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Lecture 1

Representations of profinite groups

In this lecture we will

o recall finite Galois theory,

prove infinite Galois theory,

introduce profinite groups,

introduce representations of profinite groups, and

state some of their properties.

1 Profinite groups and infinite Galois theory

A good reference for profinite groups and infinite Galois theory is [Nebk Section IV.1.

Finite Galois theory

Let L/ K be afield extension, that i& is a field andK is a subfield ofL. By restricting the multipli-
cationmapl x L — Lto K x L — L, we obtain ai-scalar multiplication orl., makingL into a
K-vector space. Thdegreeof the field extensior./ K is the K -dimension ofL, notation:

[L: K]:=dimg L.

A field extension is callefiniteif its degree is finite.
Let us look at some examples:

(a) C/Ris afield extension of degre&eand anR-basis ofC is given byl and:.

(b) F,»/F, is afield extension of degreg wherelF,,» is the finite field withp™ elements (it is unique
up to isomorphism as it is the splitting field of the polynomi&t” — X ¢ F,[X] overF,).
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1. PROFINITE GROUPS AND INFINITE GALOIS THEORY 3

(c) C/Qis afield extension of infinite degree.
(d) F,/F, is an infinite field extension, whef®, is an algebraic closure @f,.

We denote byAutx (L) the group of field automorphisms: L — L such that their restriction
to K is the identity (note that any field homomorphism is automatically injective, sinceleeare
ideals and the only nontrivial ideals in a fieldare (0) and ).

A field extension / K is calledGaloisif it is normal and separable. Although you probably know
what this means, we will not use it in these lectures and instead work withuawvadent description.

For warming up we first assume tHat: K| < oo. Then one can show that one always has:

# Autg (L) <[L: K].

(This is not so difficult to show: Suppode = K[X]/(f), wheref is an irreducible polynomial of
degregL : K]. Let us fix one root: (in K) of f. Then every field automorphisia — L is uniquely
determined by the image of. But, this image must be another root fifhence, there are at most
[L : K| different choices, proving the claim in this caseLIfK is separable, then any finife/ K is
of that form; otherwise, one uses the multiplicativity of the ‘separable @&yre

A finite field extension./ K is Galoisif and only if we have equality, i.e.

# Autr(L) = [L : K].

In that case we writ€al(L/K) := Autx (L) and call this theGalois group ofL / K.
The main result ofinite Galois Theory states that the two maps

®
{fieldsL/M/K} ~, { subgroupst < Gal(L/K)}

given by® (M) = Gal(L/M) and¥(H) = L are inverses to each other and hence bijections. The
a priori complicated world of field extensions can thus be completely described bgulaéysimpler
world of groups.

We again look at some examples:

(a) C/Ris Galois and its Galois group has ordeand consists of the identity and complex conjuga-
tion.

(b) F,n/F,: Since we are in characteristic the FrobeniusmapFrob,, : « — 2P is a field automor-
phism ofF,» (the point is that it is additive! That clearly fails ov€, for instance). Using that
}F;n is a (cyclic) group of ordep™ — 1, one immediately gets that” = z in Fp». This shows that
(Frob,)™ is the identity. But, it also shows that thereris F» such tha{Frob,)!(z) = o7 # «
foralli =1,...,n — 1. This shows thaFrob, has orden. Consequently, we have foundield
automorphisms, namely, the powerstobb,. Thus,F,. /I, is a Galois extension and its Galois
group is cyclic of order, generated b¥rob,,.
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(c) Let( be a primitive/™-th root of unity insideQ (where/ is a prime number). Explicitly, we can
take( = e2™/*", We consider the field extensidd(¢)/Q. HereQ(¢) is the smallest subfield
of C containingQ and(. Itis not so difficult to show that one has

[Q(¢) : Q) = p(¢") = (£ — 1)
Leto € Autg(Q(¢)). Then we have
1=0(1)=0(¢") = (a(¢)",

showing thatr(¢) is another’™-th root of 1. As o is invertible,o({) must also be primitive (i.e.
have order™). This means that there is an elemgpt(o) € (Z/¢*Z)* such that (¢) = ¢Xen ()
(the complicated notation becomes clear below). Let us write this as a map:

Xen : Autg(Q(Q)) — (Z/€"Z)*.

Note that this map is surjective (for anye (Z/¢"7Z)*, define a field automorphism uniquely by
sending¢ to ¢%). Thus,Q(¢)/Q is also a Galois extension. In fact, it is trivially checked that
Xen 1S @ group homomorphism. Thug,. is a group isomorphism between the Galois group of

Q(¢)/Qand(Z/"Z)*.

Infinite Galois Theory

A (possibly infinite degree) field extensidy K is Galoisif and only if L is the union of all finite
Galois subextension¥// K, i.e.

L= U M.

KCMCL, M/K finite Galois

In that case, we also wril@al(L/K) := Autg(L).

If L/K is infinite, thenGal(L/K) is an infinite (even uncountable) group. In order to make it
handable, we need to put@pologyon it. We now describe how this works. If/ M / K with M /K
finite Galois, then restricting th& -automorphisms of, to M defines a group surjection with kernel
Gal(L/M), that is, we have the exact sequence of groups

ooy

1 — Gal(L/M) — Gal(L/K) Gal(M/K) — 1.

(One needs Galois theory to show that, indeed belongs t6&al(M/K); | don’t see how to derive
this from # Autx (M) = [M : K] in a simple way. It is, however, an immediate consequence — or
even the definition in some presentations — of normality. The surjectivity idlusraved using an
extension lemma of Artin.)

In order to define a topology off := Gal(L/K) it suffices to give aasis of open neighbour-
hoodsl{, (that is a nonempty collection of se&fSC G all containingg such that for anyy,Ys € U,
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there isY3 € U, such thatys C Y7 N Y») for anyg € G. By definition, a setX C G is thenopenif
and only if for everyy € X, there is ondJ € U, such that/, C X.

Forg € G we letld, be the set consisting of all coset§xal(L/M), whereM runs through the
finite Galois extensions dk contained inL. We only need to check one condition:

g Gal(L/M;) N gGal(L/My) = g Gal(L/(M1Ms)) € Uy.

The topology onG thus defined is called th&rull topology. Note that if L/ K is finite, then
gGal(L/L) = {g} is an open set for a4y € G, hence, the Krull topology is the discrete topol-
ogy (every set is open).
The maps

m:GxG—G, (g,h)—gh,andi:G -G, g— g *
are continuous. It suffices to check that the preimage oftany U, is open:i~!(g Gal(L/M)) =
g 1 Gal(L/M) and if (o,7) € m~(g Gal(L/M)), then(o,7) € o Gal(L/M) x 7 Gal(L/M) C
m~Y(g Gal(L/M)). Thus,G is a topological group.
Definition 1.1. A topological groupG is called profinite if it is compact, Hausdorff, and totally
disconnected (i.e. the connected component containing sasequal to{z}).

Theorem 1.2. For any Galois extensiof /K, the Galois grougz = Gal(L/K) is a profinite group.

Proof. Hausdorff Let g # h be two elements oGal(L/K). As gh~! is not the identity, there
is M/K Galois such thayh~! is not the identity onM, thusgh~! ¢ Gal(L/M) and so
gGal(L/M)NhGal(L/M) = 0.

Compact Consider the map

v: Gal(L/K) — 11 Gal(M/K) =: P
KCMCL, M/K finite Galois
given by restrictings to M on each component. #|M = id,, for all M, theno is clearly the
identity, thus, is injective. Note that the target space is compact by Tychonov @atli /M)
is a finite group having the discrete topology). So, it suffices to provetligaimage of. is
closed.

For anyM; /M, /K finite Galois insidel consider the closed subset

Sty = {(om)m € Pl oay v, = Mo} C P.

It is clear that it is closed since only af; and M; there is a condition and the topology on
Gal(M/K) is discrete. But

YGal(L/K)) = m Sy /My
M /M2 /K finite Galois
is closed as an intersection of closed sets. The equality is easys tlear anyway and for
‘D’ note that given(o )y € P one makes a unique : L — L by puttingo (z) = o () if
x e M.



6 LECTURE 1. REPRESENTATIONS OF PROFINITE GROUPS

Totally disconnected Letz € G andx € S C (G a connected subset (that is, connected in the relative
topology). Suppose thereisc S\ {z}. Let (similarly as above)//K be finite such that
ry ' € Gal(L/M). As Gal(L/K) = Lgecar(ar/ iy 9 Gal(L/M) it follows that

S= || (SngGal(L/M))
geGal(M/K)
is a partition into open and closed sets withndy lying in two different subsets, contradicting

the connectedness 6t
]

Note that anyd = Gal(L/N) for N/K finite (not necessarily Galois) is an open subgroufof

because
H= | ] gGal(L/M),
geH/ Gal(L/M)

where M is the Galois closure aV/K in L. Moreover, anyd = Gal(L/N) for N/K finite (not
necessarily Galois) is also a closed subgroug:diecaused = G \ UH#HGG/H gH. The same
reason shows that any closed subgrélip< G is open ifG/H is finite. Moreover, for any./N/K
(not necessarily finite or Galois) the group

Cal(L/N) = N Gal(L/F)
N/F/K st.F/K finite

is closed.

Theorem 1.3(Main theorem of Galois Theory)The two maps

]
{ fieldsZ/M/K} ~, { closed subgroupsl < Gal(L/K)}

given by®(M) = Gal(L/M) and¥(H) = L are inverses to each other and hence bijections.
Under these correspondences the open subgroups correspone finite extensions dk’, and
the closed normal subgroups to the Galois extensios.of

Proof. We have seen that the maps are well-defined.
Let L/M /K be given. We need to show

7,Gal(L/M) _ pr
The inclusion D’ is clear. For the other oneC’ let + ¢ M. We choose a finite Galois extension
M, /M such thate € M. By the main theorem of finite Galois theory ther&is Gal(M;/M) such

that7(x) # . We now extend to an element ofial(L/M). This showse ¢ LG2I(L/AM),
Let H < G be a closed subgroup. We need to show

H = Gal(L/L").
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The inclusion €’ is clear. To see equality, for any//L" finite Galois we consider the following
diagram, whose first row is exact:

1 — Gal(L/M) — Gal(L/L7) % Gal(M/LH) —1

J res

H H|y 1.

The equality on the right is an immediate consequence of finite Galois theorgdfin= M H1v
where byH |, we denote the group obtained by restricting the elements tf /.

Let nowo € Gal(L/L™). By the diagram, for any//L* finite Galois there i3 € H such that
oly = T|p, whences 17 € Gal(L/M). Thust € H N o Gal(L/M). We have thus proved that
H N oGal(L/M) # 0 for any M /L finite Galois. This shows tha has non-empty intersection
with any open neighbourhood ef henceg is in the closure oH. As H is closed, it followss € H.

The rest is also easy. O

Definition 1.4. A directed seis a setl together with a binary relatior< on I such that for any pair
1,7 € I thereisk € I suchthat < kandj < k.

A projective system of topological groufsr a directed set is, for eachi € I, a topological
group G; and, for each pairi < j, a continuous group homomorphisfy; : G; — G; such that
fii=idg, foralli € Tandf; ;o f; = firforalli <j <kinl,

Example 1.5. (a) Takel to be the set of all fieldd/ such thatL /M /K with M /K finite Galois
with order relationM; < My if My C M. ThenGy, := Gal(L/M) together withfys, ar, :
Gal(Mz/K) — Gal(M;/K), the restriction, whenever/; < My, forms a projective system of
finite (hence topological groups for the discrete topology) groups.

(b) Letp be a prime. Takd = N>; the set of natural numbers with the usyabrder relation. Then
Gy, := Z/p"Z together withf,, , : Z/p™Z — Z/p"Z, the natural projection, forn < m, forms
a projective system of finite (hence topological groups for the discretéogppogroups.

(c) Takel = N>; the set of natural numbers for the divisibility relation as order relation. Then
Gy, := Z/nZ together withf,, ,,, : Z/mZ — 7Z/nZ, the natural projection, for. | m, forms a
projective system of finite (hence topological groups for the discrete tgpoiwoups.

Proposition 1.6. Let (G, f; ;) be a projective system of topological groups for a directed sdthe
projective limit of this system is defined as the topological group

lim G := {(zi)ier € [[ Gi | fij(wj) = 2 Vi < j}.
el el
If the G; are finite groups with the discrete topology, tHén G; is a profinite group.
iel

Proof. Exercise. One should let oneself be inspired by the proof of Theor2m 1 O
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Example 1.7. (a) One has
Gal(L/K) = lim Gal(M/K).
KCMCL, M/K finite Galois

We showed this in the proof of Theorem 1.2.

(b) The groudim Z/p™Zis called the group op-adic integersit is denotedZ,.
neN

(c) The groupim Z/nZ is calledZ hatand it is denoted. By the Chinese remainder theorem one
neN

hasZ = Hp primeZp'

(d) We now compute the Galois groupRf/F,,. We clearly have

?p == U Fpn,

neN

since any element i, is contained in some finite extensiBp.. Hence, this is a Galois extension
(in fact, for any fieldF' the extensiorF’/F, whereF is a separable closure o, is a Galois
extension). We thus have

Gal(F,/Fp) = lim Gal(Fyn /F,) = lim Z/(n) = 7 = (Frob,)top. gp:
neN neN

This means that the Galois group is a pro-cyclic group (by definition, thisaigptbjective limit
of cyclic groups), and, equivalently, that it is topologically generated bingle element, namely
the Frobenius.

2 Representations

Definition 2.1. Let G be a profinite group and let be a topological field. By am-dimensional
representation off we mean a continuous homomorphism of groups

p: G — GL,(k).

Example 2.2. (1) If G is a finite group with the discrete topology akdare the complex numbers,
then we are in the context of the standard theory of representationstefdioups.

(2) ¢ :Z/NZ — GLy(C), 7 4+ NZ s (% = e2mir/N,

(3) For afinite groupG theregular representatida defined by the natural left-action on the group
algebraC[G].
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(4) We have the augmentation exact sequence
g»—)l

0—-Is—C[G] — C—0

with the aumentation idedl; = (¢ — 1) < C[G].

The left action of7 on I gives rise to theaugmentation representation

(5) LetM be anyC[G]-module. Therty also acts orEndc (M) by (g.0)(m) = g.(a(g~t.m)) for
g € G,m € M ando € Endc(M). This representation is called tradjoint representation
of M. Thinking about this representation in terms of matrigeacts by conjugation. Hence, the
augmentation representation can be restricted to the matrices of race

We always consideF, with the discrete topology.
Definition 2.3. Let p be ann-dimensional representation 6f overk.
(&) The representatiop is called

e anArtin representatioif k¥ C C (topological subfield),
e an/-adic representatioif k C Qy,

e amod/ representatioif £ C F,.
(b) The representatiop is called

e abelianif p(G) is an abelian group,

e dihedralif p(G) is a dihedral group, etc.

Definition 2.4. Two n-dimensional representations and p, of G over k are calledequivalentif
there exists som&/ € GL,,(k) such that forally € G

p1(g) = Mpa(g)M 1.

Proposition 2.5. Let G be a profinite groupk a topological field ang : G — GL, (k) a represen-
tation. The image aof is finite in any of the three cases:

(a) pis an Artin representation,
(b) pis a mod/ representation,
(c) G is a prop-group andp is an/-adic representation with # p.

Proof. Exercise. O
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Proposition 2.6. Let k£ be a local field with complete discrete valuation rid maximal idealm
and residue field@ = O/m of characteristic/. LetG be a profinite group ang : G — GL,, (k) a
representation. Then there exists a representation

p1: G — GL,(O)

such that
inclusion

G 25 GL,(0) =25 GL, (k)
is equivalent to.
Proof. Exercise. O

Definition 2.7. Assume the set-up of Proposition|2.6. The composition

natural projection
bl it i

7: G2 GL,(0) GL,(F)

is calleda mod/ reduction ofp.

Definition 2.8. Let p be ann-dimensional representation &f overk. LetV = k™ the standard
n-dimensionak-vector space. We makéinto a k[G]-module by defining th€-action as

g.v=p(gvforge G,veV.

We callp (semi-)simple it is (semi-)simple in the category bfG]-modules.

More explicitly, p is simple (other word: irreducible) if the only-subspacdV < V such that
gW C W forall g € G is the0-space. Moreovey, is called semi-simple ¥ is the direct sum of
simplek[G]-modules, that isy = Wy @ --- & W, where thelV/; are k-subspaces of such that
gW,; C W, forall g € G.

We callp indecomposable i = W, @ Wy with k[G]-submodule$V; < V' is only possible if one
of them is thé-space.

Note that indecomposable does not imply irreducible if the characteristicisfpositive. For
instancel,[Z/27Z] is indecomposable but not irreducible.

Moreoverp is calledabsolutely irreducible (absolutely semi-simple, absolutely indecomposable,
etc.)if k ®;, V has this property, wherg is an algebraic closure of.

By the semi-simplification gf we mean the direct sum of all Jordan-Hélder constituents @is
k[G]-module.

Theorem 2.9(Brauer-Nesbitt) Let k£ be a field. Lelp; : G — GL, (k) withi = 1,2 be continuous
semi-simple representations. Assume that at least one of the followinghadions holds:

(1) charpoly(p1(g)) = charpoly(p2(g)) forall g € G;

(2) The characteristic of is 0 or bigger thann andTr(p;(g)) = Tr(p2(g)) forall g € G.
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Thenp; andp- are equivalent.

Proposition 2.10(Serre, Carayol)Let R be a local ring with maximal ideah and letp; : G —
GL,(R) be a continuous representation of a grodor : = 1, 2 such thatp; is residually absolutely
irreducible, that is,G — GL,(R) - GL,(R/m) is absolutely irreducible. Assume that all traces
are equal:Tr(p1(g)) = Tr(p2(g)) forall g € G.

Thenp; andp, are equivalent oveR.



Lecture 2

Galois representations

In this lecture we will
o define Galois representations,
¢ introduce basic properties, such as the representation being unrauified,

e give some examples.

1 Definition and properties

Definition 1.1. Let K be a field. We denote hyx the absolute Galois group of, i.e. the Galois
group of a separable closure 6f.

Letk be a topological field. A representation@fx overk is called aGalois representation

If K is a global field (e.g. a number field), then a representatio gfis called aglobal Galois
representationlf K is a local field, then we speak ofl@cal Galois representation

Remark 1.2. One often hears abodtadic Galois representatiofsr evenelladicones) as compared
to p-adic Galois representatianis that case, what people usually mean the following: Let

Gk — GL, (k)

be ann-dimensional Galois representation witi a finite extension of, and % a finite extension
of Q;. The situationl # p is referred to ag-adic, and the situatioh = p asp-adic.

The behaviour is fundamentally different! Wild inertia (to be explained in arsB¢cavhich is a
pro-p group, has a finite image in the first case (by Proposition 2.5), but it exe la very large image
in the second case.

Before we can go on, we need to recall some algebraic number theorystaleby the finite
situation. LetK be a number field angla prime. Then we can complet€ atp (with respect to the
non-archimedean absolute value attachegl ¢ by completing the ring of integers & atp in the

12
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sense of commutative algebra) to obtéaip, a finite extension of,, where(p) = ZNyp is the rational
prime number lying undep. Thenk, is a local field with a non-archimedean absolute vdlug,
discrete valuation ring

Ok, = Op = {z € Ky | | |<1}

and valuation ideal
ﬁ:{xEKp\ |z |< 1}.

We shall also write for p. In the sequel we need and assume that the absolute |valugcorrectly
normalized For the residue fields, we shall use the notation

F(p) = F(Kp) = Op/b.

The residue field can also be seen as the quotient of the ring of integ&ryp.
Now we move on to discuss finite Galois extensions. LeK be a finite Galois extension of
number fields an@3/p/p prime ideals in these fields. Tliecomposition group éf is defined as

D(B/p) = {o € Gal(L/K)|o(B) = B}

It is naturally isomorphic to the local Galois group

D(B/p) = Gal(Lp/Ky).

Indeed, recall thal is dense inLy and K in K,. An automorphisny € D(/p) can be uniquely
extended by continuity to an automorphism in the local Galois group. To go totherse direction,
one just restricts the automorphismito

Whenever we have a Galois extension of local fields/ K, we can consider the reduction
mod B of all field automorphisms irGal(Lsy/K,), since each of them fixes the valuation rings.
The reduction map

m(Lp/Kp) = 7(P/p) : Gal(Ly/ Kp) — Gal(F(F)/F(p))

is surjective. To see the surjectivity, we considgf as K,[X|/(f(X)) with f an irreducible polyno-
mial (monic and with coefficients i@,) of degree equal toLs : K]. Let us fix a rootr of f. An
element in the Galois group is uniquely given by the image,afe. the Galois group consists of the
elementsrg with o3(a) = . The factorization off modyp is of the formg(X')¢ and the reductior
of o is a root ofg. An elemeniz € Gal(F()/F(p)) is uniquely given by the image(a@), which is
of the form3 with 3 a root of f. Hence o5 reduces t@, showing the surjectivity.

A canonical generator dial(F(3)/F(p)) is given by the (arithmetidfrobenius endomorphism
(or Frobenius elemeptrob(Ly/Ky) = Frob(B/p) which is defined as — x9 with ¢ = #F(p) =
N(p). The integetN (p) is called thenorm ofp. The kernel of the reduction map is called thertia
groupI(Ly/Ky) = I(B/p), so that we have the exact sequence

(Ly/Kp)

0 — I(Ly/Kyp) — Gal(Lgy/Kp) — Gal(F(B)/F(p)) — 0.
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The field extensiotLsy / K, (or the prime}3 abovep) is unramifiedif and only if I(Ly/K,) is trivial,
i.e. if and only if the reduction map(Lsy/K,) is an isomorphism. The inertia grodpLs/ K,,) has
a uniquep-Sylow groupP(Lg/K,) = P(B/p), which is called thewild inertia group The field
extensionLy /K, (or the primep abovep) is tamely ramifiedf P(Ly/K,) is trivial; otherwise, itis
calledwildly ramified

Now we investigate what happens if we change the pflrlging above a fixed in the Galois
extensionZ/ K. One knows that any other prime is of the foerti3) with o € Gal(L/K). Then we
clearly have

D(o(B)/p) =0 D(B/p)oo™!

and, consequently, similar statements fof.q3/ K,) and P(Lg/K). Hence, if the extensioh /K
is unramified (or tamely ramified) at of@, then so it is at alb(J3), whence we say that/K is
unramified (or tamely ramified) at the 'small’ ideal

Supposel /K is unramified ap, so that the reduction map(3/p) is an isomorphism. We can
thus consideFrob(Lg/K,) as an element ab (33 /p). We have

Frob(o(%)/p) = o o Frob(P/p) o 0™,

so that the Frobenius elements of the primes lying pvirm a conjugacy class ival(L/K). We
will often write Frob,, for either this conjugacy class or any element in it.

Our next goal is to pass to infinite Galois extensions. For that it is oftenulusefake anem-
bedding point of viewon primes. We fix once and for all algebraic closu@and@p for all p. The
field Q, also has an absolute vallie | which is chosen such that the restriction| of| to any finite
extension ofQ, contained ir@p gives the standard absolute value on that field.

Let K C Q be a number field (even if we do not write the inclusion into our figdve often
mean it). Let us choose an embeddingQ — Q,. It determines a prime lying abovep, namely
we takep = K N *({z € Q, | |z| < 1}). Moreover, in the same way it gives prime ideals abpve
for everyextensionk C L c Q, which are compatible with intersection. Conversely, if we are given
a primep of K lying abovep, we can first pass to the completidéf), of K atp and then choose any
embedding of{, into @p; this defines an embedding — K, — @p, which by Artin’s extension
lemma of Galois theory can be extended to an embed@ing> Q,. From now on we are going
to take this point of view of embeddings. It allows us to generalize the akisgassion and it also
enables us to vie\@p andC on an equal footing (what we mean becomes clear below: Frobenius
elements and complex conjugation are defined in a very similar way: the fotrfieit@ places, the
latter at infinite ones).

Let still K be a number field (insid®) and fix an embedding, : K — @p, which we extend to
1:Q— @p as before. It gives rise to an embedding of absolute Galois groups

Gal(Q,/K;) — Gal(Q/K), o tlooou
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Note that this definition makes sense, si@;@( is a normal extension. If we have two such embed-
dingst; and., then the two embeddings of Galois groups are conjugat@doggl, just asin the case
of finite primes.

Let K, C Ly C Mq@ be finite degree subfields @p. We obtain a projective system of short
exact sequences:

(Mg /Ky)

I(Mg/Ky)

Gal(Mg/ k)

Gal(F()/F(p)) ——0

(L / K,
0 I/ ) s

Gal(Ly/ )

Gal(F(B)/F(p)) ———0.

The projective limit over compact sets is exact, hence, we obtain the eqatisce
0— Ix, — Gk, T, Grp) — 0,

wherel, = I, is the projective limit over the inertia groups. With the same reasoning we obtain
that the projective limitPx, = P, over the wild inertia groups is equal to the (necessarily unique)
prop Sylow group off;,. We again call i, and Pk, theinertia (group)respectively thevild inertia
(group) of K, (or of p). By Frob, we denote the Frobenius elemental(F, /F(p)).

We can see complex conjugation as a variant of this. Suppose there is addintor,, of K
intoR. Then for any embedding : Q — C extendingr,., the map

771 o (complex conjugation i€ /R) o T
defines an element @f . It is calleda complex conjugatianAgain, all complex conjugations are
conjugate.

Now we come to the very important definition of unramified and tamely ramified G&pissen-
tations. We start with the local case.

Definition 1.3. Let K, be a finite extension @), and letk be any topological field. Consider a local
Galois representatiop : G, — GLy (k). Itis called

e unramifiedif p(Ix, ) = 0,
o tamely ramifiedf p(Pg,) = 0.

Let p be a representation as in the definition and/ldte thek-vector space underlying it, i.e. such
thatp : G, — GL,(k) = GL(V). Denote byV'%» the sub-vector spadé’!'=») of V consisting of
the elements fixed by, . We obtain the unramified representation

pr i Gi, — GL(V'%) = GLy, (k)

for somem < n. Clearly,p is unramified if and only ifp = p’%» .
Evaluating an unramified representation at the Frobenius element makessiane any preimage
underrg, of Frobg, is uniquely determined up to a trivially acting element fréj) .
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Definition 1.4. Thecharacteristic polynomial of Frobenius ofs defined as
®(p)(X) := charpoly(p’» (Frobg, )) = det(X — Frobg, | VIR € k[X].

Very often one sees a slightly different version, namely

®(p)(X) := det(1 — X Frobg, | V%) € k[X].

We have the relation

O(p)(X) = X" (p)(X7H).
Now we treat the global situation.

Definition 1.5. Let K be a number field (insid®), andk any topological field. Consider a global
Galois representatiop : Gx — GL, (k). Letp be a prime ofK corresponding to an embedding
tp : K < Q,. Choose any embedding Q — Q, extending,, giving rise to an embedding 6fx,
into Gx. The Galois representatiomis calledunramified (respectively, tamely ramified)saif the
restriction ofp to G, is unramified (respectively, tamely ramified).

We also define theharacteristic polynomial of Frobeniusiaas

Dp(p) = P(play, ) € k[X]
and
Bp(p) 1= B(ply, ) € KIX].

Note that these properties do not depend on the choic€of the statement on the characteristic
polynomial we use that conjugate matrices have the same characteristic polynomia

Definition 1.6. Letp be as in the previous definition with= 1, 2. Thenp is calledoddif the image
of all complex conjugations has determinasi.

There are generalisations of odd representations for2.

The Frobenius elements play a very special role in the theory. Their imagesine the Galois
representation uniquely. This is a consequence of Chebotareviydireorem.
Recall that the norm of an ideal is denoteda&) = #F(p).

Definition 1.7. Let K be a number field and a set of primes of.

(a) TheDirichlet density ofS is defined as

Zpes N(F’)is

d(S) = lim —=2—"—,
( ) s—1,5>1 ZpN(p)fs

if the limit exists.
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(b) Thenatural density of is defined as

oy TP ESIN(G) <z}
Y I R ING) <o)

if the limit exists.

The existence of the natural density implies the existence of the Dirichleityldng the converse
does not hold in general.

Theorem 1.8(Chebotarev’s density theorem)et L/ K be a finite Galois extension of number fields
with Galois groupG = Gal(L/K). Leto € G be any element. We use the notatiehto denote the
conjugacy class aof in GG. Define the set of primes

Pri (o) = {p|[Froby| = [o]}.

The Dirichlet density of this set is
_ #lo]
#G
In other words, the Frobenius elements are uniformly distributed over dh@ugacy classes of the
Galois group.

d(Pp k(o))

We will at least give a precise sketch of the proof later this lecture and Wealso present
important applications. Here we provide a first one concerning Galoisseptations.

Corollary 1.9. Let K be a number fields a topological field ang : G — GL,, (k) a global Galois
representation that ramifies at most at finitely many prime& oThen the set

{p(Froby)|p unramified}

is a dense subset of the imggE~ ). In other words, the Frobenius elements topologically generate
the image of the Galois representation.

Moreover, the Galois representation is uniquely determined by the imddgle &robenius ele-
ments.

Proof. In a profinite group& a subsetX C G is dense in if and only if the image ofX under all
natural projection& — G; is equal toG;.

We apply this withG = p(Gk) and X the set of Frobenius images. All the finite quotients
of GG correspond to finite Galois extensions and, consequently, Chebatdensity theorem (Theo-
rem1.8) implies that the image &f in any finite quotient hits all conjugacy classes and because of
Frob(o(B/p)) = o o Frob(P/p) o o~ is all of it. O
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2 Examples

Cyclotomic character

We now give a very important example of a Galois representation in dimemsithe /-adic cyclo-
tomic character Recall from above that we found the group isomorphism:

Xen + Gal(Q(€)/Q) = Autq(Q(C)) — (Z/"Z)*.
Let us rewrite this, using the group surjectical(Q/Q) — Gal(Q(¢)/Q):
X+ Gal(Q/Q) — GL1(Z/"Z).
We can now take the projective limit to obtain thvadic cyclotomic character
xe : Gal(Q/Q) — Z; = GLy(Zy).
Its properties are summarised in the following proposition.

Proposition 2.1. Let x, be the cyclotomic character ové}. It is a 1-dimensional global Galois
representation, which is unramified at all primes# £ and is characterized there by

x¢(Froby,) = p.

More generally, we have
o(¢) = ¢

for all ¢ € um(Q), all n and allo € Gg. In particular, the image of any complex conjugation is
equal to—1.

Proof. Exercise. O

Abelian varieties

Let K be afield and4d an abelian variety of dimensignover K. Let
A(R)[m] = ker (A(K) 25 A(K))

be them-torsion points ofd(K). One defines thé-adic Tate module oft by

Ty(A) = lim AK)[¢"]

with respect to the projective system

AEK)[0"] - A(R)[¢" Y, P—(-P.
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If ¢is not the characteristic df, then, as is well known, one can compatibly identifgK ) [¢"] with
(Z./0"7,)9, yielding an isomorphism
To(A) = (Zo)*.

One often puts
Vi(A) := To(A) @z, Qr = (Q0)*.

The absolute Galois groufix acts onT;(A) and onV;(A), since it compatibly acts on all the
A(K)[£"]. This yields theGalois representation attached ttx

pa: G — AthZ(Vg(K)) = GLQQ(@g).

Theorem 2.2(Serre, Tate) Let K be a number field. Them, is unramified at all primeg of K at
which A has good reduction.

Here is a more precise theorem for the special case of elliptic curves.

Theorem 2.3. Let K be a number field and an elliptic curve overK. Letp be a prime ofK at
which E has good reduction. Thesy is unramified ap and we have

p(pp) = X — apX + N(p)

and
Bp(pp) =1 — apX + N(p)X>

wherea,, € Z such that
#EE(Pp)) = N(p) +1—ap = y(pp)(1).

Furthermore, the determinant pf; is equal to the cyclotomic character &f.



Lecture 3

Galois representations attached to
modular forms

In this lecture we will
e recall the definition of modular forms and Hecke operators,
e describe the Galois representation attached to a Hecke eigenform,

define the conductor and the Serre weight @fdimensional residual Galois representation,

state Serre’s modularity conjecture, and

in an appendix sketch the construction of the Galois representation attachétecke eigen-
form.

1 Modular forms

Congruence subgroups

We first we recall the standard congruence subgroupgd.efZ). By N we shall always denote a
positive integer.

T(N):={(*%) €SLy(Z) | (¢%) =(59) mod N}
Ty (N):={(24) €SLa(Z) | (¢})=(4f) mod N}
To(N) :={(2%) €SLa(Z) | (2})=(§%) mod N}

These groups are all called thengruence subgroups of lev&l, andI' (V) theprincipal one.

Remark 1.1. We describe a more conceptual point of view on congruence suigrdine following
observations are at the base of defining level structures for elliptic sywkich we won't do in these
lectures).

20
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(a) The group homomorphism

SLy(Z) — SLy(Z/NZ)

given by reducing the matrices moduldis surjective with kerndl'(V).

(b) The grouBLs(Z/NZ) acts on(Z/NZ)? (by multiplying the matrix with a vector). In particular,
the homomorphisr8Ly(Z/NZ) — (Z/NZ)* given by(25) — (2¢8)(§) = (%) takes all
(%) € (Z/NZ)? as image such that, c generateZ/NZ. Moreover, the image is equal to set of
elements i(Z/NZ)? which are of precise (additive) ordé¥. The kernel is the stabiliser ¢f, ).

(c) The groupg;(N) is the preimage if$Ly(Z) of the stabiliser subgroup @f} ).

(d) The groupSLy(Z/NZ) also acts orP'(Z/NZ), the projective line oveZ/NZ which one can
define as the tuple@ : ¢) with a, ¢ € Z/NZ such that(a, ¢) = Z/NZ modulo the equivalence
relation given by multiplication by an element(@/N7Z)*. The action is the natural one (we
should actually viewa : ¢) as a column vector, as above). The preimag&in(Z) of the
stabiliser group of 1 : 0) is equal tol'o(V).

(e) The quotient o8Ly(Z/NZ) modulo the stabiliser group dfl : 0) is in bijection with the set
of cyclic subgroups of precise ordé¥ in SLy(Z/NZ). These observations, which may seem
unimportant at this point, are at the base of defining level structureslliptie curves (see the
section on modular curves).

One can prove these assertions as an exercise.

Itis clear that

(g 2)»—>a+NZ

Lo(N)/T1(N) (Z/NZ)*

is a group isomorphism. We also let
x: (Z/NZ)* — C*

denote a character, i.e. a group homomorphism. We shall exteloda map(Z/N7Z) — C by
imposingx(r) = 0if (r, N) # 1. The simplest instance of class field theory (here a simple exercise;
by {(x; we mean any primitivéV-th root of unity) tells us that

Cal(Q(¢y)/Q) =225 (7/NZ)

(for all primes?¢ t N) is an isomorphism. We shall later on also consigeas a character of
Gal(Q(¢n)/Q). The nameDirichlet character(here ofmodulus/V) is common usage for both.
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Modular forms

We now recall the definitions of modular forms. We denotetbthe upper half plane, i.e. the set
{z € C|Im(z) > 0}. The set of cusps is by definitid (Q) = Q U {oo}. Fix integersk andN > 1.
A function

f-H—-C

given by a convergent power series (thg f) are complex numbers)

— Zan(f)(QQMZ)n — Zanqn with q(z) — e?m’z
n=0 n=0

is called amodular form of weight for I'; (N) if

(@) the functionf(gjjfg)(cz + d)~* is a holomorphic function (still froni to C) for all (g g) IS

SLs(Z) and it is bounded whehn(z) tends to infinity (this condition is calleflis holomorphic
at the cusp/c), and

(i) f(&E) = (cz+d)*f(z)forall (¢4) € T(N).

We use the notatioNl;(I'; (N) ; C). If we replace (i) by

(i) the function f (%) (cz + d)~* is a holomorphic function and the limjt( 2£8) (cz + d) % is 0

whenIm(z) tends too for all (¢ %) € SLy(Z),

then f is called acusp form For these, we introduce the notati®p(I'; (N); C).
Let us now suppose that we are given a Dirichlet charagtefr modulusN as above. Then we
can also consider a variant of (ii) as follows:

(i) f(22E5) = x(d)(cz + d)* f(2) forall (24) € To(N).

Functions satisfying this condition are callewdular formgrespectivelycusp formsf they satisfy
(1)) of weightk, charactery and levelN. The notationM (N, x ; C) (respectivelySx (N, x ; C))
will be used.

All these are finite dimensiondl-vector spaces and fér > 2, there are dimension formulae,
which one can look up in [Stein]. We, however, point the reader to thethiat for k = 1 nearly
nothing about the dimension is known (except that it is smaller than the tespdonension for
k = 2; it is believed to be much smaller, but only very weak results are known t. date

A very famous example of a modular form is Ramanujan’s Delta function

—e]la-a"

It belongs toS15(1,1; C).
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Hecke operators

At the base of everything that we will do with modular forms are the Heckeatpes. One should
really define them conceptually. Here is a definition by formulae.

Definition 1.2. Supposef € My (N, x; C). Recall that we have extendedso thaty(¢) = 0 if ¢
dividesN. Then the formula

an(TZf) = aﬁn(f) =+ Ek_lX(g)an/l(f)v

wherea,, /,(f) is to be read a$) if £ does not divide:, defines a linear maff; : My(N, x; C) —
My (N, x; C), called thel-th Hecke operator
The Hecke operators for compositeean be defined as follows (we gt to be the identity):

o Tyri1r = Ty o Ty — -1y (£)Tyr-1 for all primesl andr > 1,
e T, =T, o T, for coprime positive integers, v.

We point out the very important formula (valid for every

ar(Tnf) = an(f), (1.1)

which is a direct consequence of the preceding formulae. From theedbowulae it is also evi-
dent that the Hecke operators commute among one another. Consedihentigcke algebrd =
T(Mg(V, x; C)) which is defined as th€-subalgebra oEndc (Mg (N, x; C)) generated by the
Hecke operatord), for all n € N is commutative. Formula (1.1) can be used to show (as an Exercise)
that the pairing

T x Mg(N,x; C) = C, (T,f)— ar(Tf)

is non-degenerate. Thus, the modular forms space i€ theal of the Hecke algebra.

Moreover, the commutativity of the Hecke operator also implies that eigeesaica collection
of operators (i.e. each element of a given set of Hecke operatorbwstsalar multiplication) are
respected by all Hecke operators. Hence, it makes sense to considigianforms which are eigen-
vectors for every Hecke operator. These are cafledke eigenformsr often justeigenforms Such
an eigenformf is callednormalisedif a,(f) = 1. Ramanujan’s Delta function is an example of a
normalised Hecke eigenform.

2 Galois representations

The great importance of modular forms for modern number theory is due ta¢héhat one may
attach a2-dimensional representation of the Galois group of the rationals to eastahised cuspidal
eigenform. The following theorem is due to Shimura %o« 2 and due to Deligne fok > 2.
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Theorem 2.1.Letk > 2, N > 1,/ aprime, anck : (Z/NZ)* — C* a character.
Then to any normalised eigenforfne S(N, e; C) with f = 3, -, a,n(f)¢" one can attach a
Galois representation of the rationals

ps: Gg — GL2(Qy)
such that
(i) pyisirreducible,
(i) pyisodd,
(iii) for all primes p 1 N/ the representatiop is unramified ap and

(I)p(pf>(X) =X?- ap(f>X + €<p)pk_1-

By reduction and semi-simplification one obtains the following consequence.

Theorem 2.2.Letk > 2, N > 1,/ aprime, anck : (Z/NZ)* — C* a character.

Then to any normalised eigenforfne S, (N, e; C) with f = 3~ a,(f)¢™ and to any prime
ideal A of the ring of integers of); = Q(a,(f) : n € N) with residue characteristi¢, one can
attach a mod Galois representation

Py Gg — GLa(Fy)
such that
(1) pyis semi-simple,
(ii) pyisodd,
(iii) for all primes p { N/ the representatiop, is unramified ap and

Dp(pp)(X) = X2 —ap(f)X +e(p)p"! mod A.

There is also a weight one version of these theorems due to Deligne ard Ser

Theorem 2.3.Let N > 1 ande : (Z/NZ)* — C* a character.

Then to any normalised eigenforfne S;(N,e; C) with f = > -, a,(f)g" one can attach a
Galois representation of the rationals

ps: Go — GL2(C)
such that

(i) pyis odd,
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(i) for all primesp { N the representatiop; is unramified ap and
©,(ps)(X) = X2 —ap(f)X + €(p).

Example 2.4. We present a toy exampl@(X) = X6 — 6X* + 9X?2 + 23. Compute factorisations
modulop of Q(X) for some smalp with the computer and try to find a pattern describing how
many irreducible factors there are. It won't be easy at all (I'd be asbed if you found one without
reading on)! But, there is one: There is a unique Hecke eigenfbiimS;(23)(F~) (this is with a
certain quadratic Dirichlet character); you can also see it in weighdr in weight2 for level 7 - 23.
The pattern is the following. Letbe a prime. Then (with finitely many exceptions):

e (Q has 2 factors modulp < a,(f) = 6.
e () has 3 factors modulp < a,(f) = 0.
e () has 6 factors modulp < a,(f) = 2.

This comes from the attached Galois representationGal(Q/Q) — GLz(F;). There are only
the following matrices in the image pf

(6%), (@9, G2, (o) (G5, (35)-

The first one has orderand trace2, the second and third have ordgand trace6, and the final ones
have order2 and trace0.

The polynomial) is Galois overQ. For a givenp, p(Frob,) must be one of these matrices.
If the trace is2, then p(Frob,) must be the identity and thus have order That means thatf)
factors completely modulp (there’s a small issue with primes dividing the index of the equation
order generated by) in the maximal order — these primes are nextrtand 23 the finitely many
exceptions mentioned above). If the tracé,ishen the order has to b2 leading to a factorisation
of Q into three fractors modulg. In the remaining case the trace6sand the order is3, so thatQ
has three factors modula

3 Serre’s Modularity Conjecture

Artin conductor
Letp : Gg — GL2(F,) be a Galois representation. For every prigg ¢ define the field

7ker(p|GQ )
Kpp = Qp "

It is a finite Galois extension @@, with Galois group

G = Gal(K,p/Qp) = p(Gq,)-



26 LECTURE 3. GALOIS REPRESENTATIONS ATTACHED TO MODULAR FORM

It comes equipped with the ramification filtration (in lower numbering):
GP ={o eGPV |Vrec0,,: ox)—xc (m,,)""},

whereQ, ,, is the valuation ring of<, , with uniformiserr,,,. We define the integer (it is nontrivial
but true that it is an integer!)

o

Npp i= ————— dimg (V/V i ),
2

called theconductor exponent gfat p.

Definition 3.1. TheArtin conductorof p is defined as

N(p):= ] »"
p#L

Note thatp is unramified ap # ¢ if and only if p f N(p).

Fundamental characters

Here we give a description of fundamental characters based on lasalfteld theory (that can be
treated as a black box if necessary). One can also develop them in aaygesy using Kummer
theory.

Let K/Q, be a finite extension with residue fieRj with ¢ = p". By local class field theory the
Galois group of the maximal totally tamely ramified abelian extengiéfi™ of K is isomorphic to

Definition 3.2. A character

¢:Gg — Gal(K"'"/K) - F} < F,
is said to be afundamental character (fdx) of leveln if 7 € {r,...,7,}, the set of the: field
embeddings df - into F,,.

Remark 3.3. The fundamental characters of levelre {v, 9P, wPQ, e ,wpn*l} for some fixed fun-
damental charactey, since the embeddingsare given by the-power Frobenius.

Every character ofzal( K"t / K) is thei-th power ofy for a uniqued < i < p™ — 1, since the
definition of¢ only differs fromy by the fact thaﬂf’;n — F; need not come from a field embedding
but is allowed to be any group homomorphism. IBags is cyclic, it is uniquely determined by the
image of a generator, which has orde't — 1.

The levell fundamental character fok” = Q,, is the cyclotomic character (Exercise).
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Serre weight

Now we define the weight in Serre’s modularity conjecture. We point ottvthat we present here
is theminimal weightdiscussed by Edixhoven [EdixWeight], i.e. the weight that one shoulevhse
formulating Serre’s conjecture with Katz modular forms d¥grather than reductions of holomorphic
modular forms.

Definition 3.4. Denote byy, 1P the two fundamental characters of leeand by the cyclotomic
character.

Letp, : G, — GL(V) be a Galois representation withi a 2-dimensionalf,,-vector space. The
restriction ofp, to the inertia group ap is of the form(%l (;‘2 ) Theminimal weightk(p,) of p, is
defined as follows.

() Supposeby, ¢ are of level2. After interchangings; and ¢, there are unique intege < a <
b < p — 1 such that

¢1 — wa+pb and¢52 — ,L/}bJrap.
Let
k(pp) =1+ pa +b.

(I) Supposes:, ¢- are of levell.

(1) Suppose that, is tamely ramified, i.o,(FP,) = 0. There are unique integefs< a < b <
p — 2 such thatp; = x® andgy = . Let

k(pp) =1+ pa +b.

(2) Suppose that, is not tamely ramified. Then there are unique integers o < p — 2 and
1 < 3 <p-—1suchthat

~Y B *
Ppli, = (XO x“)'
Leta = min(«, 5) andb = max(«, ).

(a) Suppose& # o + 1. Let
kE(pp) =1+ pa +b.

(b) Supposes = o+ 1. Let K be the extension @, such thatG g = ker(p,).
(i) SupposeX is little ramified. Let

k(pp) =1+ pa+Dd.
(i) SupposekK is very ramified. Let

k(pp) =1+pa+b+(p—1).
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The conjecture and level raising
We finish this course by giving the full statement of Serre’s conjecture.

Theorem 3.5(Serre’s modularity conjecture: Khare, Wintenberger, Kisin, Tayloal$ Given any
irreducible odd Galois representation : Gg — GLo(F,). There is a (Katz) modular form on
I'1(N(p)) of weightk(p|c,, ) such that its attached mqdGalois representation is isomorphic to

Remark 3.6. Serre’'s modularity conjecture implies, for instance, the following strong fiaie re-
sult:
Fix a prime/ and an integetN. Then there are only finitely many odd irreducible Galois repre-
sentations
p:Gg — GLQ(FZ)

of conductor dividingV (p).

Reason: Since there are only finitely many valueskigr), eachp must come from one of the
finitely many newforms in levels dividimgand weights less than or equal to the maximum value that
k(p) can take (that ig? — 1).

There is currently no other way to prove this result!

Remark 3.7. We point out the following consequence, which is knowlewasd/weight lowering It
had been known long before Serre’s conjecture due to work of, in pétiden Ribet. In fact, it is
an essential ingredient in the proof of Serre’s conjecture.

Let f € Sg(IV,¢; C) be an eigenform and considgy, the mod/ reduction ofp;. Then there is
an eigenform iry € Sy (,) (N, ¢; C) (if k(p;) = 1, one has to use Katz modular forms o) such
thatp, = p,.

Since in generalV(p)|N and k(p) < k will be strictly inequalities, we have lowered the level
and the weight in the sense thatis an eigenform in the lower level and the lower weight whose
coefficients (at least away frofiV) are congruent modulo (a prime abovegjo those off.

Theorem 3.8(Diamond, Taylor:Level Raisinyl LetN € N, k£ > 2 and let/ > k + 1 be a prime not
dividing N. Let f € Si(IV, ¢; C) be a newform such that, is irreducible. Let, furthermorey { N
be a prime such that = —1mod ¢ and Tr(p¢(Frob,)) = 0.

Then there exists a newforgme Si.(Ng?,€; C) such thatp, = p;.

Appendix: Sketch of the construction

In this appendix we sketch the construction of these Galois representations

Let f = >, anq" € Si(I'1(IV)) be a Hecke eigenform. Lét be the suliQ-algebra inside
Endc(Sk(Pl(N))_) generated by all Hecke operatdfs with (n, N) = 1. Itis an Artin Q-algebra
and hence decomposes as the direct product over the localizations atiitsaindeals:

T%H']I‘m.
m
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Recall that
m = ker(T Tnran, C)

is such a maximal ideal. The residue filldm is equal to the coefficient fiel@; := Q(ay|(n, N) =
1), as one easily sees. If one assumes fhiata newform, thefT, = Q. We shall do that from now
on.

From the Eichler-Shimura theorem it follows that the Iocalizalﬁj;gr(Fl(N), QX,Y]x—2)mis
aT, = Q-vector space of dimensidh This we will explain now. We compute its dimension after
tensoring it overQ with C:

C ®Q Hll)ar(rl(N)v Q[Xv Y]k—Q)m = H H%)ar(rl(N)v C[X, Y]k—Q)a(ﬁl)v
0:Qp—C

Th—an

with m = ker(C ®g T —— C) (this is not so difficult to check). Hence, it suffices to show that
the C-dimension offl}, (I'y(N), C[X, Y]i—2)o(w) i €qual to2. This is an easy consequence of the

par

Eichler-Shimura isomorphism
Hp (T1(N), C[X, Yi-2)o(m) = Sk(T1(N))m @ S(T1(N)) g

From theg-expansion pairing it follows that the dimension$)f(I'; (IV))w is equal to the dimension
of (C ®q T)o(m), Which is1 for a newform.
The Galois representation comes frorfa := Gal(Q/Q)-action on

Q ®g Hpor (T1(N), Q[X, Y]j—2)m.

Since

Qe ®o Qf = [ Qa,

Y
we obtain for every\ | £ a map

Gg — GL2(Qy,5) — GL2(Qy).

We shall try to motivate why there is a Galois action. One needs to get geontettiiérbusiness.
Using thatH, the upper half plane, is simply connected and, singeV) acts with finite stabilizers
onit (for N > 4 even with trivial stabilizers), one can identify

HY(T1(N), Q[X, Y]i_o) = HY(Y1(N), Q[X, Y]i_2),

where Q[ X, Y],_o is the locally constant sheaf dri (V) (seen as a Riemann surface) which in
small enough neighbourhoods looks liKgX, Y]._o. Formally, this sheaf can be obtained as the
direct image sheafr,Q[X,Y]y_2) '™, wherer : H — Y1(N) is the natural projection and now
Q[X, Y]r—2 stands for the constant sheafHwith a suitabld’; (V)-action (we do not go into details
here). By a suitable extension to the cusps one finds an isomorphism

H; (Fl(N)7Q[X7 Y]k—Q) = Hl(Xl(N)7 Q[X7 Y]k—2)‘

par
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It is very important to note that the Hecke operators respect this isomorphis
In general, one now has the comparison theorem

Q¢ ®g H'(X1(N)(C), QUX, Yj—2)m = [ [ HY (X1(N)g @ @, QulX, Yr—2)m,
e

with a suitable étale sheaf and the decomposifler®g [ [, Tm = Tm, =[], Q- On the right
hand side, one finds the desir@g-action.

If & = 2, there is a slightly more down to earth description, which avoids the use ofoétiate
mology. We explain this version now. L&t = X;(/N)(C) the modular curve as a Riemann surface.
Consider the exact sequence of sheaves:

x  x—a” X
0— pinx — Oy —— Oy — 0.

We explain. Exacthess of a sequence of sheaves is tested on the sttksy dnn-th root of a
non-zero holomorphic function in some small enough neighbourhood &syalpossible, giving the
surjectivity. We defingu,, x as the kernel. We claim that it is a locally constant sheaf, which in small
enough neighbourhoods looks likg, then-th roots of unity. This is very easy to see: tix¢h power

of a function¢ : U — C with U C X open and connected is identicallyf and only if ¢(z) = ¢ for
some( € Cwith (" =1 and allx € X. We now pass to the long exact sequence in cohomology

0 — pn(C) — € 2255 € — HY(X, pn,x) — HY(X, 0%) 225 HY(X, 0%),
usingOx (X) = C, sinceX is connected. We obtain
HY(X, pn,x) = ker (H'(X, 0%) 272 HY(X, 0%)).
Sincem is locally constant, one finds

HY (X, ptox) = Hh (DL(N), 1) = HY o (D1 (N), Z/Z),

par par

subject to some identification between thh roots of unity andZ/nZ.
Next, we identifyker ( H' (X, O%) 22 HY(X, 0%)) with Jac(X)(C)[n]. One has an isomor-
phism

Pic(X) = H'(X, 0%)

(see e.g. [Liu]), under whickx — z™ on the right becomes multiplication by on the left. All
together, we now have

H.,. (T (N), Z/nZ) = ker (Pic(X) 2222 Pic(X)).

par

Elements in thex-torsion ofPic(X') are necessarily of degréewhence

H...(T1(N),Z/nZ) = Pic(X)[n] = Pic’(X)[n] = Jac(X)[n].

par
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Recall that, so far, we have takéhoverC (a Riemann surface), so thatc(X) is a complex abelian
variety. But, every torsion point is defined over the algebraic numbédrsnee we finally get

Hpar(T1(N), Z/nZ) = Jac(Xg)(@)[n,

par

which carries a naturalip-action. Now we replace everywhere by™ and pass to the projective
limit:
H..(T1(N),Z) = Ty(Jac(Xg))

par

and
H,.(T1(N), Q) = Vi(Jac(Xq)).

par

Of course, these identifications are compatible with the Hecke action, so ¢haideed get &/p-
action as desired.



Lecture 4

Applications

In this lecture we will
o sketch the proof of Fermat's Last Theorem (using the validity of Sekteularity Conjecture),
e and report on applications of modular Galois representations to the irGatees problem.

These notes are not typed. The proof of Fermat's Last Theoremassaguence of Serre’s Mod-
ularity Conjecture was one motivation for Serre to formulate the preciséwens his conjectures.
For details we can refer to Serre’s article [Serre] or to the survey adickermat’s Last Theorem by
Darmon, Diamond and Taylor [DDT].

The application to the inverse Galois problem whose proof was sketched ledture is part of
the joint work with Dieulefait [DiWi]. The other two theorems are proved in [Wahd [Wi2].
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