF, remark that ¢ ¢ T, .
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This cyclic extension E’(y) of E' := L(x) does not come from a cyclic extension of F,
since it is not Galois over E (look at the ramification). We have to modify y in a clever

2= [ e L]

ceG

_H<1—a lg—o ;1:) 1)EL($>:E/

1—alz
ceG

way to

Then we have

and F' = E'(z) is a cyclic extension of E’ of degree n, fully ramified for z = a(?, o € G,
and unramified elsewhere, since ) _x(c) = 0 mod n. A straightforward calculation,
using x(o7) = x(0) + x(7) mod n, shows for 7 € G = Gal(L((x))|K(z)))

2T =2X0) L f () with f; € L(z)
So the field F’ is invariant under GG. Let F be the fixed field of G in F'.

L ———— E=Lrz -+ F ——— ()
G G G G
K ——— E=K@{) —F7 F ——— K(2)

The cyclic group I' = Gal(F'|E’) is generated by the element w with 2 = (z. The
straightforward identity

= (¢2)" = (2O @) = (2O (@) = 27
for 7 € G shows that F'|E is abelian with
Gal(F'|E) = Gal(F'|F) x Gal(F'|E') =T x G

So F' C K((x)) is a cyclic extension of E of degree n with ramification at x = a(? for all
oed. [

REMARK: Let F|K(z) be a cyclic extension of degree n as in Lemma 2 with

= [K(Gn) : K] = |G|

let K be the algebraic closure of K. If x = a with a € K is a fully ramified place in
FK|K(x) then [K(a) : K] > m and there are at least m fully ramified, over K conjugate
places in FK|K(z).

LEMMA 3 (Witt 1936): Let p > 0, n € INg and F|E be a cyclic extension of degree
q = p" inside K((x)), which is unramified over K[x]. Then there is a cyclic extension
F'|E of degree p"*!, unramified over K[z], with F C F' C K((x)).
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Proof: Let O C K[[z]] be the integral closure of K[z] in F', let Tr be the trace of F|K(z)
and o a generator of Gal(F|K(z)). From the unramifiedness follows Tr(O) = Klz],
let b € O with Tr(b) = 1. For ¢ = b — b’ we have Tr(c) = 0. Again because of the
unramifiedness we have (additive Hilbert 90)

H YF|K(z),0) =0
und therefore there is a; € O with
ap—af =c¢

Let v be the complete z-adic valuation of K((z)). With a = a; — a1(0) one has v(a) > 0
and a satisfies

(%) a—a’ =c=b-"VW
Then the zeroes of the polynomial

P —7Z —a = H (Z —v) mod (x)
ve Ik,
are by Hensel’s lemma in K[[z]], let z be one. So F’ = F(2) is a cyclic, over O unramified
extension of F' of degree 1 or p. From 2P — 2z = a we get with (x), that z+ b is a zero of
ZP — Z — a°. Therefore F'|K(z) is Galois and 2% = z 4+ b is a continuation of o on F”.

It remains to determine the order of o in Gal(F'|K(z)). Inductively we see
Py Wiy L L (j e IN),

especially

=2+ Tr(b) =2 +1
This shows that z ¢ F, so [F’' : F| = p, and the order of o is larger than ¢ = p", so
p" 1. Therefore F'|K(z) is a cyclic extension of degree p" ! unramified outside co with

FCF CK(x). '

COROLLARY: Let char K = p > 0, let a € K* and n € IN. Then K(x) has a cyclic
extension F' in K((x)) of degree p" which is ramified exactly at the place x = a, and
there with full exponent p".

Proof: By replacing K by the algebraic closure of IF, in K we may assume K to be
perfect. Iteration of Lemma 3 gives a cyclic extension of K(x) in K((z)) of degree p"
which has, since K is perfect, ramification index p™ at x = oo — for there is no unramified
proper extension of K (x). By the Mobius transformation
z 7Y
T = - _ ol

2—a a?
v=1

the place x = oo will be transformed into z = a, and the corollary follows from K((z)) =

K ().
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