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Lecture 1

Representations of profinite groups

In this lecture we will

• recall finite Galois theory,

• prove infinite Galois theory,

• introduce profinite groups,

• introduce representations of profinite groups, and

• state some of their properties.

1 Profinite groups and infinite Galois theory

A good reference for profinite groups and infinite Galois theory is [Neukirch], Section IV.1.

Finite Galois theory

LetL/K be a field extension, that is,L is a field andK is a subfield ofL. By restricting the multipli-

cation mapL × L → L toK × L → L, we obtain aK-scalar multiplication onL, makingL into a

K-vector space. Thedegreeof the field extensionL/K is theK-dimension ofL, notation:

[L : K] := dimK L.

A field extension is calledfinite if its degree is finite.

Let us look at some examples:

(a) C/R is a field extension of degree2 and anR-basis ofC is given by1 andi.

(b) Fpn/Fp is a field extension of degreen, whereFpn is the finite field withpn elements (it is unique

up to isomorphism as it is the splitting field of the polynomialXpn
−X ∈ Fp[X] overFp).
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1. PROFINITE GROUPS AND INFINITE GALOIS THEORY 3

(c) C/Q is a field extension of infinite degree.

(d) Fp/Fp is an infinite field extension, whereFp is an algebraic closure ofFp.

We denote byAutK(L) the group of field automorphismsσ : L → L such that their restriction

to K is the identity (note that any field homomorphism is automatically injective, since kernels are

ideals and the only nontrivial ideals in a fieldL are(0) andL).

A field extensionL/K is calledGaloisif it is normal and separable. Although you probably know

what this means, we will not use it in these lectures and instead work with an equivalent description.

For warming up we first assume that[L : K] <∞. Then one can show that one always has:

# AutK(L) ≤ [L : K].

(This is not so difficult to show: SupposeL = K[X]/(f), wheref is an irreducible polynomial of

degree[L : K]. Let us fix one rootα (in K) of f . Then every field automorphismL→ L is uniquely

determined by the image ofα. But, this image must be another root off , hence, there are at most

[L : K] different choices, proving the claim in this case. IfL/K is separable, then any finiteL/K is

of that form; otherwise, one uses the multiplicativity of the ‘separable degree’.)

A finite field extensionL/K is Galois if and only if we have equality, i.e.

# AutK(L) = [L : K].

In that case we writeGal(L/K) := AutK(L) and call this theGalois group ofL/K.

The main result offiniteGalois Theory states that the two maps

{
fieldsL/M/K

} Φ
−→
Ψ
←−

{
subgroupsH ≤ Gal(L/K)

}

given byΦ(M) = Gal(L/M) andΨ(H) = LH are inverses to each other and hence bijections. The

à priori complicated world of field extensions can thus be completely described by the usually simpler

world of groups.

We again look at some examples:

(a) C/R is Galois and its Galois group has order2 and consists of the identity and complex conjuga-

tion.

(b) Fpn/Fp: Since we are in characteristicp, theFrobeniusmapFrobp : x 7→ xp is a field automor-

phism ofFpn (the point is that it is additive! That clearly fails overC, for instance). Using that

F×
pn is a (cyclic) group of orderpn−1, one immediately gets thatxpn

= x in Fpn . This shows that

(Frobp)
n is the identity. But, it also shows that there isx ∈ Fpn such that(Frobp)

i(x) = xpi
6= x

for all i = 1, . . . , n− 1. This shows thatFrobp has ordern. Consequently, we have foundn field

automorphisms, namely, the powers ofFrobp. Thus,Fpn/Fp is a Galois extension and its Galois

group is cyclic of ordern generated byFrobp.
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(c) Let ζ be a primitiveℓn-th root of unity insideQ (whereℓ is a prime number). Explicitly, we can

takeζ = e2πi/ℓn
. We consider the field extensionQ(ζ)/Q. HereQ(ζ) is the smallest subfield

of C containingQ andζ. It is not so difficult to show that one has

[Q(ζ) : Q] = ϕ(ℓn) = (ℓ− 1)ℓn−1.

Let σ ∈ AutQ(Q(ζ)). Then we have

1 = σ(1) = σ(ζℓn

) = (σ(ζ))ℓn

,

showing thatσ(ζ) is anotherℓn-th root of1. As σ is invertible,σ(ζ) must also be primitive (i.e.

have orderℓn). This means that there is an elementχℓn(σ) ∈ (Z/ℓnZ)× such thatσ(ζ) = ζχℓn (σ)

(the complicated notation becomes clear below). Let us write this as a map:

χℓn : AutQ(Q(ζ))→ (Z/ℓnZ)×.

Note that this map is surjective (for anyi ∈ (Z/ℓnZ)×, define a field automorphism uniquely by

sendingζ to ζi). Thus,Q(ζ)/Q is also a Galois extension. In fact, it is trivially checked that

χℓn is a group homomorphism. Thus,χℓn is a group isomorphism between the Galois group of

Q(ζ)/Q and(Z/ℓnZ)×.

Infinite Galois Theory

A (possibly infinite degree) field extensionL/K is Galois if and only if L is the union of all finite

Galois subextensionsM/K, i.e.

L =
⋃

K⊆M⊆L, M/K finite Galois

M.

In that case, we also writeGal(L/K) := AutK(L).

If L/K is infinite, thenGal(L/K) is an infinite (even uncountable) group. In order to make it

handable, we need to put atopologyon it. We now describe how this works. IfL/M/K with M/K

finite Galois, then restricting theK-automorphisms ofL toM defines a group surjection with kernel

Gal(L/M), that is, we have the exact sequence of groups

1→ Gal(L/M)→ Gal(L/K)
σ 7→σ|M
−−−−−→ Gal(M/K)→ 1.

(One needs Galois theory to show thatσ|M indeed belongs toGal(M/K); I don’t see how to derive

this from# AutK(M) = [M : K] in a simple way. It is, however, an immediate consequence – or

even the definition in some presentations – of normality. The surjectivity is usually proved using an

extension lemma of Artin.)

In order to define a topology onG := Gal(L/K) it suffices to give abasis of open neighbour-

hoodsUg (that is a nonempty collection of setsY ⊆ G all containingg such that for anyY1, Y2 ∈ Ug
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there isY3 ∈ Ug such thatY3 ⊆ Y1 ∩ Y2) for anyg ∈ G. By definition, a setX ⊆ G is thenopenif

and only if for everyg ∈ X, there is oneU ∈ Ug such thatUg ⊆ X.

For g ∈ G we letUg be the set consisting of all cosetsgGal(L/M), whereM runs through the

finite Galois extensions ofK contained inL. We only need to check one condition:

gGal(L/M1) ∩ gGal(L/M2) = gGal(L/(M1M2)) ∈ Ug.

The topology onG thus defined is called theKrull topology. Note that ifL/K is finite, then

gGal(L/L) = {g} is an open set for allg ∈ G, hence, the Krull topology is the discrete topol-

ogy (every set is open).

The maps

m : G×G→ G, (g, h) 7→ gh, andi : G→ G, g 7→ g−1

are continuous. It suffices to check that the preimage of anyY ∈ Ug is open:i−1(gGal(L/M)) =

g−1 Gal(L/M) and if (σ, τ) ∈ m−1(gGal(L/M)), then(σ, τ) ∈ σGal(L/M) × τ Gal(L/M) ⊆

m−1(gGal(L/M)). Thus,G is a topological group.

Definition 1.1. A topological groupG is called profinite if it is compact, Hausdorff, and totally

disconnected (i.e. the connected component containing somex is equal to{x}).

Theorem 1.2. For any Galois extensionL/K, the Galois groupG = Gal(L/K) is a profinite group.

Proof. Hausdorff Let g 6= h be two elements ofGal(L/K). As gh−1 is not the identity, there

is M/K Galois such thatgh−1 is not the identity onM , thusgh−1 6∈ Gal(L/M) and so

gGal(L/M) ∩ hGal(L/M) = ∅.

Compact Consider the map

ι : Gal(L/K)→
∏

K⊆M⊆L, M/K finite Galois

Gal(M/K) =: P

given by restrictingσ toM on each component. Ifσ|M = idM for all M , thenσ is clearly the

identity, thus,ι is injective. Note that the target space is compact by Tychonov (eachGal(L/M)

is a finite group having the discrete topology). So, it suffices to prove thatthe image ofι is

closed.

For anyM1/M2/K finite Galois insideL consider the closed subset

SM1/M2
:= {(σM )M ∈ P | σM1 |M2 = M2} ⊆ P.

It is clear that it is closed since only atM1 andM2 there is a condition and the topology on

Gal(M/K) is discrete. But

ι(Gal(L/K)) =
⋂

M1/M2/K finite Galois

SM1/M2

is closed as an intersection of closed sets. The equality is easy: ‘⊆’ is clear anyway and for

‘⊇’ note that given(σM )M ∈ P one makes a uniqueσ : L → L by puttingσ(x) = σM (x) if

x ∈M .



6 LECTURE 1. REPRESENTATIONS OF PROFINITE GROUPS

Totally disconnected Letx ∈ G andx ∈ S ⊆ G a connected subset (that is, connected in the relative

topology). Suppose there isy ∈ S \ {x}. Let (similarly as above)M/K be finite such that

xy−1 6∈ Gal(L/M). As Gal(L/K) =
⊔

g∈Gal(M/K) gGal(L/M) it follows that

S =
⊔

g∈Gal(M/K)

(S ∩ gGal(L/M))

is a partition into open and closed sets withx andy lying in two different subsets, contradicting

the connectedness ofS.

Note that anyH = Gal(L/N) for N/K finite (not necessarily Galois) is an open subgroup ofG

because

H =
⊔

g∈H/ Gal(L/M)

gGal(L/M),

whereM is the Galois closure ofN/K in L. Moreover, anyH = Gal(L/N) for N/K finite (not

necessarily Galois) is also a closed subgroup ofG becauseH = G \
⋃

H 6=gH∈G/H gH. The same

reason shows that any closed subgroupH ≤ G is open ifG/H is finite. Moreover, for anyL/N/K

(not necessarily finite or Galois) the group

Gal(L/N) =
⋂

N/F/K s.t.F/K finite

Gal(L/F )

is closed.

Theorem 1.3(Main theorem of Galois Theory). The two maps

{
fieldsL/M/K

} Φ
−→
Ψ
←−

{
closed subgroupsH ≤ Gal(L/K)

}

given byΦ(M) = Gal(L/M) andΨ(H) = LH are inverses to each other and hence bijections.

Under these correspondences the open subgroups correspond to the finite extensions ofK, and

the closed normal subgroups to the Galois extensions ofK.

Proof. We have seen that the maps are well-defined.

LetL/M/K be given. We need to show

LGal(L/M) = M.

The inclusion ‘⊇’ is clear. For the other one ‘⊆’ let x 6∈ M . We choose a finite Galois extension

M1/M such thatx ∈M1. By the main theorem of finite Galois theory there isτ ∈ Gal(M1/M) such

thatτ(x) 6= x. We now extendτ to an element ofGal(L/M). This showsx 6∈ LGal(L/M).

LetH ≤ G be a closed subgroup. We need to show

H = Gal(L/LH).
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The inclusion ‘⊆’ is clear. To see equality, for anyM/LH finite Galois we consider the following

diagram, whose first row is exact:

1 // Gal(L/M) // Gal(L/LH)
res // Gal(M/LH) // 1

H
?�

OO

res // H|M // 1.

The equality on the right is an immediate consequence of finite Galois theory noting LH = MH|M ,

where byH|M we denote the group obtained by restricting the elements ofH toM .

Let nowσ ∈ Gal(L/LH). By the diagram, for anyM/LH finite Galois there isτ ∈ H such that

σ|M = τ |M , whenceσ−1τ ∈ Gal(L/M). Thusτ ∈ H ∩ σGal(L/M). We have thus proved that

H ∩ σGal(L/M) 6= ∅ for anyM/LH finite Galois. This shows thatH has non-empty intersection

with any open neighbourhood ofσ, hence,σ is in the closure ofH. AsH is closed, it followsσ ∈ H.

The rest is also easy.

Definition 1.4. A directed setis a setI together with a binary relation≤ on I such that for any pair

i, j ∈ I there isk ∈ I such thati ≤ k andj ≤ k.

A projective system of topological groupsfor a directed setI is, for eachi ∈ I, a topological

groupGi and, for each pairi ≤ j, a continuous group homomorphismfi,j : Gj → Gi such that

fi,i = idGi
for all i ∈ I andfi,j ◦ fj,k = fi,k for all i ≤ j ≤ k in I.

Example 1.5. (a) TakeI to be the set of all fieldsM such thatL/M/K with M/K finite Galois

with order relationM1 ≤ M2 if M1 ⊆ M2. ThenGM := Gal(L/M) together withfM1,M2 :

Gal(M2/K) → Gal(M1/K), the restriction, wheneverM1 ≤ M2, forms a projective system of

finite (hence topological groups for the discrete topology) groups.

(b) Letp be a prime. TakeI = N≥1 the set of natural numbers with the usual≤ order relation. Then

Gn := Z/pnZ together withfn,m : Z/pmZ→ Z/pnZ, the natural projection, forn ≤ m, forms

a projective system of finite (hence topological groups for the discrete topology) groups.

(c) TakeI = N≥1 the set of natural numbers for the divisibility relation as order relation. Then

Gn := Z/nZ together withfn,m : Z/mZ → Z/nZ, the natural projection, forn | m, forms a

projective system of finite (hence topological groups for the discrete topology) groups.

Proposition 1.6. Let (Gi, fi,j) be a projective system of topological groups for a directed setI. The

projective limit of this system is defined as the topological group

lim←−
i∈I

Gi := {(xi)i∈I ∈
∏

i∈I

Gi | fi,j(xj) = xi ∀ i ≤ j}.

If theGi are finite groups with the discrete topology, thenlim←−
i∈I

Gi is a profinite group.

Proof. Exercise. One should let oneself be inspired by the proof of Theorem 1.2.
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Example 1.7. (a) One has

Gal(L/K) = lim←−
K⊆M⊆L, M/K finite Galois

Gal(M/K).

We showed this in the proof of Theorem 1.2.

(b) The grouplim←−
n∈N

Z/pnZ is called the group ofp-adic integers, it is denotedZp.

(c) The grouplim←−
n∈N

Z/nZ is calledZ hatand it is denoted̂Z. By the Chinese remainder theorem one

hasẐ ∼=
∏

p primeZp.

(d) We now compute the Galois group ofFp/Fp. We clearly have

Fp =
⋃

n∈N

Fpn ,

since any element inFp is contained in some finite extensionFpn . Hence, this is a Galois extension

(in fact, for any fieldF the extensionF/F , whereF is a separable closure ofF , is a Galois

extension). We thus have

Gal(Fp/Fp) = lim←−
n∈N

Gal(Fpn/Fp) ∼= lim←−
n∈N

Z/(n) =: Ẑ = 〈Frobp〉top. gp..

This means that the Galois group is a pro-cyclic group (by definition, this is the projective limit

of cyclic groups), and, equivalently, that it is topologically generated by asingle element, namely

the Frobenius.

2 Representations

Definition 2.1. Let G be a profinite group and letk be a topological field. By ann-dimensional

representation ofG we mean a continuous homomorphism of groups

ρ : G→ GLn(k).

Example 2.2. (1) If G is a finite group with the discrete topology andk are the complex numbers,

then we are in the context of the standard theory of representations of finite groups.

(2) ϕ : Z/NZ→ GL1(C), r +NZ 7→ ζr
N = e2πir/N .

(3) For a finite groupG theregular representationis defined by the natural leftG-action on the group

algebraC[G].
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(4) We have the augmentation exact sequence

0→ IG → C[G]
g 7→1
−−−→ C→ 0

with the aumentation idealIG = (g − 1) � C[G].

The left action ofG on IG gives rise to theaugmentation representation.

(5) LetM be anyC[G]-module. ThenG also acts onEndC(M) by (g.σ)(m) = g.(σ(g−1.m)) for

g ∈ G, m ∈ M and σ ∈ EndC(M). This representation is called theadjoint representation

of M . Thinking about this representation in terms of matrices,g acts by conjugation. Hence, the

augmentation representation can be restricted to the matrices of trace0.

We always considerFℓ with the discrete topology.

Definition 2.3. Letρ be ann-dimensional representation ofG overk.

(a) The representationρ is called

• anArtin representationif k ⊆ C (topological subfield),

• an ℓ-adic representationif k ⊆ Qℓ,

• a modℓ representationif k ⊆ Fℓ.

(b) The representationρ is called

• abelianif ρ(G) is an abelian group,

• dihedralif ρ(G) is a dihedral group, etc.

Definition 2.4. Two n-dimensional representationsρ1 and ρ2 of G over k are calledequivalentif

there exists someM ∈ GLn(k) such that for allg ∈ G

ρ1(g) = Mρ2(g)M
−1.

Proposition 2.5. LetG be a profinite group,k a topological field andρ : G → GLn(k) a represen-

tation. The image ofρ is finite in any of the three cases:

(a) ρ is an Artin representation,

(b) ρ is a modℓ representation,

(c) G is a pro-p-group andρ is anℓ-adic representation withℓ 6= p.

Proof. Exercise.
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Proposition 2.6. Let k be a local field with complete discrete valuation ringO, maximal idealm

and residue fieldF = O/m of characteristicℓ. LetG be a profinite group andρ : G → GLn(k) a

representation. Then there exists a representation

ρ1 : G→ GLn(O)

such that

G
ρ1
−→ GLn(O)

inclusion
−−−−−→ GLn(k)

is equivalent toρ.

Proof. Exercise.

Definition 2.7. Assume the set-up of Proposition 2.6. The composition

ρ : G
ρ1
−→ GLn(O)

natural projection
−−−−−−−−−→ GLn(F)

is calleda modℓ reduction ofρ.

Definition 2.8. Let ρ be ann-dimensional representation ofG over k. Let V = kn the standard

n-dimensionalk-vector space. We makeV into ak[G]-module by defining theG-action as

g.v = ρ(g)v for g ∈ G, v ∈ V.

We callρ (semi-)simple ifV is (semi-)simple in the category ofk[G]-modules.

More explicitly,ρ is simple (other word: irreducible) if the onlyk-subspaceW � V such that

gW ⊆ W for all g ∈ G is the0-space. Moreover,ρ is called semi-simple ifV is the direct sum of

simplek[G]-modules, that is,V = W1 ⊕ · · · ⊕Wn, where theWi are k-subspaces ofV such that

gWi ⊆Wi for all g ∈ G.

We callρ indecomposable ifV = W1⊕W2 with k[G]-submodulesWi ≤ V is only possible if one

of them is the0-space.

Note that indecomposable does not imply irreducible if the characteristic ofk is positive. For

instanceF2[Z/2Z] is indecomposable but not irreducible.

Moreoverρ is calledabsolutely irreducible (absolutely semi-simple, absolutely indecomposable,

etc.) if k ⊗k V has this property, wherek is an algebraic closure ofk.

By the semi-simplification ofρ we mean the direct sum of all Jordan-Hölder constituents ofV as

k[G]-module.

Theorem 2.9(Brauer-Nesbitt). Let k be a field. Letρi : G → GLn(k) with i = 1, 2 be continuous

semi-simple representations. Assume that at least one of the following two conditions holds:

(1) charpoly(ρ1(g)) = charpoly(ρ2(g)) for all g ∈ G;

(2) The characteristic ofk is 0 or bigger thann andTr(ρ1(g)) = Tr(ρ2(g)) for all g ∈ G.
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Thenρ1 andρ2 are equivalent.

Proposition 2.10(Serre, Carayol). LetR be a local ring with maximal idealm and letρi : G →

GLn(R) be a continuous representation of a groupG for i = 1, 2 such thatρ1 is residually absolutely

irreducible, that is,G → GLn(R) ։ GLn(R/m) is absolutely irreducible. Assume that all traces

are equal:Tr(ρ1(g)) = Tr(ρ2(g)) for all g ∈ G.

Thenρ1 andρ2 are equivalent overR.



Lecture 2

Galois representations

In this lecture we will

• define Galois representations,

• introduce basic properties, such as the representation being unramified,and

• give some examples.

1 Definition and properties

Definition 1.1. LetK be a field. We denote byGK the absolute Galois group ofK, i.e. the Galois

group of a separable closure ofG.

Letk be a topological field. A representation ofGK overk is called aGalois representation.

If K is a global field (e.g. a number field), then a representation ofGK is called aglobal Galois

representation. If K is a local field, then we speak of alocal Galois representation.

Remark 1.2. One often hears aboutℓ-adic Galois representations(or evenelladicones) as compared

to p-adic Galois representations. In that case, what people usually mean the following: Let

GK → GLn(k)

be ann-dimensional Galois representation withK a finite extension ofQp andk a finite extension

of Ql. The situationl 6= p is referred to asℓ-adic, and the situationl = p asp-adic.

The behaviour is fundamentally different! Wild inertia (to be explained in a second), which is a

pro-p group, has a finite image in the first case (by Proposition 2.5), but it can have a very large image

in the second case.

Before we can go on, we need to recall some algebraic number theory. Westart by the finite

situation. LetK be a number field andp a prime. Then we can completeK at p (with respect to the

non-archimedean absolute value attached top or by completing the ring of integers ofK at p in the

12
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sense of commutative algebra) to obtainKp, a finite extension ofQp, where(p) = Z∩p is the rational

prime number lying underp. ThenKp is a local field with a non-archimedean absolute value| · |,

discrete valuation ring

OKp = Op = {x ∈ Kp | | x |≤ 1}

and valuation ideal

p̂ = {x ∈ Kp | | x |< 1}.

We shall also writep for p̂. In the sequel we need and assume that the absolute value| · | is correctly

normalized. For the residue fields, we shall use the notation

F(p) = F(Kp) := Op/p̂.

The residue field can also be seen as the quotient of the ring of integers ofK by p.

Now we move on to discuss finite Galois extensions. LetL/K be a finite Galois extension of

number fields andP/p/p prime ideals in these fields. Thedecomposition group ofP is defined as

D(P/p) = {σ ∈ Gal(L/K)|σ(P) = P}.

It is naturally isomorphic to the local Galois group

D(P/p) ∼= Gal(LP/Kp).

Indeed, recall thatL is dense inLP andK in Kp. An automorphismσ ∈ D(P/p) can be uniquely

extended by continuity to an automorphism in the local Galois group. To go in theconverse direction,

one just restricts the automorphism toL.

Whenever we have a Galois extension of local fieldsLP/Kp, we can consider the reduction

mod P of all field automorphisms inGal(LP/Kp), since each of them fixes the valuation rings.

The reduction map

π(LP/Kp) = π(P/p) : Gal(LP/Kp)→ Gal(F(P)/F(p))

is surjective. To see the surjectivity, we considerLP asKp[X]/(f(X)) with f an irreducible polyno-

mial (monic and with coefficients inOp) of degree equal to[LP : Kp]. Let us fix a rootα of f . An

element in the Galois group is uniquely given by the image ofα, i.e. the Galois group consists of the

elementsσβ with σβ(α) = β. The factorization off modp is of the formg(X)e and the reductionα

of α is a root ofg. An elementσ ∈ Gal(F(P)/F(p)) is uniquely given by the imageσ(α), which is

of the formβ with β a root off . Hence,σβ reduces toσ, showing the surjectivity.

A canonical generator ofGal(F(P)/F(p)) is given by the (arithmetic)Frobenius endomorphism

(or Frobenius element) Frob(LP/Kp) = Frob(P/p) which is defined asx 7→ xq with q = #F(p) =

N(p). The integerN(p) is called thenorm ofp. The kernel of the reduction map is called theinertia

groupI(LP/Kp) = I(P/p), so that we have the exact sequence

0→ I(LP/Kp)→ Gal(LP/Kp)
π(LP/Kp)
−−−−−−→ Gal(F(P)/F(p))→ 0.
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The field extensionLP/Kp (or the primeP abovep) is unramifiedif and only if I(LP/Kp) is trivial,

i.e. if and only if the reduction mapπ(LP/Kp) is an isomorphism. The inertia groupI(LP/Kp) has

a uniquep-Sylow groupP (LP/Kp) = P (P/p), which is called thewild inertia group. The field

extensionLP/Kp (or the primeP abovep) is tamely ramifiedif P (LP/Kp) is trivial; otherwise, it is

calledwildly ramified.

Now we investigate what happens if we change the primeP lying above a fixedp in the Galois

extensionL/K. One knows that any other prime is of the formσ(P) with σ ∈ Gal(L/K). Then we

clearly have

D(σ(P)/p) = σ ◦D(P/p) ◦ σ−1

and, consequently, similar statements forI(LP/Kp) andP (LP/Kp). Hence, if the extensionL/K

is unramified (or tamely ramified) at oneP, then so it is at allσ(P), whence we say thatL/K is

unramified (or tamely ramified) at the ’small’ idealp.

SupposeL/K is unramified atp, so that the reduction mapπ(P/p) is an isomorphism. We can

thus considerFrob(LP/Kp) as an element ofD(P/p). We have

Frob(σ(P)/p) = σ ◦ Frob(P/p) ◦ σ−1,

so that the Frobenius elements of the primes lying overp form a conjugacy class inGal(L/K). We

will often write Frobp for either this conjugacy class or any element in it.

Our next goal is to pass to infinite Galois extensions. For that it is often useful to take anem-

bedding point of viewon primes. We fix once and for all algebraic closuresQ andQp for all p. The

field Qp also has an absolute value| · | which is chosen such that the restriction of| · | to any finite

extension ofQp contained inQp gives the standard absolute value on that field.

Let K ⊂ Q be a number field (even if we do not write the inclusion into our fixedQ, we often

mean it). Let us choose an embeddingι : Q →֒ Qp. It determines a primep lying abovep, namely

we takep = K ∩ ι−1({x ∈ Qp | |x| < 1}). Moreover, in the same way it gives prime ideals abovep

for everyextensionK ⊆ L ⊂ Q, which are compatible with intersection. Conversely, if we are given

a primep of K lying abovep, we can first pass to the completionKp of K at p and then choose any

embedding ofKp into Qp; this defines an embeddingK →֒ Kp →֒ Qp, which by Artin’s extension

lemma of Galois theory can be extended to an embeddingQ →֒ Qp. From now on we are going

to take this point of view of embeddings. It allows us to generalize the above discussion and it also

enables us to viewQp andC on an equal footing (what we mean becomes clear below: Frobenius

elements and complex conjugation are defined in a very similar way: the former at finite places, the

latter at infinite ones).

Let still K be a number field (insideQ) and fix an embeddingιp : K →֒ Qp, which we extend to

ι : Q →֒ Qp as before. It gives rise to an embedding of absolute Galois groups

Gal(Qp/Kp) →֒ Gal(Q/K), σ 7→ ι−1 ◦ σ ◦ ι.
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Note that this definition makes sense, sinceQ/K is a normal extension. If we have two such embed-

dingsι1 andι2, then the two embeddings of Galois groups are conjugate byι1 ◦ ι
−1
2 , just as in the case

of finite primes.

Let Kp ⊂ LP ⊂ M
P̃

be finite degree subfields ofQp. We obtain a projective system of short

exact sequences:

0 // I(M
P̃
/Kp) //

����

Gal(M
P̃
/Kp)

π(M
P̃

/Kp)
//

����

Gal(F(P̃)/F(p)) //

����

0

0 // I(LP/Kp) // Gal(LP/Kp)
π(LP/Kp)

// Gal(F(P)/F(p)) // 0.

The projective limit over compact sets is exact, hence, we obtain the exact sequence

0→ IKp → GKp

πp
−→ GF(p) → 0,

whereIKp = Ip is the projective limit over the inertia groups. With the same reasoning we obtain

that the projective limitPKp = Pp over the wild inertia groups is equal to the (necessarily unique)

pro-p Sylow group ofIKp . We again callIKp andPKp theinertia (group)respectively thewild inertia

(group) ofKp (or of p). By Frobp we denote the Frobenius element inGal(Fp/F(p)).

We can see complex conjugation as a variant of this. Suppose there is an embeddingτ∞ of K

into R. Then for any embeddingτ : Q →֒ C extendingτ∞, the map

τ−1 ◦ (complex conjugation inC/R) ◦ τ

defines an element ofGK . It is calleda complex conjugation. Again, all complex conjugations are

conjugate.

Now we come to the very important definition of unramified and tamely ramified Galoisrepresen-

tations. We start with the local case.

Definition 1.3. LetKp be a finite extension ofQp and letk be any topological field. Consider a local

Galois representationρ : GKp → GLn(k). It is called

• unramifiedif ρ(IKp ) = 0,

• tamely ramifiedif ρ(PKp ) = 0.

Let ρ be a representation as in the definition and letV be thek-vector space underlying it, i.e. such

thatρ : GKp → GLn(k) = GL(V ). Denote byV IKp the sub-vector spaceV ρ(IKp ) of V consisting of

the elements fixed byIKp . We obtain the unramified representation

ρIKp : GKp → GL(V IKp ) = GLm(k)

for somem ≤ n. Clearly,ρ is unramified if and only ifρ = ρIKp .

Evaluating an unramified representation at the Frobenius element makes sense, since any preimage

underπKp of FrobKp is uniquely determined up to a trivially acting element fromIKp .
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Definition 1.4. Thecharacteristic polynomial of Frobenius ofρ is defined as

Φ(ρ)(X) := charpoly(ρIKp (FrobKp )) = det(X − FrobKp |V
IKp ) ∈ k[X].

Very often one sees a slightly different version, namely

Φ̃(ρ)(X) := det(1−X FrobKp |V
IKp ) ∈ k[X].

We have the relation

Φ̃(ρ)(X) = Xn · Φ(ρ)(X−1).

Now we treat the global situation.

Definition 1.5. LetK be a number field (insideQ), andk any topological field. Consider a global

Galois representationρ : GK → GLn(k). Let p be a prime ofK corresponding to an embedding

ιp : K →֒ Qp. Choose any embeddingι : Q →֒ Qp extendingιp, giving rise to an embedding ofGKp

into GK . The Galois representationρ is calledunramified (respectively, tamely ramified) atp if the

restriction ofρ toGKp is unramified (respectively, tamely ramified).

We also define thecharacteristic polynomial of Frobenius atp as

Φp(ρ) := Φ(ρ|GKp
) ∈ k[X]

and

Φ̃p(ρ) := Φ̃(ρ|GKp
) ∈ k[X].

Note that these properties do not depend on the choice ofι (for the statement on the characteristic

polynomial we use that conjugate matrices have the same characteristic polynomial).

Definition 1.6. Letρ be as in the previous definition withn = 1, 2. Thenρ is calledodd if the image

of all complex conjugations has determinant−1.

There are generalisations of odd representations forn > 2.

The Frobenius elements play a very special role in the theory. Their images determine the Galois

representation uniquely. This is a consequence of Chebotarev’s density theorem.

Recall that the norm of an ideal is denoted asN(p) = #F(p).

Definition 1.7. LetK be a number field andS a set of primes ofK.

(a) TheDirichlet density ofS is defined as

d(S) := lim
s→1, s>1

∑
p∈S N(p)−s

∑
pN(p)−s

,

if the limit exists.
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(b) Thenatural density ofS is defined as

δ(S) := lim
x→∞

#{p ∈ S |N(p) < x}

#{p |N(p) < x}
,

if the limit exists.

The existence of the natural density implies the existence of the Dirichlet density, but the converse

does not hold in general.

Theorem 1.8(Chebotarev’s density theorem). LetL/K be a finite Galois extension of number fields

with Galois groupG = Gal(L/K). Letσ ∈ G be any element. We use the notation[σ] to denote the

conjugacy class ofσ in G. Define the set of primes

PL/K(σ) = {p | [Frobp] = [σ]}.

The Dirichlet density of this set is

d(PL/K(σ)) =
#[σ]

#G
.

In other words, the Frobenius elements are uniformly distributed over the conjugacy classes of the

Galois group.

We will at least give a precise sketch of the proof later this lecture and we will also present

important applications. Here we provide a first one concerning Galois representations.

Corollary 1.9. LetK be a number field,k a topological field andρ : GK → GLn(k) a global Galois

representation that ramifies at most at finitely many primes ofK. Then the set

{ρ(Frobp)|p unramified}

is a dense subset of the imageρ(GK). In other words, the Frobenius elements topologically generate

the image of the Galois representation.

Moreover, the Galois representation is uniquely determined by the images of the Frobenius ele-

ments.

Proof. In a profinite groupG a subsetX ⊂ G is dense inG if and only if the image ofX under all

natural projectionsG ։ Gi is equal toGi.

We apply this withG = ρ(GK) andX the set of Frobenius images. All the finite quotients

of G correspond to finite Galois extensions and, consequently, Chebotarev’s density theorem (Theo-

rem 1.8) implies that the image ofX in any finite quotient hits all conjugacy classes and because of

Frob(σ(P/p)) = σ ◦ Frob(P/p) ◦ σ−1 is all of it.
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2 Examples

Cyclotomic character

We now give a very important example of a Galois representation in dimension1: the ℓ-adic cyclo-

tomic character. Recall from above that we found the group isomorphism:

χℓn : Gal(Q(ζ)/Q) = AutQ(Q(ζ))→ (Z/ℓnZ)×.

Let us rewrite this, using the group surjectionGal(Q/Q)→ Gal(Q(ζ)/Q):

χℓn : Gal(Q/Q)→ GL1(Z/ℓ
nZ).

We can now take the projective limit to obtain theℓ-adic cyclotomic character

χℓ : Gal(Q/Q)→ Z×
ℓ
∼= GL1(Zℓ).

Its properties are summarised in the following proposition.

Proposition 2.1. Let χℓ be the cyclotomic character overQ. It is a 1-dimensional global Galois

representation, which is unramified at all primesp 6= ℓ and is characterized there by

χℓ(Frobp) = p.

More generally, we have

σ(ζ) = ζχℓ(σ)

for all ζ ∈ µℓn(Q), all n and all σ ∈ GQ. In particular, the image of any complex conjugation is

equal to−1.

Proof. Exercise.

Abelian varieties

LetK be a field andA an abelian variety of dimensiong overK. Let

A(K)[m] = ker
(
A(K)

P 7→m·P
−−−−−→ A(K)

)

be them-torsion points ofA(K). One defines theℓ-adic Tate module ofA by

Tℓ(A) := lim←−
n

A(K)[ℓn]

with respect to the projective system

A(K)[ℓn] ։ A(K)[ℓn−1], P 7→ ℓ · P.
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If ℓ is not the characteristic ofK, then, as is well known, one can compatibly identifyA(K)[ℓn] with

(Z/ℓnZ)2g, yielding an isomorphism

Tℓ(A) ∼= (Zℓ)
2g.

One often puts

Vℓ(A) := Tℓ(A)⊗Zℓ
Qℓ
∼= (Qℓ)

2g.

The absolute Galois groupGK acts onTℓ(A) and onVℓ(A), since it compatibly acts on all the

A(K)[ℓn]. This yields theGalois representation attached toA:

ρA : GK → AutQℓ
(Vℓ(K)) ∼= GL2g(Qℓ).

Theorem 2.2(Serre, Tate). LetK be a number field. ThenρA is unramified at all primesp ofK at

whichA has good reduction.

Here is a more precise theorem for the special case of elliptic curves.

Theorem 2.3. LetK be a number field andE an elliptic curve overK. Let p be a prime ofK at

whichE has good reduction. ThenρE is unramified atp and we have

Φp(ρE) = X2 − apX +N(p)

and

Φ̃p(ρE) = 1− apX +N(p)X2

whereap ∈ Z such that

#E(F(p)) = N(p) + 1− ap = Φp(ρE)(1).

Furthermore, the determinant ofρE is equal to the cyclotomic character ofK.



Lecture 3

Galois representations attached to

modular forms

In this lecture we will

• recall the definition of modular forms and Hecke operators,

• describe the Galois representation attached to a Hecke eigenform,

• define the conductor and the Serre weight of a2-dimensional residual Galois representation,

• state Serre’s modularity conjecture, and

• in an appendix sketch the construction of the Galois representation attachedto a Hecke eigen-

form.

1 Modular forms

Congruence subgroups

We first we recall the standard congruence subgroups ofSL2(Z). By N we shall always denote a

positive integer.

Γ(N) := {
(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ( 1 0

0 1 ) mod N}

Γ1(N) := {
(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ( 1 ∗

0 1 ) mod N}

Γ0(N) := {
(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ( ∗ ∗

0 ∗ ) mod N}

These groups are all called thecongruence subgroups of levelN , andΓ(N) theprincipal one.

Remark 1.1. We describe a more conceptual point of view on congruence subgroups. The following

observations are at the base of defining level structures for elliptic curves (which we won’t do in these

lectures).

20
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(a) The group homomorphism

SL2(Z)→ SL2(Z/NZ)

given by reducing the matrices moduloN is surjective with kernelΓ(N).

(b) The groupSL2(Z/NZ) acts on(Z/NZ)2 (by multiplying the matrix with a vector). In particular,

the homomorphismSL2(Z/NZ) → (Z/NZ)2 given by
(

a b
c d

)
7→

(
a b
c d

)
( 1

0 ) = ( a
c ) takes all

( a
c ) ∈ (Z/NZ)2 as image such thata, c generateZ/NZ. Moreover, the image is equal to set of

elements in(Z/NZ)2 which are of precise (additive) orderN . The kernel is the stabiliser of( 1
0 ).

(c) The groupΓ1(N) is the preimage inSL2(Z) of the stabiliser subgroup of( 1
0 ).

(d) The groupSL2(Z/NZ) also acts onP1(Z/NZ), the projective line overZ/NZ which one can

define as the tuples(a : c) with a, c ∈ Z/NZ such that〈a, c〉 = Z/NZ modulo the equivalence

relation given by multiplication by an element of(Z/NZ)×. The action is the natural one (we

should actually view(a : c) as a column vector, as above). The preimage inSL2(Z) of the

stabiliser group of(1 : 0) is equal toΓ0(N).

(e) The quotient ofSL2(Z/NZ) modulo the stabiliser group of(1 : 0) is in bijection with the set

of cyclic subgroups of precise orderN in SL2(Z/NZ). These observations, which may seem

unimportant at this point, are at the base of defining level structures for elliptic curves (see the

section on modular curves).

One can prove these assertions as an exercise.

It is clear that

Γ0(N)/Γ1(N)

“

a b
c d

”

7→a+NZ

−−−−−−−−−→ (Z/NZ)×

is a group isomorphism. We also let

χ : (Z/NZ)× → C×

denote a character, i.e. a group homomorphism. We shall extendχ to a map(Z/NZ) → C by

imposingχ(r) = 0 if (r,N) 6= 1. The simplest instance of class field theory (here a simple exercise;

by ζN we mean any primitiveN -th root of unity) tells us that

Gal(Q(ζN )/Q)
Frobℓ 7→ℓ
−−−−−→ (Z/NZ)×

(for all primes ℓ ∤ N ) is an isomorphism. We shall later on also considerχ as a character of

Gal(Q(ζN )/Q). The nameDirichlet character(here ofmodulusN ) is common usage for both.
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Modular forms

We now recall the definitions of modular forms. We denote byH the upper half plane, i.e. the set

{z ∈ C|Im(z) > 0}. The set of cusps is by definitionP1(Q) = Q ∪ {∞}. Fix integersk andN ≥ 1.

A function

f : H→ C

given by a convergent power series (thean(f) are complex numbers)

f(z) =
∞∑

n=0

an(f)(e2πiz)n =
∞∑

n=0

anq
n with q(z) = e2πiz

is called amodular form of weightk for Γ1(N) if

(i) the functionf(az+b
cz+d)(cz + d)−k is a holomorphic function (still fromH to C) for all

(
a b
c d

)
∈

SL2(Z) and it is bounded whenIm(z) tends to infinity (this condition is calledf is holomorphic

at the cuspa/c), and

(ii) f(az+b
cz+d) = (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ1(N).

We use the notationMk(Γ1(N) ; C). If we replace (i) by

(i)’ the functionf(az+b
cz+d)(cz+ d)−k is a holomorphic function and the limitf(az+b

cz+d)(cz+ d)−k is 0

whenIm(z) tends to∞ for all
(

a b
c d

)
∈ SL2(Z),

thenf is called acusp form. For these, we introduce the notationSk(Γ1(N) ; C).

Let us now suppose that we are given a Dirichlet characterχ of modulusN as above. Then we

can also consider a variant of (ii) as follows:

(ii)’ f(az+b
cz+d) = χ(d)(cz + d)kf(z) for all

(
a b
c d

)
∈ Γ0(N).

Functions satisfying this condition are calledmodular forms(respectively,cusp formsif they satisfy

(i)’) of weightk, characterχ and levelN . The notationMk(N,χ ; C) (respectively,Sk(N,χ ; C))

will be used.

All these are finite dimensionalC-vector spaces and fork ≥ 2, there are dimension formulae,

which one can look up in [Stein]. We, however, point the reader to the fact that for k = 1 nearly

nothing about the dimension is known (except that it is smaller than the respective dimension for

k = 2; it is believed to be much smaller, but only very weak results are known to date).

A very famous example of a modular form is Ramanujan’s Delta function

∆(z) = q
∞∏

n=1

(1− qn)24.

It belongs toS12(1, 1 ; C).
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Hecke operators

At the base of everything that we will do with modular forms are the Hecke operators. One should

really define them conceptually. Here is a definition by formulae.

Definition 1.2. Supposef ∈ Mk(N,χ ; C). Recall that we have extendedχ so thatχ(ℓ) = 0 if ℓ

dividesN . Then the formula

an(Tℓf) = aℓn(f) + ℓk−1χ(ℓ)an/ℓ(f),

wherean/ℓ(f) is to be read as0 if ℓ does not dividen, defines a linear mapTℓ : Mk(N,χ ; C) →

Mk(N,χ ; C), called theℓ-th Hecke operator.

The Hecke operators for compositen can be defined as follows (we putT1 to be the identity):

• Tℓr+1 = Tℓ ◦ Tℓr − ℓk−1χ(ℓ)Tℓr−1 for all primesℓ andr ≥ 1,

• Tuv = Tu ◦ Tv for coprime positive integersu, v.

We point out the very important formula (valid for everyn)

a1(Tnf) = an(f), (1.1)

which is a direct consequence of the preceding formulae. From the above formulae it is also evi-

dent that the Hecke operators commute among one another. Consequently,the Hecke algebraT =

T(Mk(N,χ ; C)) which is defined as theC-subalgebra ofEndC(Mk(N,χ ; C)) generated by the

Hecke operatorsTn for all n ∈ N is commutative. Formula (1.1) can be used to show (as an Exercise)

that the pairing

T×Mk(N,χ ; C)→ C, (T, f) 7→ a1(Tf)

is non-degenerate. Thus, the modular forms space is theC-dual of the Hecke algebra.

Moreover, the commutativity of the Hecke operator also implies that eigenspaces for a collection

of operators (i.e. each element of a given set of Hecke operators actsby scalar multiplication) are

respected by all Hecke operators. Hence, it makes sense to consider modular forms which are eigen-

vectors for every Hecke operator. These are calledHecke eigenforms, or often justeigenforms. Such

an eigenformf is callednormalisedif a1(f) = 1. Ramanujan’s Delta function is an example of a

normalised Hecke eigenform.

2 Galois representations

The great importance of modular forms for modern number theory is due to thefact that one may

attach a2-dimensional representation of the Galois group of the rationals to each normalised cuspidal

eigenform. The following theorem is due to Shimura fork = 2 and due to Deligne fork ≥ 2.
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Theorem 2.1. Letk ≥ 2,N ≥ 1, ℓ a prime, andǫ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ Sk(N, ǫ ; C) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation of the rationals

ρf : GQ → GL2(Qℓ)

such that

(i) ρf is irreducible,

(ii) ρf is odd,

(iii) for all primes p ∤ Nℓ the representationρf is unramified atp and

Φp(ρf )(X) = X2 − ap(f)X + ǫ(p)pk−1.

By reduction and semi-simplification one obtains the following consequence.

Theorem 2.2. Letk ≥ 2,N ≥ 1, ℓ a prime, andǫ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ Sk(N, ǫ ; C) with f =
∑

n≥1 an(f)qn and to any prime

ideal Λ of the ring of integers ofQf = Q(an(f) : n ∈ N) with residue characteristicℓ, one can

attach a modℓ Galois representation

ρf : GQ → GL2(Fℓ)

such that

(i) ρf is semi-simple,

(ii) ρf is odd,

(iii) for all primes p ∤ Nℓ the representationρf is unramified atp and

Φp(ρf )(X) ≡ X2 − ap(f)X + ǫ(p)pk−1 mod Λ.

There is also a weight one version of these theorems due to Deligne and Serre.

Theorem 2.3. LetN ≥ 1 andǫ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ S1(N, ǫ ; C) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation of the rationals

ρf : GQ → GL2(C)

such that

(i) ρf is odd,
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(ii) for all primesp ∤ N the representationρf is unramified atp and

Φp(ρf )(X) = X2 − ap(f)X + ǫ(p).

Example 2.4. We present a toy example:Q(X) = X6 − 6X4 + 9X2 + 23. Compute factorisations

modulop of Q(X) for some smallp with the computer and try to find a pattern describing how

many irreducible factors there are. It won’t be easy at all (I’d be astonished if you found one without

reading on)! But, there is one: There is a unique Hecke eigenformf in S1(23)(F7) (this is with a

certain quadratic Dirichlet character); you can also see it in weight7 or in weight2 for level7 · 23.

The pattern is the following. Letp be a prime. Then (with finitely many exceptions):

• Q has 2 factors modulop⇔ ap(f) = 6.

• Q has 3 factors modulop⇔ ap(f) = 0.

• Q has 6 factors modulop⇔ ap(f) = 2.

This comes from the attached Galois representationρ : Gal(Q/Q) → GL2(F7). There are only

the following matrices in the image ofρ:

( 1 0
0 1 ) , ( 2 0

0 4 ) , ( 4 0
0 2 ) , ( 0 1

1 0 ) , ( 0 2
4 0 ) , ( 0 4

2 0 ) .

The first one has order1 and trace2, the second and third have order3 and trace6, and the final ones

have order2 and trace0.

The polynomialQ is Galois overQ. For a givenp, ρ(Frobp) must be one of these matrices.

If the trace is2, thenρ(Frobp) must be the identity and thus have order1. That means thatQ

factors completely modulop (there’s a small issue with primes dividing the index of the equation

order generated byQ in the maximal order – these primes are next to7 and 23 the finitely many

exceptions mentioned above). If the trace is0, then the order has to be2, leading to a factorisation

of Q into three fractors modulop. In the remaining case the trace is6 and the order is3, so thatQ

has three factors modulop.

3 Serre’s Modularity Conjecture

Artin conductor

Let ρ : GQ → GL2(Fℓ) be a Galois representation. For every primep 6= ℓ define the field

Kρ,p := Q
ker(ρ|GQp

)

p .

It is a finite Galois extension ofQp with Galois group

G(p) := Gal(Kρ,p/Qp) ∼= ρ(GQp).
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It comes equipped with the ramification filtration (in lower numbering):

G
(p)
i := {σ ∈ G(p) | ∀x ∈ Oρ,p : σ(x)− x ∈ (πρ,p)

i+1},

whereOρ,p is the valuation ring ofKρ,p with uniformiserπρ,p. We define the integer (it is nontrivial

but true that it is an integer!)

nρ,p :=
∞∑

i=0

1

(G
(p)
0 : G

(p)
i )

dim
Fℓ

(
V/V G

(p)
i

)
,

called theconductor exponent ofρ at p.

Definition 3.1. TheArtin conductorof ρ is defined as

N(ρ) :=
∏

p 6=ℓ

pnρ,p .

Note thatρ is unramified atp 6= ℓ if and only if p ∤ N(ρ).

Fundamental characters

Here we give a description of fundamental characters based on local class field theory (that can be

treated as a black box if necessary). One can also develop them in a nice way just using Kummer

theory.

LetK/Qp be a finite extension with residue fieldFq with q = pn. By local class field theory the

Galois group of the maximal totally tamely ramified abelian extensionKt.t.r. of K is isomorphic to

F×
q .

Definition 3.2. A character

φ : GK ։ Gal(Kt.t.r./K)→ F×
q

τ
→֒ F

×
p

is said to be afundamental character (forK) of level n if τ ∈ {τ1, . . . , τn}, the set of then field

embeddings ofFpn into Fp.

Remark 3.3. The fundamental characters of leveln are{ψ,ψp, ψp2
, . . . , ψpn−1

} for some fixed fun-

damental characterψ, since the embeddingsτi are given by thep-power Frobenius.

Every character ofGal(Kt.t.r./K) is thei-th power ofψ for a unique0 ≤ i < pn − 1, since the

definition ofφ only differs fromψ by the fact thatF×
pn →֒ F

×
p need not come from a field embedding

but is allowed to be any group homomorphism. AsF×
pn is cyclic, it is uniquely determined by the

image of a generator, which has orderpn − 1.

The level1 fundamental character forK = Qp is the cyclotomic character (Exercise).
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Serre weight

Now we define the weight in Serre’s modularity conjecture. We point out that what we present here

is theminimal weightdiscussed by Edixhoven [EdixWeight], i.e. the weight that one should usewhen

formulating Serre’s conjecture with Katz modular forms overFp rather than reductions of holomorphic

modular forms.

Definition 3.4. Denote byψ,ψp the two fundamental characters of level2 and byχ the cyclotomic

character.

Let ρp : Gp → GL(V ) be a Galois representation withV a 2-dimensionalFp-vector space. The

restriction ofρp to the inertia group atp is of the form
(

φ1 ∗
0 φ2

)
. Theminimal weightk(ρp) of ρp is

defined as follows.

(I) Supposeφ1, φ2 are of level2. After interchangingφ1 andφ2 there are unique integers0 ≤ a <

b ≤ p− 1 such that

φ1 = ψa+pb andφ2 = ψb+ap.

Let

k(ρp) = 1 + pa+ b.

(II) Supposeφ1, φ2 are of level1.

(1) Suppose thatρp is tamely ramified, i.e.ρp(Pp) = 0. There are unique integers0 ≤ a ≤ b ≤

p− 2 such thatφ1 = χa andφ2 = χb. Let

k(ρp) = 1 + pa+ b.

(2) Suppose thatρp is not tamely ramified. Then there are unique integers0 ≤ α ≤ p− 2 and

1 ≤ β ≤ p− 1 such that

ρp|Ip
∼=

(
χβ ∗
0 χα

)
.

Leta = min(α, β) andb = max(α, β).

(a) Supposeβ 6= α+ 1. Let

k(ρp) = 1 + pa+ b.

(b) Supposeβ = α+ 1. LetK be the extension ofQp such thatGK = ker(ρp).

(i) SupposeK is little ramified. Let

k(ρp) = 1 + pa+ b.

(ii) SupposeK is very ramified. Let

k(ρp) = 1 + pa+ b+ (p− 1).
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The conjecture and level raising

We finish this course by giving the full statement of Serre’s conjecture.

Theorem 3.5(Serre’s modularity conjecture: Khare, Wintenberger, Kisin, Taylor, et al.). Given any

irreducible odd Galois representationρ : GQ → GL2(Fp). There is a (Katz) modular form on

Γ1(N(ρ)) of weightk(ρ|GQp
) such that its attached modp Galois representation is isomorphic toρ.

Remark 3.6. Serre’s modularity conjecture implies, for instance, the following strong finiteness re-

sult:

Fix a primeℓ and an integerN . Then there are only finitely many odd irreducible Galois repre-

sentations

ρ : GQ → GL2(Fℓ)

of conductor dividingN(ρ).

Reason: Since there are only finitely many values fork(ρ), eachρ must come from one of the

finitely many newforms in levels dividingn and weights less than or equal to the maximum value that

k(ρ) can take (that isℓ2 − 1).

There is currently no other way to prove this result!

Remark 3.7. We point out the following consequence, which is known aslevel/weight lowering. It

had been known long before Serre’s conjecture due to work of, in particular, Ken Ribet. In fact, it is

an essential ingredient in the proof of Serre’s conjecture.

Let f ∈ Sk(N, ǫ ; C) be an eigenform and considerρf , the modℓ reduction ofρf . Then there is

an eigenform ing ∈ Sk(ρ)(N, ǫ ; C) (if k(ρf ) = 1, one has to use Katz modular forms overFℓ) such

thatρf
∼= ρg.

Since in generalN(ρ)|N and k(ρ) ≤ k will be strictly inequalities, we have lowered the level

and the weight in the sense thatg is an eigenform in the lower level and the lower weight whose

coefficients (at least away fromℓN ) are congruent modulo (a prime above)p to those off .

Theorem 3.8(Diamond, Taylor:Level Raising). LetN ∈ N, k ≥ 2 and letℓ > k + 1 be a prime not

dividingN . Letf ∈ Sk(N, ǫ ; C) be a newform such thatρf is irreducible. Let, furthermore,q ∤ N

be a prime such thatq ≡ −1 mod ℓ andTr(ρf (Frobq)) = 0.

Then there exists a newformg ∈ Sk(Nq
2, ǫ̃ ; C) such thatρg

∼= ρf .

Appendix: Sketch of the construction

In this appendix we sketch the construction of these Galois representations.

Let f =
∑

n≥1 anq
n ∈ Sk(Γ1(N)) be a Hecke eigenform. LetT be the sub-Q-algebra inside

EndC(Sk(Γ1(N))) generated by all Hecke operatorsTn with (n,N) = 1. It is an Artin Q-algebra

and hence decomposes as the direct product over the localizations at its maximal ideals:

T ∼=
∏

m

Tm.
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Recall that

m = ker(T
Tn 7→an−−−−→ C)

is such a maximal ideal. The residue fieldT/m is equal to the coefficient fieldQf := Q(an|(n,N) =

1), as one easily sees. If one assumes thatf is a newform, thenTm
∼= Qf . We shall do that from now

on.

From the Eichler-Shimura theorem it follows that the localizationH1
par(Γ1(N),Q[X,Y ]k−2)m is

a Tm = Qf -vector space of dimension2. This we will explain now. We compute its dimension after

tensoring it overQ with C:

C⊗Q H1
par(Γ1(N),Q[X,Y ]k−2)m

∼=
∏

σ:Qf →֒C

H1
par(Γ1(N),C[X,Y ]k−2)σ(m̃),

with m̃ = ker(C ⊗Q T
Tn 7→an−−−−→ C) (this is not so difficult to check). Hence, it suffices to show that

theC-dimension ofH1
par(Γ1(N),C[X,Y ]k−2)σ(m̃) is equal to2. This is an easy consequence of the

Eichler-Shimura isomorphism

H1
par(Γ1(N),C[X,Y ]k−2)σ(m̃)

∼= Sk(Γ1(N))m⊕ Sk(Γ1(N))m.

From theq-expansion pairing it follows that the dimension ofSk(Γ1(N))m is equal to the dimension

of (C⊗Q T)σ(m̃), which is1 for a newform.

The Galois representation comes from aGQ := Gal(Q/Q)-action on

Qℓ ⊗Q H1
par(Γ1(N),Q[X,Y ]k−2)m.

Since

Qℓ ⊗Q Qf
∼=

∏

λ|ℓ

Qf,λ,

we obtain for everyλ | ℓ a map

GQ → GL2(Qf,λ) →֒ GL2(Qℓ).

We shall try to motivate why there is a Galois action. One needs to get geometry into the business.

Using thatH, the upper half plane, is simply connected and, sinceΓ1(N) acts with finite stabilizers

on it (forN ≥ 4 even with trivial stabilizers), one can identify

H1(Γ1(N),Q[X,Y ]k−2) ∼= H1(Y1(N),Q[X,Y ]k−2),

whereQ[X,Y ]k−2 is the locally constant sheaf onY1(N) (seen as a Riemann surface) which in

small enough neighbourhoods looks likeQ[X,Y ]k−2. Formally, this sheaf can be obtained as the

direct image sheaf(π∗Q[X,Y ]k−2)
Γ1(N), whereπ : H ։ Y1(N) is the natural projection and now

Q[X,Y ]k−2 stands for the constant sheaf onH with a suitableΓ1(N)-action (we do not go into details

here). By a suitable extension to the cusps one finds an isomorphism

H1
par(Γ1(N),Q[X,Y ]k−2) ∼= H1(X1(N),Q[X,Y ]k−2).
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It is very important to note that the Hecke operators respect this isomorphism.

In general, one now has the comparison theorem

Qℓ ⊗Q H1(X1(N)(C),Q[X,Y ]k−2)m
∼=

∏

λ|ℓ

H1
et(X1(N)Q ⊗Q Q,Qℓ[X,Y ]k−2)mλ

with a suitable étale sheaf and the decompositionQℓ ⊗Q

∏
λ|ℓ Tm

∼= Tmλ
∼=

∏
λ|ℓ Qf,λ. On the right

hand side, one finds the desiredGQ-action.

If k = 2, there is a slightly more down to earth description, which avoids the use of étalecoho-

mology. We explain this version now. LetX = X1(N)(C) the modular curve as a Riemann surface.

Consider the exact sequence of sheaves:

0→ µn,X → O
×
X

x 7→xn

−−−−→ O×
X → 0.

We explain. Exactness of a sequence of sheaves is tested on the stalks. Taking ann-th root of a

non-zero holomorphic function in some small enough neighbourhood is always possible, giving the

surjectivity. We defineµn,X as the kernel. We claim that it is a locally constant sheaf, which in small

enough neighbourhoods looks likeµn, then-th roots of unity. This is very easy to see: then-th power

of a functionφ : U → C with U ⊂ X open and connected is identically1 if and only if φ(x) = ζ for

someζ ∈ C with ζn = 1 and allx ∈ X. We now pass to the long exact sequence in cohomology

0→ µn(C)→ C× x 7→xn

−−−−→ C× → H1(X,µn,X)→ H1(X,O×
X)

x 7→xn

−−−−→ H1(X,O×
X),

usingOX(X) = C, sinceX is connected. We obtain

H1(X,µn,X) ∼= ker
(
H1(X,O×

X)
x 7→xn

−−−−→ H1(X,O×
X)

)
.

Sinceµn,X is locally constant, one finds

H1(X,µn,X) ∼= H1
par(Γ1(N), µn) ∼= H1

par(Γ1(N),Z/nZ),

subject to some identification between then-th roots of unity andZ/nZ.

Next, we identifyker
(
H1(X,O×

X)
x 7→xn

−−−−→ H1(X,O×
X)

)
with Jac(X)(C)[n]. One has an isomor-

phism

Pic(X) ∼= H1(X,O×
X)

(see e.g. [Liu]), under whichx 7→ xn on the right becomes multiplication byn on the left. All

together, we now have

H1
par(Γ1(N),Z/nZ) ∼= ker

(
Pic(X)

P 7→nP
−−−−→ Pic(X)

)
.

Elements in then-torsion ofPic(X) are necessarily of degree0, whence

H1
par(Γ1(N),Z/nZ) ∼= Pic(X)[n] = Pic0(X)[n] = Jac(X)[n].
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Recall that, so far, we have takenX overC (a Riemann surface), so thatJac(X) is a complex abelian

variety. But, every torsion point is defined over the algebraic numbers, whence we finally get

H1
par(Γ1(N),Z/nZ) ∼= Jac(XQ)(Q)[n],

which carries a naturalGQ-action. Now we replacen everywhere byℓn and pass to the projective

limit:

H1
par(Γ1(N),Zℓ) ∼= Tℓ(Jac(XQ))

and

H1
par(Γ1(N),Qℓ) ∼= Vℓ(Jac(XQ)).

Of course, these identifications are compatible with the Hecke action, so that we indeed get aGQ-

action as desired.



Lecture 4

Applications

In this lecture we will

• sketch the proof of Fermat’s Last Theorem (using the validity of Serre’sModularity Conjecture),

• and report on applications of modular Galois representations to the inverseGalois problem.

These notes are not typed. The proof of Fermat’s Last Theorem as a consequence of Serre’s Mod-

ularity Conjecture was one motivation for Serre to formulate the precise version of his conjectures.

For details we can refer to Serre’s article [Serre] or to the survey articleon Fermat’s Last Theorem by

Darmon, Diamond and Taylor [DDT].

The application to the inverse Galois problem whose proof was sketched in the lecture is part of

the joint work with Dieulefait [DiWi]. The other two theorems are proved in [Wi1] and [Wi2].
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