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Preface

This lecture is about computing modular forms and some of their arithmetic piesgper

We set the following challenging objectives:

e We explain and completely prove tineodular symbols algorithrin as elementary and as ex-
plicit terms as possible. The chosen approach is based on group colggmolo

e The devoted student shall be enabled to implement the (group cohomologickilansymbols
algorithm over any ring (such that a sufficient linear algebra theoryagadle in the chosen
computer algebra system).

e We introduce the theory of Galois representations attached to modular foamsxplicit terms
as possible. We explain some of its number theoretic significance and sometatomal
approaches.

e The devoted student shall be enabled to compute important propertietots @presentations
attached to modular forms explicitly.

According to these objectives the lecture consists of two main parts:
I. Computing Modular Forms
II. Computational Galois Representations

Due to the diversity of the audience, ranging from students up to PhDrdtugidending to gen-
eralise the presented algorithms in different directions, and due to theits| theoretic and algo-
rithmic, the lecture is conceived parallel layers Not all layers need be followed by all students and
all layers can be reduced individually. The layers are the following:

e Theory. Roughly in 3 of the 4h per week the lecture will introduce theoletesults. All
students are expected to attend the lectures. The lectures will be accothpgrézercises
concerning the theory presented. Exercises can be handed in ane wilffected. Some time
will be devoted to discussing possible solutions.

e Algorithms and implementations. In a lecture in the beginning, programming in sonuasta
computer algebra systems is introduced. In some lectures during the termthahgoand
possibly concrete implementations are presented. Much emphasis is laidoticgbriasues
and students will also be asked to find and implement algorithms. Possible selwilbbe
discussed.

e Self-learn modules. For the devoted student to gain a more complete pictheetbeory than
can be presented during the lecture, complementary reading is suggested.



The parallel layers will not necessarily be on a single subject all the timiejsasften necessary to
introduce theory first. The lecture is divided up into stages, instead pfetsain order to emphasize
the possible variety of subjects in each stage.

The conception of this lecture is different from every treatment | knowaiticular, from William
Stein’s excellent book “Modular Forms: A Computational Approach” (i8)e Parts will, however,
be similar to notes of a series of 4 lectures that | gave at the MSRI Graduatesh'dp in Computa-
tional Number Theory “Computing With Modular Forms” ((MSRI]). We emplzaghe central role of
Hecke algebras and focus on the use of group cohomology, since onél@and it can be described in
very explicit and elementary terms and on the other hand already allowsiiliesdipn of the strong
machinery of homological algebra. We shall mention geometric approachem@assing.

Organisational issues will be discussed with all participants and decideth&ygn order to suit
everybody.
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Stage 1

Motivation and Survey

This section serves as an introduction to the topics that we are planningdaotb@/term. We will
briefly review the theory of modular forms and Hecke operators. Thewileefine the modular
symbols formalism and state the theorem by Eichler and Shimura establishing atlivéeim modular
forms and modular symbols. This link is the central ingredient for the findtqdahe lecture, since
the modular symbols algorithm for the computation of modular forms is entirelydoasé. In this
introduction, we shall already be able to give a brief outline of this algorithm.

In the second part of the introduction, we will state and explain the theorgi@kimura, Deligne
and Serre attaching a Galois representation to a Hecke eigenform. Thennmoheber theoretic
significance of modular forms arises from these theorems (e.g. the roledoflandorms in the proof
of Fermat's Last Theorem). We will also sketch which number theoreticrimdition can be obtained
from computing modular forms.

In the practically oriented part of the lecture, we shall introduce the compidebra systems
MAGMA and S\GE and also show how to use the modular forms and modular symbols packages that
are already provided by these systems.

1.1 Theory: Brief review of modular forms and Hecke operators

Congruence subgroups

We first recall the standard congruence subgrouig.efZ). By N we shall always denote a positive
integer.
Consider the group homomorphism

SLy(Z) — SLo(Z/NZ).

By Exercise 1 it is surjective. Its kernel is call€dN). The groupSLy(Z/NZ) acts naturally on
(Z/N7Z)? (by multiplying the matrix with a vector). In particular, the m8py(Z/NZ) — (Z/NZ)?
givenby(25) — (25) () = (%) takes all(%) € (Z/NZ)? as image such that c generatéZ/NZ
(that's due to the determinant beiiy We also point out that the image can and should be viewed as

6



1.1. THEORY: BRIEF REVIEW OF MODULAR FORMS AND HECKE OPERATCR 7

the set of elements ifZ/NZ)? which are of precise (additive) ordéf. We consider the stabiliser
of (§). We define the group'; (V) as the preimage of that stabiliser groupSih, (Z). Explicitly,
this means thdf (V) consists of those matrices#i.,(Z) whose reduction modul® is of the form
(57)-

The groupSL»(Z/NZ) also acts oP*(Z/NZ), the projective line oveZ/NZ which one can
define as the tuple& : ¢) with a,c € Z/NZ such that(a,c) = Z/NZ modulo the equivalence
relation given by multiplication by an element@/NZ)*. The action is the natural one (we should
actually view(a : ¢) as a column vector, as above). The preimag®lin(Z) of the stabiliser group
of (1 : 0) is calledT'o(INV). Explicitly, it consists of those matrices 81.5(Z) whose reduction is of
the form(§ % ). We also point out that the quotient 8f.2(Z/NZ) modulo the stabiliser ofl : 0)
corresponds to the set of cyclic subgroups of precise axdier SL,(Z/NZ). These observations are
at the base of defining level structures for elliptic curves (see [MF]).

Itis clear that
(25)—e
_

Lo(N)/T1(N) (Z/NZ)*

is a group isomorphism. We also let
x:(Z/NZ)* — C*

denote a character, i.e. a group homomorphism. We shall exteioda map(Z/NZ) — C by
imposingx(r) = 0if (r, N) # 1.
By class field theory or Exercise 2 we have the isomorphism

Cal(Q(¢y)/Q) =22 (z/NZ)

for all primesl 1 N. By (x we denote any primitivéV-th root of unity. We shall, thus, later on also
considery as a character adkal(Q({x)/Q). The nameDirichlet character(here ofmodulusN) is
common usage for both.

Modular forms

We now recall the definitions of modular forms. We denotetbthe upper half plane, i.e. the set
{z € C|Im(z) > 0}. The set of cusps is by definitidh' (Q) = Q U {cc}.
ForM = (¢ %) aninteger matrix with non-zero determinant, an intégand a functiory : H —

C, we put
a,'<:+b>det(M)k_1
cz+d (cz+d)k -

(fleM)(2) = (fFIM)(2) := f(
Fix integersk and N > 1. A function
f-H—-C

given by a convergent power series (thg f) are complex numbers)

[e.e]

f(z)= Z an(f) (™) = Z ang™ With g(z) = 2™
n=0

n=0
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is called amodular form of weighk for I'; (V) if

(i) the function(f|x (24))(z) = f(%%5)(cz + d)~* is a holomorphic function (still froni to C)

for all (g 3) € SLy(Z) (this condition is called is holomorphic at the cusp/c), and

(@) (fle (25)(2) = f(E5D ez +d)™" = f(z) forall (2 4) € T1(N).
We use the notatioll ("1 (N) ; C). If we replace (i) by

(i) the function (f[, (24))(2) = f(%Eb)(cz + d)~" is a holomorphic function and the limit

f(gjjfl)(cz + d)~* is 0 whenz tends toico (we often just writexo),

then f is called acusp form For these, we introduce the notatigp(I';(N) ; C).
Let us now suppose that we are given a Dirichlet charagtefr modulusN as above. Then we
replace (ii) as follows:

@iy f(gzz—jr‘s)(cz +d)™% = x(d) f(z) forall (¢5) € [o(N).

Functions satisfying this condition are callewbdular formqrespectivelycusp formsf they satisfy
(1)) of weightk, charactery and levelN. The notationM (N, x ; C) (respectivelySx(N, x ; C))
will be used.

All these are finite dimensiondl-vector space and fat > 2, there are dimension formulae,
which one can look up in [Stein]. We, however, point the reader to thettiat for & = 1 nearly
nothing about the dimension is known (except that it is smaller than the tespdenension for
k = 2; itis believed to be much smaller, but only very weak results are known td. date

Hecke operators

At the base of everything that we will do with modular forms are the Heckeatges and the diamond
operators. One should really define them conceptually, as we haverdfME]. Here is a definition
by formulae.

If a is an integer coprime t&, by Exercise B we may let, be a matrix inl’o(N) such that

Og = (aal 2) mod N. (1.1.1)

We define thediamond operatofa) (you see the diamond in the notation, with some phantasy)
by the formula
(a)f = flkoa
If f € Mg(N,x; C), then we have by definitioa) f = x(a)f. The diamond operators give a
group action of(Z/NZ)* on M (I'1(N); C) and onS(I';(N); C), and theMy(N, x; C) and
Sk(N, x; C) are they-eigenspaces for this action.
Let] be a prime. We let

Ry = {(

dryo<r<i—1yu{o (49}, if 11N (1.1.2)
Ri={(s

J0<r<i-1}, ifl| N (1.1.3)

r
l
r
l
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We use these sets to define thecke operatofl; acting of f as above as follows:

Ty =Tif = ) flid.

SER,
Lemma 1.1.1 Supposef € My(N, x; C). Recall that we have extendgdso thaty(l) = 0 if {

dividesN. We have the formula

an(T’lf) = aln(f) + lk_lX(l)an/l(f)'
In the formulaa,, ;;(f) is to be read a$ if I does not divide:.

Proof. Exercise 4. O

The Hecke operators for compositean be defined as follows (we fIit to be the identity):
o Tjri1 =Ty o Tjr — IF=Y(1)T}»—1 for all primes] andr > 1,
e T, =T, o T, for coprime positive integers, v.
We derive the very important formula (valid for every
a1(Tnf) = an(f). (1.1.4)

It is the only formula that we will really need.

From the above formulae it is also evident that the Hecke operators commatgane another.
By Exercise 5 eigenspaces for a collection of operators (i.e. each dlehargiven set of Hecke
operators acts by scalar multiplication) are respected by all Hecke opgerétence, it makes sense
to consider modular forms which are eigenvectors for every HecketipeThese are callddecke
eigenformsor often justeigenforms Such an eigenforn is callednormalisedf a,(f) = 1.

We shall consider eigenforms in more detail in the following stage.

Finally, let us point out the formula (fdrprime and = d mod N)

F=Yd)y = T? — Tpe. (1.1.5)

Hence, the diamond operators can be expressédlimear combinations of Hecke operators. Note
that divisibility is no trouble since we may choadgels, both congruent td modulo N satisfying an
equationl = [¥~1r 4+ k-1,

Hecke algebras and the;-pairing

We now quickly introduce the concept of Hecke algebras. It will be tceatenore detail in later
sections. In fact, when we claim to compute modular forms with the modular symlgoisthm, we

are really computing Hecke algebras. In the couple of lines to follow, weeber, show that the
Hecke algebra is the dual of modular forms, and hence all knowledgé atmdular forms can - in
principal - be derived from the Hecke algebra.
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For the moment, we define tiitecke algebraf M (I'; (V) ; C) as the suli=-algebra inside the
endomorphism ring of th€-vector spacé;(I';(N); C) generated by all Hecke operators and all
diamond operators. We make similar definitionsSp(T'; (V) ; C), Mg (N, x; C) andSk(N, x ; C).
Let us introduce the notations

Te(Mg(T1(N) ;5 C)), Te(Sk(T'1(N) 5 €)), Te(Mi(N, x5 C)) andTe(Sk (N, x ; C)),

respectively.
We now define a bilinear pairing, which | call tieomplex)y-pairing, as

Mk(N7X7 C) X TC(Mk(Nv)(v (C)) - (Cv (f? T) = al(Tf>
(compare with Equation 1.1.4).

Lemma 1.1.2 Suppose: > 1. The complex-pairing is perfect, as is the analogous pairing for
Sk(N, x; C). In particular,

M (N, x; C) = Home (Te(Mg(N, x; €)),C), [ (T'— ai(Tf))

and similarly forS; (N, x ; C). For Sg(N, x ; C), the inverse is given by — > "> | o(T},)q".

Proof. Let us first recall that a pairing over a field is perfect if and only if it i;irtegenerate.

That is what we are going to check. It follows from Equation 1.1.4 like thiforlall n» we have) =

a1 (T f) = an(f), thenf = 0 (this is immediately clear for cusp forms; for general modular forms at

the first place we can only conclude thjais a constant, but sinde > 1, non-zero constants are not

modular forms). Conversely, if; (T'f) = 0 for all f, thena,(T(T,.f)) = a1(TTf) = an(T'f) =0

for all f and alln, whenceT' f = 0 for all f. As the Hecke algebra is defined as a subring in the

endomorphism oMy (N, x ; C) (resp. the cusp forms), we fifl = 0, proving the non-degeneracy.
a

The perfectness of thepairing is also called thexistence of g-expansion principle

’The Hecke algebra is the linear dual of the space of modular f¢rms.

Lemma 1.1.3 Let f in My ("1 (V) ; C) be a normalised eigenform. Then
T.f =an(f)f forallneN.
Moreover, the natural map from the above duality gives a bijection
{Normalised eigenforms iNl,(I';(N) ; C)} < Homc_aig(Tc(Mg(I'1 (V) ; C)),C).

Similar results hold, of course, also in the presencg.of

Proof. Exercise 6. O
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1.2 Theory: The modular symbols formalism

In this section we give a definition of formal modular symbols, as implementedaamA and like
the one in|[MerelUniversal], [Cremona] and [Stein], except that wendt factor out torsion, but
intend a common treatment for all rings.

Contrary to the texts just mentioned, we prefer to work with the group

PSLy(Z) = SL2(Z)/{-1),

since it will make some of the algebra much simpler and since it has a very singagpdien as a
free product (see later). The definitions of modular forms could hage fesmulated usin®SLy(Z)
instead ofSL2(Z), too (Exercise 7).

We introduce some definitions and notations to be used in all the lecture.

Definition 1.2.1 Let R be a ring,I" a group andV" a left R[I']-module. Tha-invariants of\” are by
definition
Vi ={veV]jgv=vVgel}CV.
TheI'-coinvariants ofl” are by definition
Ve =V/(v—guvlgeTl).
If H < T'is afinite subgroup, we define the normibfas
Ny =Y _ he R[]
heH

Similarly, if g € T is an element of finite ordet, we define the norm gfas

n—1

Ny =Ny => g €R[L].
=0

Please look at the important Exerdise 8 for some properties of these dafinlii@ shall make use
of the results of this exercise in the section on group cohomology andlgyadigao at other places.

For the rest of this section, we I&be a commutative ring with unit afddbe a subgroup of finite
index inPSLy(Z). For the time being we allow general modules; so wé/léte a leftR[I"]-module.

Definition 1.2.2 We define th&k-modules

Mg := R[{a, B}|, 8 € PH(Q)]/({e, a}, {a, B} + {B,7} + {7, a}|a, B,7 € P(Q))
and
Br := R[P'(Q)].
We equip both with the natural Ieftaction. Furthermore, we let

Mp(V) = MrorV and Bgr(V):=Br®rV

for the left diagonal'-action.
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(a) We call thel’-coinvariants
Mg, V) = Mg(V)r = Mgr(V)/((x — gz)lg € T, 2 € Mg(V))
the space ofI", V')-modular symbols.

(b) We call thel’-coinvariants
Br(L,V) := Br(V)r = Br(V)/((x — gz)|lg € T,z € Br(V))
the space ofl", V')-boundary symbols.

(c) We define thboundary mags the map
MR(Fv V) - BR(Fv V)
which is induced from the mapt1r — Bg sending{«, 3} to {3} — {a}.

(d) The kernel of the boundary map is denoted’y z(I", V') and is calledthe space of cuspidal
(I, V')-modular symbols.

(e) The image of the boundary map insifig(I", V) is denoted bz (I", V') and is calledthe space
of (T', V')-Eisenstein symbols.

The reader is now invited to prove that the definitionidfz (I", V') behaves well with respect to
base change (Exercise 9).

The modulesV,,(R) and V.X(R)

Let R be a ring. We put/,(R) = R[X,Y], = Sym"(R?) (see Exercise 10). BR[X, Y], we
mean the homogeneous polynomials of degrée two variables with coefficients in the ring. By
Mats(Z)-o we denote theZ-module of integrak x 2-matrices with non-zero determinant. Then
Vi (R) is aMatg(Z)o-module in several natural ways.

One can give it the structure of a léffat,(Z)_.o-module via the polynomials by putting

((22).NHNXY)=F((X.Y)(28)) = f((aX + cY,bX +dY)).

Merel and Stein, however, consider a different one, and that's teeimplemented in MGMA,
namely

((28) - NEGY) = FIeEN (X)) = F((L2) () = F((5305)).

Here,. denotes Shimura’s main involution whose definition can be read off from te@bove (note
that M* is the inverse of\/ if M has determinarnit). Fortunately, both actions are isomorphic due to
the fact that the transpose @f¢ %)) () is equal to(X,Y)o ™! (2 %) 0. More precisely, we have
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»—»o’fl. . . .
the ismorphisnV/, (R) Eint G N V.(R), where the left hand side module carries "our" action and the
right hand side module carries the other one.oBY. f we mean "our's—!.f.
Of course, there is also a natural right actionNdyts(Z)_o, namely

(£ (EODE)) = F((28) () = ATy )-

By the standard inversion trick, also both left actions desribed aboveecaurned into right ones.
Let now(Z/NZ)* — R* be a Dirichlet character, which we shall also consider as a character

ab
X : To(V) M (Z/NZ)* % R*. By RX we denote the?[I'( NV )]-module which is defined to
be R with the'o(N)-action throughy, i.e. (2 4) .r = x(a)r = x}(d)r for (¢4) € To(N).
Note that due tdZ/NZ)* being an abelian group, the same formula mak&salso into a right
R[Io(N)]-module. Hence, puttingf @r). (¢4) = (flx (24))®(24) r makesM,(I'1 (N) ; C)®¢
CX into a rightT'g(N)-module and we have the description (Exercise 11)

Mi(N, x; C) = (My(T'1(N) ; C) ®¢ CX)#/ND* (1.2.6)

and similarly forS, (N, x ; C).
We let
VX(R) := Vi (R) ®@p RX

n

equipped with the diagonal lefty(/V)-action. Note that unfortunately this module is in general not
an SLy(Z)-module, but we will not need that. Note, moreover, that(if1) = (—1)", then minus
the identity acts trivially oV/,X(R), whence we consider this module also d%&V)/{+1}-module.

The modular symbols formalism for standard congruence subgoups

We now specialise the general set-up on modular symbols that we havews$adto the precise
situation needed for establishing relations with modular forms.
So we letN > 1, £ > 2 be integers and fix a character: (Z/NZ)* — R*, which we also
sometimes view as a group homomorphi§gaiN) — R* as above. We impose that—1) = (—1)*.
We define
Mi(N,x; R) == Mp(To(N) {1}, Vi, (R)),

CMk(Nv X3 R) = CMR(FO(N)/{j:l}? VkX—Q(R))7
Bi(N,x; R) := Br(Do(N)/{£1}, ;¥ ,(R))

and
E(N, x5 R) = ER(To(N)/{£1}, V4 (R)).

We make the obvious analogous definitionsAdy, (T'; (V) ; R) etc.
Letn:= (' 9). Because of

o= (o)
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we have
nC1(N)n =T1(N) and nlo(N)n=To(N).

We can use the matrix to define an involution (also denoted hyon the various modular symbols
spaces. We just use the diagonal actionMd (V) := Mpr @ V, provided, of course, that acts
onV. OnV;_s(R) we use the usudilaty(Z)4o-action, and orV}* ,(R) = Viy_2(R) ® RX we let
n only act on the first factor. We will denote by the supersctighe subspace invariant under this
involution, and by the superscriptthe anti-invariant one. We point out that there are other very good
definitions of+-spaces and--spaces. For instance, in many applications it can be of adavantage
to define thet+-space as the-coinvariants, rather than thginvariants. In particular, for modular
symbols, where we are using quotients and coinvariants all the time, this dlitemefinition is more
suitable. The reader should just think about the differences betwessmtilie definitions.

Note that here we are not following the conventions of [Stein], p. 14.a0tion just seems more
natural than adding an extra minus sign.

Hecke operators

The aim of this part is to state the definition of Hecke operators and diamardtops on formal
modular symbolsM (N, x; R) andCM (N, x; R). One immediately sees that it is very similar
to the one on modular forms. One can get a different insight in the definimgulae by seeing how
they are derived from a “Hecke correspondence like” formulation irsdation on Hecke operators
on group cohomology.

The definition given here is also explained in detail in [Stein]. We shouldraksation the very
important fact that one can transfer Hecke operators in an explicit wigaton symbols. Also that
point is discussed in detail in [Stein].

We now give the definition only fdf; for a primel and diamond operators. THg for composite
n can be computed from those by the formulae already stated in the beginniotice that the
R[To(IN)]-action onV;* ,(R) (for the usual conventions, in particulag(—1) = (—1)*) extends
naturally to an action of the semi-group generated’p{/V) andR; (see Equation 1.1.2). Thus, this
semi-group acts oMM (NN, x ; R) (and the cusp space) by the diagonal action on the tensor product.
Letz € Mi(I'1(N); R) orx € My(N,x; R). We put

Tyx = Z 4.x7.
dER,

If a is an integer coprime t&/, we define the diamond operator as
(a)r = oz

with o, as in Equation 1.1.1. Whene M (N, x; R), we have(a)x = x(a)z.

As in the section on Hecke operators on modular forms, we define Heogbratgon modular
symbols in a very similar way. We will take the freedom of taking arbitrary bamgs (we will do
that for modular forms in the next stage, t00).
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Thus for any ringR we letTr(My(I'1(n); R)) be theR-subalgebra of thé&k-endomorphism
algebra ofM(I";1(n) ; R) generated by the Hecke operat@is For a charactex : Z/NZ — R*,
we make a similar definition. We also make a similar definition for the cuspidal anbsmd the--
and—-spaces.

The following fact will be obvious from the description of modular symbol$/&sin symbols,
which will be derived in a later chapter. Here, we already want to use it.

Fact 1.2.3 The R-modulesM(I'1(N); R), CMi(I'1(N); R), Mi(N, x; R) andCM(N, x; R)
are finitely presented-modules.

Corollary 1.2.4 Let R be a Noetherian ring. The Hecke algebras
Tr(ME(T1(N); R)), TR(CMi(T1(N); R)), TR(Mr(N, x; R)) andTr(CM (N, x; R))
are finitely presented®-modules.

Proof. This follows from Fact 1.2.3, since the endomorphism ring of a finitely ptesemodule
is finitely presented and submodules of finitely presented modules overéfiagthings are finitely
presented. O

This very innocent looking corollary will give - together with the EichleBtra isomorphism -
that coefficient fields of normalised eigenforms are number fields. Wepnexe that the formation
of Hecke algebras for modular symbols behaves well with respect teffetdthange. We should have
in mind the examplé? = Z or R = Z[x]| andS = C.

Proposition 1.2.5 Let R be a Noetherian ring and&® — S a flat ring homomorphism.

(a) The natural map
Tr(Mk(T'1(N); R)) @r S = Ts(My(I'1(N); S))

is an isomorphism.
(b) The natural map
Homp(Tr(Mi(T1(N); R)), R) ®r S = Homg(Ts(Mp(I'1(N); 5)),5)
is an isomorphism.
(c) The map

o (T@5—(T)s)

HomR(TR(Mk(Fl(N) ; R)), S) HOmS(TR(Mk(Fl(N) ; R)) ®Rr S, S)

is also an isomorphism.
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(d) Suppose in addition that is an integral domain and' a field extension of the field of fractions
of R. Then the natural map

Tr(Mg(T1(N); R) ®r S — Tr(Mg(T'1(N); S)) ®r S
is an isomorphism.

For a charactery : (Z/NZ)* — R*, similar results hold. Similar statements also hold for the
cuspidal subspace.

Proof. We only prove the proposition fav/ := M (T'1(N); R). The arguments are exactly the
same in the other cases.
(a) By Exercise 9 it suffices to prove

TR(M) Qpr S = Ts(M QR S)
Due to flatness and the finite presentatiolfthe natural homomorphism
EndR(M) Rpr S — Ends(M QR S)

is an isomorphism (see [Eisenbud], Prop. 2.10). By definition, the HalgebraTr (M) is an R-
submodule oEindr(M). As injections are preserved by flat morphisms, we obtain the injection

TR(M) Qr S — EndR(M) Qpr S = Ends(M KRR S)

The image is equal ti's (M @ S), since all Hecke operators are hit, establishing (a).

(b) follows from the same citation from [Eisenbud] as above.

(c) Suppose that under the map from Statement (€)Hompz(Tr (M), S) is mapped to the zero
map. Thenp(T)s = 0 for all T"and alls € S. In particular withs = 1 we gete(7") = 0 for all
T, whenceg is the zero map, showing injectivity. Suppose now that Homg(Tr(M) ®gr S, S)
is given. Cally the compositél'zr(M) — Tr(M) ®r S Y. s. Thenv is the image of, showing
surjectivity.

(d) We first define

N :=ker (M 222180 0 @ S).
We claim thatV consists only ofR-torsion elements. Let € N. Thenz ® 1 = 0. If rz # 0 for all
r € R — {0}, then the magk == N is injective. We callF" the image to indicate that it is a free
R-module. Consider the exact sequencé&ahodules:

0—-F—M-—M/F—DO.
From flatness we get the exact sequence

0—-F®rS—-M@rS— M/F®rS— 0.
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But, ' ®r S is 0, since itis generated hy® 1 € M ®g S. However,F' is free, whence” Ry S is
alsoS. This contradiction shows that there is some R — {0} with rz = 0.

As N is finitely generated, there is somec R — {0} such thatrN = 0. Moreover, N is
characterised as the set of elements M such thatrx = 0. For, we already know that € N
satisfies'z = 0. If, converselyyx = 0withz € M,then0 =rz @ 1/r=2® 1€ M Qg S.

Every R-linear (Hecke) operatdf’ on M clearly restricts taV, sincerTn = Trn = T0 = 0.
Suppose now thal' acts a$) on M ®p S. We claim that themT = 0 on all of M. Letm € M. We
have0 = T'mm = 7T'm. ThusT'm € N and, soyTm = 0, as claimed. In other words, the kernel of
the homomorphisiTr(M) — Tr(M ®r S) is killed by r. This homomorphism is surjective, since
by definitionTr(M ®r S) is generated by all Hecke operators acting\dre ; S. Tensoring withS
kills the torsion and the statement follows. O

Some words of warning are necessary. It is essentialRhat S is a flat homomorphism. A
similar result forZ — T, is not true in general. | call this a "faithfulness problem"”, since then
M (T'1(N); Fp) is not a faithful module foflz (M (I'1(N); C)) ®z F,. Some effort goes into
finding k and V, where this module is faithful.

Moreover,M(I'1(N) ; R) need not be a freB-module and can contain torsion. We will later in
the lecture calculate this torsion, at least for certain riRgs

Please have a look at Exercise 12 now to find out whether one can use émel the—-space in
the proposition.

1.3 Theory: The modular symbols algorithm

The Eichler-Shimura theorem

At the basis of the modular symbols algorithm is the following theorem by Eicieich was ex-
tended by Shimura. One of our aims in this lecture is to provide a proof for thisnintroduction,
however, we only state it and indicate how the modular symbols algorithm caderlved from it.

Theorem 1.3.1 (Eichler-Shimura) There are isomorphisms respecting the Hecke operators
(@) My(N, x; C)) @ Sp(N,x; C)Y = My(N, x; C),

(b) Sk(N., x; C)) & Sk(N, x; C)¥ = CM(N, x; C),

(©) Sk(N,x; C) = CMi(N,x; C)*.

Similar isomorphisms hold for modular forms and modular symbols,dV) andI'g (V).

Proof. Later in this lecture. Those who already want to have an indication aboytrtioé are
referred to/[Diamond-Im], Theorem 12.2.2. There the language ofpgrcohomology is used, as we
will do in this lecture. So, the reader should believe the fact - to be provedthas lecture, too - that
the group cohomology in [Diamond-Im] coincides with the modular symbols. O
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The following corollary of the Eichler-Shimura theorem is of utmost importdocthe theory of
modular forms. It says that Hecke algebras of modular forms have amahgtgucture (takek = Z
or R = Z[x]). We will say more on this topic in the next stage.

Corollary 1.3.2 Let R be a subring ofC andy : (Z/NZ)* — R* a character. Then the natural
map
Tr(Mi(N, x; C)) ®r C = Te(Mg(N, x; C))

is an isomorphism. A similar result holds b (/V) without a character and also fdry(N).

Proof. We only prove this for the full space of modular forms. The argumentsufsp éorms are
very similar. Theorem 1.3.1 tells us that tRealgebra generated by the Hecke operators inside the
endomorphism ring oMy (N, x ; C) equals theR-algebra generated by the Hecke operators inside
the endomorphism ring of1 (N, x; C). i.e.

Tr(Mg(N, x; C)) = Tr(Mi(N, x; C)).

To see this, one just need to see that the algebra generatd@(dv, x ; C)) ¢ Si(V, x; C) is the
same as the one generatedMp(N, x ; C)), which follows from the fact that if som& annihilates
the full space of modular forms, then it also annihilates the dual of the pasjes

Tensoring withC we get

Tr(Mg(N, x; C)) ®r C = Tr(Mi(N,x; C)) @g C = Te(My(N, x; C)) = Te(Mg(N,x; C)),

using Proposition 1.2.5 (d) and again Theorem 1.3.1. O

The next corollary is at the base of the modular symbols algorithm, sincedtiles modular
forms in linear algebra terms involving only modular symbols.

Corollary 1.3.3 Let R be a subring ofC andx : (Z/NZ)* — R* a character. Then

(@) Mg(N, x; C) = Homp(Tr(Mi(N, x; R)), R) @r C = Homp(Tr(Mk(N, x; R)),C) and
(b) Sk(N,x; C) = Homp(Tr(CMy(N, x; R)), R) ®r C = Homp(Tr(CMi(N, x; R)),C).
Similar results hold fol*; (V) without a character and also fdry(V).

Proof. This follows from Corollary 1.3.2, Proposition 1.2.5 and Lemma 1.1.2. O

Please look at Exercise 13 to find out which statement should be includethistoorollary
concerning ther-spaces. Here is another important consequence of the Eichler-Shireoram.

Corollary 1.3.4 Let f = >">°, a,(f)g™ € Sk(T'1(V); C) be a normalised Hecke eigenform. Then
Qf := Q(an(f)|n € N) is a number field of degree less than or equadimc Sy (I'1 (V) ; C).

If f has Dirichlet charactery, thenQ; is a finite field extension @@ () of degree less than or
equal todime Sk (N, x; C). HereQ(x) is the extension df generated by all the values gf



1.3. THEORY: THE MODULAR SYMBOLS ALGORITHM 19

Proof. It suffices to apply the previous corollaries with= Q or R = Q(x) and to remember that
normalised Hecke eigenforms correspond to algebra homomorphisms fedtethke algebra int@.
O

Sketch of the modular symbols algorithm

It may now already be quite clear how the modular symbols algorithm for congpatiap forms
proceeds. We give a very short sketch.

Algorithm 1.3.5 Input: A field K C C, integers N > 1, k > 2, P, a character x : (Z/N7Z)* —
K*.

Output: A basis of the space of cusp forms Si (N, x ; C); each form is given by its standard
g-expansion with precision P.

(1) Create M := CMy(N, x; K).

(2) L < [] (empty list), n «— 1.

(3) repeat

4) Compute T}, on M.

(5) Join T;, to the list L.

(6) T « the K-algebra generated by all T' € L.
7 n«—n+1

(8) until dim (T) = dimg Sg(N, x; C)

(9) Compute a K-basis B of T.
(10) Compute the basis BY of TV dual to B.
(11) for ¢ in BY do
(12) Output Y1, 6(Ty)q" € Klq).
(13) end for.

We should make a couple of remarks concerning this algorithm. Please remthaiothere are
dimension formulae fof; (N, x ; C). In last term’s lecture [MF] we gave some of them. The general
case can be looked up in [Stein].

It is clear that the repeat-until loop will stop, due to Corollary 1.3.3. We c@m give an upper
bound as to when it stops at the latest. That is the so-called Sturm bouinth, wi also treated in
last term’s course [MF] in some cases (even weights, no charactert tbegormulation here, one
should plug in the formula used in the proof of Lemma 3.3.33 into the Sturm bdusatp 3.3.37).
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Proposition 1.3.6 (Sturm) Let f € Mg (N, x; C) such thata,(f) = 0 for all n < %‘ where

B= NHl|N prime(1 + %)
Thenf = 0.

Proof. Apply Corollary 9.20 of [Stein] withm = (0). O

Corollary 1.3.7 Let K, N, x etc. as in the algorithm. Théefix (CM (N, x; K)) can be generated
as aK-vector space by the operataf$, 7o, . .., Thu.
12

Proof. Exerciseé 14. O

We shall see later how to compute eigenforms and how to decompose thetpamtular forms
in a "sensible" way.

1.4 Theory: Number theoretic applications

Galois representations attached to eigenforms

We mention the sad fact that until 2006 only the one-dimensional repréisestaf Gal(Q/Q) were
well understood. In the case of finite image one can use the Kroneokieentheorem, which asserts
that any cyclic extension d is contained in a cyclotomic field. This is generalised by global class
field theory to one-dimensional representation§ief(Q/ K) for each number field . Since we now
have Serre’s conjecture (a theorem by Khare, Wintenberger and Kisiralso know a little bit about
2-dimensional representations Gt1(Q/Q), but, replacingQ by any other number field, all one has
is conjectures.

[Added an explanation of thg-cyclotomic character, the notion of unramified primes of Galois
representations and Frobenius elements.]

The great importance of modular forms for modern number theory is due fadh#hat one may
attach a&2-dimensional representation of the Galois group of the rationals to eastahsed cuspidal
eigenform. The following theorem is due to Shimurafoe 2 and due to Deligne fok > 2.

Theorem 1.4.1Letk > 2, N > 1, p a prime not dividingV, andx : (Z/NZ)* — C* a character.
Then to any normalised eigenforfne Si(V, x; C) with f = >~ -, a,(f)q" one can attach a
Galois representation, i.e. a continuous group homomorphism,

Py Gal(@/@) — GLQ(@p)
such that
(i) pyisirreducible,

(i) ps(c) = —1 for any complex conjugatione Gal(Q/Q) (one says thap; is odd),
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(iii) for all primes ! { Np the representatiop is unramified at,

Tr(pg(Froby)) = ai(f) and  det(py(Froby)) = e(1)* " x(1).
In the statementrob; denotes a Frobenius element/agnde, is thep-cyclotomic character.

By choosing a lattice ifGL,(Q,) containingp(Gal(Q/Q)), and applying reduction and semi-
simplification one obtains the following consequence.

Theorem 1.4.2Letk > 2, N > 1, p a prime not dividingV, andx : (Z/NZ)* — F; a character.

Then to any normalised eigenforfne S, (N, x; C) with f = > -, a,(f)¢" and to any prime
ideal B of the ring of integers of); = Q(a(f) : n € N) with residue characteristip, one can
attach a Galois representation, i.e. a continuous group homomorphisnth@gadiscrete topology on
GLZ(FP»'

py : Gal(Q/Q) — GLa(F,)

such that

(i) pyis semi-simple,

(i) pg(c) = —1 for any complex conjugatione Gal(Q/Q) (one says thap; is odd),
(iii) for all primes { { Np the representatiop is unramified at,

Tr(p;(Frob;)) = a;(f) mod P and det(p;(Frob;)) = 1*7'x(1) mod P.

Translation to number fields

Proposition 1.4.3 Let f, Q, 8 andp be as in Theorem 1.4.2. Then the following hold:
(a) The image op; is finite and its image is contained Ly (F),-) for somer.

(b) The kernel op is an open subgroup @al(Q/Q) and is hence of the foral(Q/K) for some
Galois number field<. Thus, we can and do considéal(K/Q) as a subgroup ofLa (Fyr).

(c) The characteristic polynomial &trob; (more precisely, ofrob, ,, for any primeA of K dividing
1) is equal toX? — a;(f)X + x(1)I*~* mod ‘B for all primesi { Np.

Proof. Exercise 15. O

To appreciate the information obtained from théf) mod ‘B, the reader is invited to do Exer-

cise 16 now.
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Images of Galois representations

One can also often tell what the Galois grodpl(K/Q) is as an abstract group. This is what the
problems are concerned with. There are not so many possibilites, asewfeose the following
theorem.

Theorem 1.4.4 (Dickson)Letp be a prime and a finite subgroup oPGL»(F,). Then a conjugate
of H is isomorphic to one of the following groups:

o finite subgroups of the upper triangular matrices,
e PSLy(F,) or PGLy(F,r) forr € N,

e dihedral groupsD,. for r € N not divisible byp,

o Ay, Asor Sy.

For modular forms there are several results mostly by Ribet concernirgydbes that occur as
images. Roughly speaking, they say that the image is "as big as possibiEhfost allp3 (for a
given f). For modular forms without CM and inner twists (to be defined later) this miau ¥ G is
the image, therd¥ modulo scalars is equal #SLy(FF,-) or PGLy(F,-), whereF - is the extension
of F,, generated by the, (f) mod . More precise results will be given later.

An interesting question is to study which groups (i.e. whit$LL,(F,)) occur in practice. It
would be nice to prove that all of them do, since - surprisingly - the simpleggBSL, (F,-) are still
resisting a lot to all efforts to realise them as Galois groups Qvar the context of inverse Galois
theory.

Serre’s conjecture

If time allows, we plan to explain this topic in more detail in the second part of thisriec
Serre’s conjecture is the following. Letbe a prime ang : Gal(Q/Q) — GL(F,) be a
continuous, odd, irreducible representation.

e Let IV, be the (outside gp) conductor ofp (defined by a formula analogous to the formula for
the Artin conductor, except that the local factor fais dropped).

e Letk, be the integer defined by [Serre].

e Lety, be the prime-tgs part ofdet op considered as a charactéi/N,Z)* x (Z/pZ)* — IF;.

Conjecture 1.4.5 (Serre) Let p be a prime and : Gal(Q/Q) — GL»(F,) be a continuous, odd,
irreducible representation. Defin¥,, k(p), k, and x, as above.

e (Strong form) There exists a normalised eigenfgrm Sy (N,, X, ; F,)
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e (Weak form) There exis¥, k, y and a normalised eigenforth € Si(N, x; F,)
such thatp is isomorphic to the Galois representation
ps : Gal(Q/Q) — GLa(F,)

attached tof by Theorem 1.4.2.

It is known that the weak form implies the strong form. However, there israrigest” form with
a slightly different definition of weight. There is still an open casepfer 2 for the strongest form.
As mentioned above, Serre’s conjecture is now a theorem by Khare,Werger and Kisin.

Serre’s conjecture implies that we can compute (in principle, at least) arithpreperties
of all Galois representations of the type in Serre’s conjecture by comphéngodp Hecke
eigenform it comes from.

Conceptually, Serre’s conjecture gives an explicit description of atlircible, odd and
continuous "mod" representations oftal(Q/Q) and, thus, in a sense generalises dlass
field theory.

Edixhoven and coworkers have recently succeeded in giving anithlgowhich computes the
actual Galois representation attached to a madodular form. Hence, with Serre’s conjecture we
have a way of - in principle - obtaining all information @rdimensional irreducible, odd continuous
representations dkal(Q/Q).

1.5 Theory: Exercises
Exercise 1 (a) The group homomorphism
SLy(Z) — SLy(Z/NZ)
given by reducing the matrices modulbis surjective.

(b) Check the bijections
SLa(Z)/T1(N) = {(¢) [{a,c) = Z/NZ}

and
SLa(Z)/To(N) = P1(Z/NZ),

which were given in the beginning.

Exercise 2 Let V be an integer and € C any primitiven-th root of unity. Prove that the map

Gal(Q(¢y)/Q) =22 (/N Z)

(for all primes! t N) is an isomorphism.
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Exercise 3 Prove that a matrix, as in Equation 1.1.1 exists.
Exercise 4 Proof Lemma 1.1.1.

Exercise 5 (a) Let K be a field,VV a vector space and}, T, two commuting endomorphisms16f
ie. 1T, = ToTy. Let\; € K and consider the\;-eigenspace df}, i.e.V; = {v|Tiv = A\v}.
Prove thatl;V; C 4.

(b) Suppose thatly(I';(k); C) is non-empty. Prove that it contains a Hecke eigenform.
Exercise 6 Prove Lemma 1.1.3.

Exercise 7 Check that it makes sense to repldtie,(Z) by PSLs(Z) in the definition of modular
forms.

Exercise 8 Let R be a ring,I" a group andV” a left R[I']-module.

(a) Define the augmentation ideBl by the exact sequence
0— Iy — R 25 R— 1.
Prove thatlp is the ideal inR[I'] generated by the elemerits- g for g € T.
(b) Conclude thait = V/IpV.
(c) Conclude thatt = R @pgr V.

(d) Suppose thaf = (T') is a cyclic group (either finite or infinite (isomorphic {@, +))). Prove
that I is the ideal generated byl — 7).

(e) Prove thaf’" = Hompry(R, V).

Exercise 9 Let R, I" andV as in Definition 1.2.2 and leR — S be a ring homomorphism.

(a) Prove that
MR(F, V) KRR S = ./\/ls(r, % KRR S)

(b) Supposét — S'is flat. Prove a similar statement for the cuspidal subspace.

(c) Are similar statements true for the boundary or the Eisenstein spaca? abut thet- and the
—-spaces?
Exercise 10 Prove that the map
Sym™(R?) — R[X,Y],, (3) @ @ (") = (@X +bY) (4, X +b,Y)

is an isomorphism, whergym”(R?) is the n-th symmetric power of2?, which is defined as the
quotient ofR? ®, - -- ® g R2 by the span of all elements ® - -+ ® v, — V(1) @+ @ Vy(yy for all

~~

n-times
o in the symmetric group on the lettefs, 2,...,n}.
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Exercise 11 Prove Equatiori.2.6.

Exercise 12 Can one use-- or —-spaces in Proposition 1.2.5? What could we say if we defined the
+-space asV//(1 — n) M with M standing for some space of modular symbols?

Exercise 13 Which statements in the spirit of Corollary 1.3.3 (b) are true for thepaces?
Exercise 14 Prove Corollary 1.3.7.
Exercise 15 Prove Propsition 1.4.3.

Exercise 16 In how far is a conjugacy class L, (IF,-) determined by its characteristic polyno-
mial?
LetG C GLy(F,-) be a subgroup. Same question as abovesor

1.6 Algorithms and Implementations: MAGMA and SAGE

Introduction to MAGMA

Please download the example file "Magmalntro" from the web page. It wigkipéained during the
lecture.

Introduction to SAGE

We shall not have time to presenh&k in detail. Please try to find the analogues of the topics pre-
sented for M\GMA yourself. The web pages foln8E are:

http://sage.apcocoa.org/

http://www.sagemath.org/

1.7 Algorithms and Implementations: Modular symbols in MAGMA

Please download the example file "ModularSymbols" from the web pagéll henexplained during
the lecture.

1.8 Computer exercises

Computer exercise 1(a) Create a listL of all primes in between 234325 and 3479854? How many
are there?

(b) Forn = 2,3,4,5,6,7,997 compute for each € Z/nZ how often it appears as a residue in the
list L.
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Computer exercise 21In this exercise you verify the validity of the prime number theorem.

(a) Write a functiorNunber O Pri mes with the following specifications. Input: Positive integers
a, b with @ < b. Output: The number of primes jn, b].

(b) Write a functionTot al Nurmber O Pri mes with the following specifications. Input: Positive
integersz, s. Outut: A list[ni,na,ns, ..., n,) such thatn, is the number of primes betweén
andi - s andm is the largest integer smaller than or equaligs.

(c) Compare the output ofot al Number O Pri mes with the predictions of the prime number
theorem: Make a function that returns the ljst, ro, ..., ] withr; = lozisi' Make a function
that computes the quotient of two lists of "numbers".

(d) Play with these functions. What do you observe?

Computer exercise 3Write a functionVal uesl nFi el d with: Input: a unitary polynomialf with
integer coefficients anél” a finite field. Output: the set of values pin K.

Computer exercise 4(a) Write a functionBi nar yExpansi on that computes the binary expan-
sion of a positive integer. Input: positive integer Output: list of0’s and 1's representing the
binary expansion.

(b) Write a functionExpo with: Input: two positive integers, b. Outputa®. You must not use the
in-built functiona®, but write a sensible algorithm making use of the binary expansion ©he
only arithmetic operations allowed are multiplications.

(c) Write similar functions using the expansion with respect to a generadas

Computer exercise 5In order to contemplate recursive algorithms, the monks in Hanoi usel&yo p
the following game. First they choose a degree of contemplation, i.e. a gositegern. Then they
create three lists:

Li:=nn—1,...,2/1]; Ly :=[]; L3 := [|;

The aim is to exchangk; and L. However, the monks may only perform the following step: Remove
the last element from one of the lists and append it to one of the other lisjscstdbthe important
condition that in all steps all three lists must be descending.

Contemplate how the monks can achieve their goal. Write a proc&lliagHanoi with inputn
that plays the game. After each step, print the number of the step, thdigtseend test whether all
lists are still descending.

[Hint: For recursive procedures, i.e. procedures calling themseleoag, must put the command
forward ny_procedur e in front of the definition ofry_pr ocedur e.]

Computer exercise 6 This exercise concerns the normalised cuspidal eigenforms in weightd
level23.
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(a) What is the number field generated by the coefficients of each of the two forms?

(b) Compute the characteristic polynomials of the first 100 Fourier cweffis of each of the two
forms.

(c) Write a function that for a given prime computes the reduction modyboof the characteristic
polynomials from the previous point and their factorisation.

(d) Now use modular symbols ovy for a givenp. Compare the results.

(e) Now do the same for weightand level37. In particular, try p = 2. What do you observe? What
could be the reason for this behaviour?

Computer exercise 7 Try to implement Algorithm 1.3.5.
If it is still too difficult, don’t worry. We will be getting there.

1.9 Self-learn module:

Those not familiar enough with the theory of modular forms are invited to readahkics on modular
forms.
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Computing Modular Forms



Stage 2

Hecke algebras

It is essential for studying arithmetic properties of modular forms to have sxibility for the
coefficient rings. For instance, when studying mo&alois representations attached to modular
forms, it is often easier and sometimes necessary to work with modular formsewtexpansions
already lie in a finite field. Moreover, the concept of congruences of taodorms only gets its
seemingly correct framework when working over rings such as extessitfinite fields or rings like
Z/p"Z.

There is a very strong theory of modular forms over a generalRitigat uses algebraic geometry
over R. One can, however, already get very far if one just defines modottarsf overR as theR-
linear dual of theZ-Hecke algebra of the holomorphic modular forms, i.e. by takhegpansions with
coefficients inR. In this lecture we shall only use this. Precise definitions will be given in a mame
A priori it is maybe not clear whether non-trivial modular forms witlexpansions in the integers
exist at all. The situation is as good as it could possibly be: the modular foithg@xpansion in
the integers form a lattice in the space of all modular forms (at least;fi@¥) andI'o(N); if we are
working with a Dirichlet character, the situation is slightly more involved). Thaigxtremely useful
and important fact, which we shall derive from the corollaries of the EieBlémura isomorphism
given in the previous stage.

Hecke algebras of modular forms ovRrare finitely generated aB-modules. This leads us to
a study, belonging to the theory of Commutative Algebra, of fifitalgebras, that isR-algebras
that are finitely generated d&-modules. We shall prove structure theorems, wheis a discrete
valuation ring or a finite field. Establishing back the connection with modular foweswill for
example see that the maximal ideals of Hecke algebras correspond to Gaipigacy classes of
normalised eigenforms, and, for instance, the notion of a congruendeecaxpressed as a maximal
prime containing two minimal ones.

29
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2.1 Theory: Hecke algebras and modular forms over rings

We start by recalling and slightly extending the concept of Hecke algetbrasdular forms. It is of
utmost importance for our treatment of modular forms over general ringjsheir computation. In
fact, as pointed out a couple of times, we will compute Hecke algebras dandautular forms. We
shall assume that > 1 and N > 1.

As in the introduction, we define thdecke algebraof My (I'; (V) ; C) as the subring (i.e. the
Z-algebra) inside the endomorphism ring of tBevector spaceV;(I'; (V) ; C) generated by all
Hecke operators. Remember that due to Formula |1.1.5 all diamond openstarsngained in the
Hecke algebra. Of course, we make similar definitionsSp(T';(N); C) and use the notations
Tz (My(T1(N) ; C)) andTz(S(T1(NV) ; ©)).

If we are working with modular forms with a character, we essentially haveptvgsibilities for
defining the Hecke algebra, namely, firstly as above aZihkyebra generated by all Hecke operators
inside the endomorphism ring of tii&vector spacél; (N, x ; C) (notationTz(M (N, x; C))) or,
secondly, as th&|x]-algebra generated by the Hecke operators inSig&- (M (N, x ; C)) (notation
Tz (Mg (N, x; €))); similarly for the cusp forms. Herg[y] is the ring extension o generated
by all values ofy, it is the integer ring of(x). For two reasons we prefer the second variant. The
first reason is that we needed to work o¥gx| (or its extensions) for modular symbols. The second
reason is that on the naturélstructure insidéM(I';(N); C) the decomposition intdZ/N7Z)*-
eigenspaces can only be made after a base changpo So, theC-dimension ofMy (N, x; C)
equals theQ[x]-dimension ofl g, (Mg (N, x ; C)) and not theQ-dimension ofl'g (M (N, x; C)).

Lemma 2.1.1 (a) TheZ-algebrasTz(Mg(T'1(N); C)) and Tz (Mg (N, x; C)) are freeZ-modules
of finite rank; the same holds for the cuspidal Hecke algebras.

(b) TheZ[x]-algebraTy, (Mg (N, x ; C)) is a torsion-free finitely generatéti x|-module; the same
holds for the cuspidal Hecke algebra.

Proof. (a) Due to the corollaries of the Eichler-Shimura theorem (Corallary 1.32mwow that
these algebras are finitely generatedZasmodules. As they lie inside a vector space, they are free
(using the structure theory of finitely generated modules over principall @ismains).

(b) This is like (a), except thék[x] need not be a principal ideal domain, so that we can only
conclude torsion-freeness, but not freeness. O

Modular forms over rings

Letk > 1andN > 1. Let R be anyZ-algebra (ring). We now use thepairing to define modular
(cusp) forms oveRR. We let

Mk(l“l(N) ’ R) = Homz(Tz(Mk(Fl(N) 5 (C)), R) = HomR(TZ(Mk(Fl(N) ) C)) K7z R, R)
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The isomorphism is proved precisely as in Proposition 1.2.5 (c), whereidvead use the flat-
ness assumption. Every elemehof My (I'1 (V) ; R) thus corresponds to A-linear function® :
Tz(My(I'1 (V) ; C)) — R and is uniquely identified by itormal g-expansion

= 0Tw)q" = an(f)q" € Rlq)l.

We note thaflz(My(I'; (N) ; C)) acts naturally oomy (T7z(Mg(T'1(N); C)), R), namely by
(T.@)(S) = O(TS) = (ST).

This means that the action &f; (M (I'1(N); C)) on My (I'1 (V) ; R) gives the same formulae as
usual on formal-expansions. For cusp forms we make the obvious analogous definition, i.e

Sk(I‘l(N) 3 R) = Homz(Tz(Sk(Fl(N) 3 (C)), R) = HomR(TZ(Sk(Fl(N) N (C)) ®Z R, R)

We caution the reader that for modular forms which are not cusp forme #iso ought to be
some(th coefficient in the formaj-expansion, for example, for recovering the classical holomorphic
g-expansion. Of course, for cusp forms we do not need to worry.

Now we turn our attention to modular forms with a character. ket (Z/NZ)* — C* be
a Dirichlet character and[y] — R a ring homomorphism. We now proceed analogously to the
treatment of modular symbols for a Dirichlet character. We work it as the base ring (and not
7). We let

M (N, x; R) := Homyy) (Tz},) (Mi(N, x5 C)), R) = Homp(Tzp, (Mi(N, x ; C)) ®z)) R, R)

and similarly for the cusp forms.

We remark that the two definitions df, (I'; (V) ; C), My (N, x ; C) etc. agree. As a special case,
we get thatM ("1 (IV) ; Z) precisely consists of those holomorphic forms whgsepansions take
values inZ.

If Z[x] > R = F with T a finite field of characteristip or F,,, we callM (N, Y ; F) the space
of modp modular forms of weight, level N and charactery (overF). By ¥ we meanr o yx, which
we write to point out that the definition &fl; (N, x; F) only depends om o x. Of course, for the
cuspidal space similar statements hold and we use similar notations.

We now study base change properties of modular forms Bver

Proposition 2.1.2 (a) LetZ — R — S be ring homomorphisms. Then the following statements
hold.

() The natural map
Mg (I'1(N); R) ®p S — Mg(I'1(N); 5)

is an isomorphism.
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(i) The evaluation pairing
Mi(T'1(N); R) x Tz(Mg(I'1(N); C)) ®z R — R
is theg-pairing and it is perfect.
(iii) The algebraTr(My(I'1(N); R)) is naturally isomorphic tdl'z (Mg (I'1 (V) ; C)) ®z R.
(b) IfZ[x] = R — S are flat, then Statement (i) holds fdt, (N, x ; R).

() If Tz (Mp(N, x; C)) is a freeZ[x]-module andZ[x] — R — S are ring homomorphisms,
statements (i)-(iii) hold foM (N, x ; R).

Proof. (a) We use the following general statement, in whidhis assumed to be a free finitely
generated?-module andV, T are R-modules:

HOmR(M, N) RprT = HOmR(M,N®R T).

To see this, just sekl as@p R and pull the direct sum out of tH&om, do the tensor product, and put
the direct sum back into th&om.
(i) Write Ty, for Tz(Mg(T'1(N) ; C)). Itis a freeZ-module by Lemma 2.1l1. We have

Mk(Fl(N) 5 R) ®R S = Homz(Tz, R) ®R S,

which by the above is isomorphic tbomy(Tz, R ®r S) and hence td/1(T'1(N); S).

(i) The evaluation pairindlomy (T, Z) x Tz — Z is perfect, sincdl; is free as &-module.
The result follows from (i) by tensoring witR.

(iif) We consider the natural map

Ty ®7z R — EndR(HomR(TZ ®z R, R))

and show that it is injective. Its image is by definiti@ig (M (I'1 (V) ; R)). LetT be in the kernel.
Theng(T) = 0 for all ¢ € Homp(Tyz ®z R, R). As the pairing in (ii) is perfect and, in particular,
non-degeneratd, = 0 follows.

(b) Due to flathess we have

Homp(Tz ®z R, R) ®r S = Homg(Tz ®z S, S),

as desired.
(c) The same arguments as in (a) work. O

Galois conjugacy classes

Recall that the normalised eigenforms\iy (I'y (V) ; R) are precisely the set @f-algebra homomor-
phisms insideHomz (Tz (Mg (I'1 (V) ; C)), R). Such an algebra homomorphisbnis often referred



2.1. THEORY: HECKE ALGEBRAS AND MODULAR FORMS OVER RINGS 33

to as asystem of eigenvaluesince the image of each, corresponds to an eigenvalue’®f, namely
to ®(7,) = an(f) (if f corresponds t@).

Let us now consider a fiel& (if we are working with a Dirichlet character, we also want that
admits a ring homomorphis@[x] — K). Denote byK a separable closure, so that we have

Mk(l“l(N) ) ?) = Homz(Tz(Mk(Fl(N) ) C)),F) = HOmK(Tz(Mk(Fl(N) ; C)) X7, K, K)

We can compose any € Homgz(Tz(M(I'1(N) ; C)), K) by any Galois automorphism: K — K
fixing K. Thus, we obtain an action of the absolute Galois gidaf{ K /K) on M (I'; (N); K) (on
formal ¢g-expansions, we only need to appiyto the coefficients). All this works similarly for the
cuspidal subspace, too.

Like this, we also obtain &al(K /K )-action on the normalised eigenforms, and can hence speak
aboutGalois conjugacy classes of eigenforms

Proposition 2.1.3 We have the following bijective correspondences.
Spec(Tx () ‘= Homg ay(Tx (-), K)/ Gal(K/K) ‘=" { normalised eigenf. in}/ Gal(K/K)
and withK = K
Spec(T#(+)) = Hom?-mg(Tﬁ(')vF) P { normalised eigenforms in}.

Here, - stands for eithet,(T'1(N); K), S(I'1(N); K) or the respective spaces with a Dirichlet
character.

We recall thatSpec of a ring is the set of prime ideals. In the next section we will see that
in Tk (-)) andTx(-)) all prime ideals are already maximal (it is an easy consequence of the finite
dimensionality).

Proof. Exercise 18. O

We repeat that the coefficients of any eigenfafim M. (N, x ; K) lie in a finite extension of(,
namely inT x (Mg (N, x ; K))/m, whenm is the maximal ideal corresponding to the conjugacy class
of f.

Let us note that the above discussion applieEte- C, K = Q, K = Q,, as well as tok’ = T,

In the next sections we will also take into account the finer structure okélalgebras ove®, or
rather over the completion @ at one prime.

2.1.1 Some commutative algebra

In this section we leave the special context of modular forms for a momergranite quite useful
results from commutative algebra that will be applied to Hecke algebras irtjuek

We start with a simple case which we will prove directly. [Bbe anArtinian algebra, i.e. an
algebra in which every descending chain of ideals becomes stationamnauexample will be finite
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dimensional algebras over a field. That those are Artinian is obvioug sirevery proper inclusion
of ideals the dimension diminishes.

For any ideak of T the sequence™ becomes stationary, i.e” = a™*! for all n “big enough”.
Then we will use the notatioa for a™.

Proposition 2.1.4 Let T be an Artinian ring.

(a) Every prime ideal off is maximal.

(b) There are only finitely many maximal idealsTin

(c) Letm be a maximal ideal df. It is the only maximal ideal containing°.

(d) Letm # n be two maximal ideals. For anfyc N andk = oo the idealsm* andn” are coprime.

(e) The Jacobson radicgl), gy ™ is equal to the nilradical and consists of the nilpotent ele-
ments.

(9) (Chinese Remainder Theorem) The natural map

T a—(...,a+m™>,...) H ’]I‘/moo
meSpec(T)

is an isomorphism.

(h) For every maxmimal ideah, the ringT /m° is local with maximal ideaim and is hence isomor-
phic toTy,, the localisation ofT at m.

Proof. (a) Letp be a prime ideal off. The quotienfl' — T/p is an Artinian integral domain,
since ideal chains ifft /p lift to ideal chains irT. Let0 # = € T/p. We have(z)" = (z)"! = (x)>
for somen big enough. Hence;” = y2"*! with somey € T/p and sary = 1, asT/p is an integral
domain.

(b) Assume there are infinitely many maximal ideals, humber a countable sofbfetm by
mi, mo,.... Form the descending ideal chain

mOmMNmeDODmMNmeNmgD....
This chain becomes stationary, so that for sonvee have
mN---Nmy=myN---Nmy, NMy41.

Consequentlym; N --- Nm, C m,y;. We claim that there is € {1,2,...,n} withm; C m,41.

Due to the maximality ofn; we obtain the desired contradiction. To prove the claim we assume that
m; € my,4q foralli. Letz; € m; — m,q andy = z1 - x2---x,. Theny € my N --- Nm,, but

y & my,41 due to the primality ofn,, 1, giving a contradiction.
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(c) Letm € Spec(T) be a maximal ideal. Assume thais a different maximal ideal witm*> C n.
Chooser € m. Some power” € m*> and, thusz” € n. Asn is prime,z € n follows, implying
m C n, contradicting the maximality ah.

(d) Assume thaf := m* + n* # T. ThenI is contained in some maximal ideal Hence,m>
andn® are contained ip, whence by (c)m = n = p; contradiction.

(e) It is a standard fact from Commutative Algebra that the nilradical (tealidf nilpotent ele-
ments) is the intersection of the minimal prime ideals.

(f) For k € Nandk = oo, (d) implies

ﬂ m" = H mP = ( H m)* = ( ﬂ m)*.
meSpec(T) meSpec(T) meSpec(T) meSpec(T)
By (e) we know thaf).cq,..cr) m is the nilradical. It can be generated by finitely many elements
a1, .- .,a, all of which are nilpotent. So a high enough powermespec(m mis zero.

(9) The injectivity follows from (f). It suffices to show that the elemeffis...,0,1,0,...,0)
are in the image of the map. Suppose this at the place belonging ta. Due to coprimeness (d)
for any maximal ideah # m we can finda,, € n* anda,, € m® such thatl = an + an. Let
1= [lnespec(r) npm @n- We haver € [Tucgpec(r) nem ™ @NAT = [Tiespectr) npm(l — am) =1
mod m. Hence, the map send<o (0,...,0,1,0,...,0), proving the surjectivity.

(h) By (c), the only maximal ideal df containingm® is m. Consequentlyl /m* is a local ring
with maximal ideal the image afi. Lets € T — m. Ass + m™ ¢ m/m>, the element + m*> is a
unitin T /m®. Thus, the map

Yisys™l4m™>®

Ty =

T/m>

is well-defined. Itis clearly surjective. Suppo%enaps to0. Since the image of is a unit,y € m*>
follows. The element: constructed in (g) is irﬂnespec(m#mn“, but not itm. By (f) and (d),
(0) = [ imespec(ry m™- Thus,y - 2 = 0 and also? = 2¥ = 0, proving the injectivity. O

A useful and simple way to rephrase a product decomposition as in (g) setmlempotents. In
concrete terms, the idempotentsfas in the proposition) are precisely the elements of the form
(.ooyZm,...) Withzy € {0,1} C T/m®>.

Definition 2.1.5 Let T be a ring. Anidempotent ofT is an element that satisfies:> = e. Two
idempotentg, f are orthogonalf ef = 0. An idempotent is primitive, if T is a local ring. A set of
idempotentdey, ..., e,} is said to becompletef 1 = 7" | e;.

In concrete terms fofl = []
idempotents is given by

meSpec(T) T/m®, a complete set of primitive pairwise orthogonal

(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1,0),(0,...,0,1).

In Exercise 19, you are asked (among other things) to prove that in tve @asen™ is a principal
ideal generated by an idempotent.
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Below we will present an algorithm for computing a complete set of primitivenpsér orthogonal
idempotents for an Artinian ring.

We now come to a more general setting, namely working with a finite algelorger a complete
local ring instead of a field. We will lift the idempotents of the reductiodfor the maximal ideal
of the complete local ring) to idempotents by Hensel's lemma. This gives us a proposition very
similar to Proposition 2.1/4.

Proposition 2.1.6 (Hensel's lemma)Let R be a ring that is complete with respect to the ideahnd
let f € R[X] be a polynomial. If

fla)=0 mod (f'(a))*m
for somea € R, then there i$ € R such that
f(b)=0andb=a mod f'(a)m.
If '(a) is not a zero-divisor, thehis unique with these properties.

Proof. [Eisenbud], Theorem 7.3. O
[Recall the ternKrull dimensionandheightof a prime ideal.]

Proposition 2.1.7 Let O be an integral domain of characteristic zero which is a finitely generated
Z-module. Writed for the completion o® at a maximal prime o and denote by the residue
field and byK the fraction field oD. Let furthermoreT be a commutativ®-algebra which is finitely
generated as afW-module. For any ring homomorphis® — S write Tg for T ®» S. Then the
following statements hold.

(@) The Krull dimension df ; is less than or equal to, i.e. between any prime ideal and any maximal
idealp C m there is no other prime ideal. The maximal idealdgf correspond bijectively under
taking pre-images to the maximal idealsIf. Primesp of heightO (i.e. those that do not contain
any other prime ideal) which are properly contained in a prime of helglie. a maximal prime)
of T are in bijection with primes of' - under extension (i.eTx), for which the notatiorp®
will be used.

Under the correspondences, one has

Trm =Tom @6 F
and
T@\,p = TKme
(b) The algebrdl' 5 decomposes as
To = [ To,m

where the product runs over the maximal idealsf T 5.
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(c) The algebrdl'y decomposes as
Tp = HTIF,m7
m

where the product runs over the maximal idealsf Ty.

(d) The algebrdl'x decomposes as
Tr = HTKP@ = HT@W
p p

where the products run over the minimal prime ideglsf T 5 which are contained in a prime
ideal of heightl.

Proof. We first need tha© has Krull dimensiori. This, however, follows from the fact tha
has Krull dimensiorl by the correspondence of prime ideals between a ring and its completion. As
Tsisa finitely generate(ﬁ-module,?l‘@/p with a primep is an integral doAmain which is a finitely
generated)-module. Hence, it is either a finite field or a finite extensio®ofThis proves that the
height ofp is less than or equal tb. The correspondences and the isomorphisms of Part (a) are the
subject of Exercise 20. [This part could be explained with a bit more detail.]

We have already seen Parts (c) and (d) in Lemma 2.1.4. Part (b) follons (t) by apply-
ing Hensel's lemma (Proposition 2.1.6) to the idempotents of the decompositioi aiégfollow
[Eisenbud], Corollary 7.5, for the details. SinGeis complete with respect to some idgako isT 5.
Hence, we may use Hensel's lemmélig.

Given an idempotertt of Ty, we will first show that it lifts to a unique idempotent f;. Lete
be any lift ofe and letf (X) = X2 — X be a polynomial annihilating. We have thaf’(e) = 2¢ — 1
is a unit, sincg2e — 1) = 1 mod p. Hensel's lemma now gives us a unique rept T5of f,i.e.
an idempotent, lifting.

We now lift every element of a set of pairwise orthogonal idempotent&rofit now suffices to
show that the lifted idempotents are also pairwise orthogonal (their sunoiherwise we would get
a contradiction in the correspondences in (a): there cannot be moreatinteinT 5 than inTr). As
their reductions are orthogonal, a produgt; of lifted idempotents is ip. Henceg;e; = egle;? € p?
for all d, whencee;e; = 0, as desired. O

2.1.2 Commutative algebra of Hecke algebras

Letk > 1, N > 1landy : (Z/NZ)* — C*. Moreover, letp be a prime0O := Z[x], 8 a maximal
prime of © abovep, and letF be the residue field ab modulo3. We letO denote the completion of
O atB. Moreover, the field of fractions a will be denoted byK . ForTo(My(N, x; C)) we only
write T for short, and similarly over other rings. We keep using the factThais finitely generated
as anO-module.

We shall now apply Proposition 2.1.7 ;. Itis a freeO-module of finite rank (as it is torsion-
free), which has Krull dimensioh, i.e. every maximal prime contains at least one minimal prime.



38 STAGE 2. HECKE ALGEBRAS

By Proposition 2.1.7, minimal primes G@it5 correspond to the maximal primesBf and hence
to Gal(K /K)-conjugacy classes of eigenformsNfy, (N, x ; K). By a brute force identification of
K= @p with C we may still think about these eigenforms as the usual holomorphic ones (libis Ga
conjugacy can then still be seen as conjugacy by a decomposition groupaimside the absolute
Galois group of the field of fractions @?).

Again by Proposition 2.1.7, maximal primesBf; correspond to the maximal primesBf and
hence taGal(F /F)-conjugacy classes of eigenformsNiy, (N, x ; ).

The spectrum of 5 allows one to phrase very elegantly when conjugacy classes of eigenfor
are congruent modulo a prime abgud_et us first explain what that means. Normalised eigenfofms
take their coefficients,,(f) in rings of integers of number field§¥'6 /m, whenm is the kernel of the
O-algebra homomorphisffio — C, given byT,, — a,(f)), so they can be reduced modulo primes
abovep (for which we will often just say “reduced modutd). The reduction modulo a prime aboye
of the g-expansion of a modular forrfi in My (N, x ; C) is the formalg-expansion of an eigenform
in Mp(N, x; F).

If two normalised eigenformg, g in M (N, x ; C) or My (N, x ; K) reduce to the same element
in My (N, x ; F), we say that they areongruent modulg.

Due to Exercise 21, we may speak abmductions modulg of Gal(K /K )-conjugacy classes
of normalised eigenforms t@al(F /F)-conjugacy classes. We hence say that @wd( K / K )-conju-
gacy classes, say corresponding to normalised eigenfrmsespectively, minimal ideals; andps
of T 5, arecongruent modul, if they reduce to the sant@al(FF /FF)-conjugacy class.

Proposition 2.1.8 TheGal(K /K )-conjugacy classes belonging to minimal prinpgsand p» of T
are congruent modulp if and only if they are contained in a common maximal primef T¢.

Proof. Exercise 22. O

We mention the fact that if is a newform belonging to the maximal idewlof the Hecke algebra
T := To(Sk(I'1(IV),C)), thenTy, is isomorphic taQ s = Q(an|n € N).

2.2 Algorithms and Implementations: Localisation Algorithms

Let K be a perfect fieldK an algebraic closure and a finite dimensional commutativ& -algebra.
In the context of Hecke algebras we would like to compute a local decompuositid.

2.2.1 Primary spaces

Lemma 2.2.1 (a) A is local if and only if the minimal polynomial af (in K[X]) is a prime power
forall a € A.

(b) LetV be anA-module such that for alt € A the minimal polynomial ai onV is a prime power
in K[X], i.e.V is a primary space for alu € A. Then the image ofl in End(V) is a local
algebra.
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(c) LetV be an A-module and letuy, ..., a, be generators of the algebrd. Suppose that for
i € {1,...,n} the minimal polynomial ofi; on V' is a power of(X — );) in K[X] for some
\; € K (e.g.ifK = K). Then the image ol in End(V) is a local algebra.

Proof. (a) Suppose first that is local and take € A. Let¢, : K[X]| — A be the homomorphism
of K-algebras defined by sendidgto a. Let (f) be the kernel wittf monic, so that by definitiorf
is the minimal polynomial of.. Hence, K[ X]/(f) — A, whenceK[X]/(f) is local, as it does not
contain a non-trivial idempotent. Thugcannot have two different prime factors.

Conversely, ifA were not local, we would have an idempoterg {0,1}. The minimal polyno-
mial of e is X (X — 1), which is not a prime power.

(b) follows directly. For (c) one can use the following. Suppose that \)"V = 0 and (b —
w)*V = 0. Then((a + b) — (A + u))" ™5V = 0, as one sees by rewritinda + b) — (A + u)) =
(a—\)+ (b— p) and expanding out. From this it also follows tfiab — \x)2"*+*)V = 0 by rewriting
ab—Ap=(a—X)(b—p)+AXb—p)+ pla—N). 0

We warn the reader that algebras such that a set of generatorsiawsilgreed not be local,
unless they are defined over an algebraically closed field, as we hemers®art (c) above. In
Exercise 23 you are asked to find an example.

The next proposition, however, tells us that an algebra over a field dgnavbasis consisting of
primary elements is local. | found the idea for that proof in a paper by Wepeely.

Proposition 2.2.2 Let K be a field of characteristio or a finite field. LetA be a finite dimensional
algebra overK and leta, ..., a, be aK-basis ofA with the property that the minimal polynomial
of eacha; is a power of a prime polynomial € K|[X].

ThenA is local.

Proof. We assume thad is not local and take a decomposition
T
A5 T4
j=1

with » > 2. Let K; be the residue field ofi;. The assumption on the basis means that the minimal
polynomial ofai\Aj = p?‘j with p; irreducible and certain; ;. The normal closurév of K; over K
is equal to the splitting field of the polynomigls for i = 1,...,n and is hence independent ff
Moreover, Tty (7 o a(a;)|k; ) is also independent of with 7 = [[%_, A; — [[;_, Kj, since the
minimal polynomial ofr o a(a;)|k; is independent of.

We now use the assumptions &h By Exercise 24 there i8 € K; such thaflr /g (z) # 0. In
A we take an element= }/_, s;a; which maps tqz,0, ...,0) € [['_, K; underr o o, i.e.

r=Y s (moala)lk)and

=1

0= s (woala)k,)-
=1
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The traces forV/ K of the right hand side of the two equations are equal; on the left hand sgde th
are not. This contradiction proves the proposition. O

Lemma 2.2.3 Let A be a local finite dimensional algebra over a perfect figldLetaq, ..., a, be a
set of K-algebra generators ofl such that the minimal polynomial of eaghis a prime polynomial.
ThenA is afield.

Proof. As thea; are diagonalisable (over a separable closure - considering the afgebraatrix
algebra), so are sums and products ofdheHence,0 is the only nilpotent element id. As the
maximal ideal in an Artinian local algebra is the set of nilpotent elements, the leoiloas. O

Proposition 2.2.4 Let A be a local finite dimensional algebra over a perfect fiéld Leta,, . .., a,
be a set of-algebra generators ofl. Letp;* be the minimal polynomial af; (see Lemma 2.2.1).
Then the maximal ideah of A is generated byp;(a1),...,pn(an)}-

Proof. Let a be the ideal generated By (a1),...,pn(an)}. The quotientl'/a is generated by
the images of the;, call thema;. We claim that either;; = 0 or the minimal polynomial ofi; is
equal top;. For, asp;(a;) € a, it follows p;(a;) = 0, whence the minimal polynomial @f; divides
the prime polynomiap;, so that they are equal if; # 0. By Lemma 2.2.3, we know thdi/a is a
field, whencex is the maximal ideal. O

2.2.2 Algorithm for computing common primary spaces

[Recalled that one can think about finite dimensional algebras over a $i@lgebras of matrices and
that the localisation statements of this section just mean writing the matrices asplocks

By a common primary spacr commuting matrices we mean a subvector space of the under-
lying vector space on which the minimal polynomials of the given matrices are growers. By
Proposition 2.2.2, a common primary space of a basis of a matrix algebra isldaciwa of the
algebra.

By ageneralised eigenspaéa commuting matrices we mean a subvector space of the underlying
vector space on which the minimal polynomial of the given matrices are inf@ddu@llowing base
changes to extension fields, the matrices restricted to the generalisedaigease diagonalisable.

In this section we present a straight forward algorithm for computing conpriorary spaces and
common generalised eigenspaces.

Algorithm 2.2.5 Input: A list ops of operators acting on the K-vector space V.
Output: A list of the common primary spaces inside V for all operators in ops.

(1) List:=[V];
(2) for T"in ops do
3) newList ;= [];
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(4) for W in List do
(5) Compute the minimal polynomial f € K|[X] of T restricted to .
(6) Factor f over K into its prime powers f(X) = [[;", pi(X).
(7) If n equals 1, then
(8) Append W to newList,
9) else fori:=1tondo
(10) Compute W as the kernel of pi(T|w)® with a = e; for common primary

spaces or « = 1 for common generalised eigenspaces..

(11) Append W to newList.
(12) end for; end if;

(13) end for;

(14) List := newList;

(15) end for;
(16) Return List and stop.

2.2.3 Algorithm for computing idempotents

Using Algorithm 2.2.5 it is possible to compute a complete set of orthogonal identpdee A. We
now sketch a direct algorithm.

Algorithm 2.2.6 Input: A matrix M.
Output: A complete set of orthogonal idempotents for the matrix algebra generated by
M and 1.

(1) Compute the minimal polynomial f of M.

(2) Factorit f = ([[\, p;*)X° over K with p; distinct irreducible polynomials different from X.
(3) List:=1];

(4) fort =1ton do

B  g:=fdivp

(6) M := g(M). If we think about M, in block form, then there is only one non-empty

block on the diagonal, the rest is zero. In the next steps this block is replaced by the
identity.

(7 Compute the minimal polynomial h of Mj.

(8) Strip possible factors X from h and normalise h so that £(0) = 1.
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9) Append 1 — h(M;) to List. Note that h(M;) is the identity matrix except at the
block corresponding to p;, which is zero. Thus 1 — k(M) is the idempotent being zero
everywhere and being the identity in the block corresponding to p;.

(10) end for;

(11) ife > 0 then

(12) Append 1 -3 e to List.
(13) end if;

(14) Return List and stop.

The algorithm for computing a complete set of orthogonal idempotents fanancbative matrix
algebra consists of multiplying together the idempotents of every matrix in a babio &elect an
orthogonal subset from these products. See Computer Exercise 12.

2.3 Algorithms and Implementations: More of MAGMA

e Linear algebra in MGMA.
e Functions and procedures and comments revisited.

e Packages and intrinsics.

2.4 Theoretical exercises

Exercise 17 Use your knowledge on modular forms to prove that a modular foeny " an(f)g™
of weightk > 1 and levelN (and Dirichlet charactery) is uniquely determined by > ; a,(f)q™.

Exercise 18 Prove Propositior2.1.3.

Exercise 19 LetT be an Artinian ring.

(a) Letm be a maximal ideal of. Prove thatm® is a principal ideal generated by an idempotent.
Callit ey

(b) Prove that the idempotents- e,, and 1 — e,, for different maximal ideals» andn are orthogonal.

(c) Prove that the sefl — e|m € Spec(T)} forms a complete set of pairwise orthogonal idempo-
tents.

Exercise 20 Prove the correspondences and the isomorphisms from Part (appbBition 2.1.7.

Exercise 21Let f,g € My(N,x; K) be normalised eigenforms that afeéal(K /K)-conjugate.
Prove that their reductions modutoare Gal(F/F)-conjugate.
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Exercise 22 Prove Propositior2.1.8.

Exercise 23 Find a non-local algebrad over a fieldK (of your choice) such thad is generated as
a K-algebra bya;, ..., a, having the property that the minimal polynomial of eaghs a power of
an irreducible polynomial iK' [ X].

Exercise 24 Let K be a field of characteristi6 or a finite field. LetL be a finite extension df with
Galois closurelN over K. Show that there is an element L with Tr i () # 0.

Exercise 25 Let A be a commutative matrix algebra over a perfect figldSuppose that the minimal
polynomial of each element of a generating set is the power of a pritgaqgraial (i.e. it is primary).

Show that there exist base change matrices such that the base chalggbch consists only of
lower triangular matrices. You may and you may have to extend scalarfridieaextension of. In
Computer Exercise 14 you are asked to find and implement an algoritmputing such base change
matrices.

2.5 Computer exercises

Computer exercise 8 Change Algorithm 1.3/5 (see Computer Exercise 7) so that it works foumod
lar forms over a given ring?.

Computer exercise 9Let A be a commutative matrix algebra over a perfect figld
(a) Write an algorithm to test whethet is local.

(b) Supposédl is local. Write an algorithm to compute its maximal ideal.

Computer exercise 10Let A be a commutative algebra over a field. The regular representation
is defined as the image of the injection

A — Endg(A), aw— (b—a-b).
Write a function computing the regular representation.

Computer exercise 11lmplement Algorithm 2.2.5. Also write a function that returns the local fac-
tors as matrix algebras (possibly using regular representations).

Computer exercise 12(a) Implement Algorithm 2.2.6.

(b) LetS be a set of idempotents. Write a function selecting a subsgtaainsisting of pairwise
orthogonal idempotents such that the subset sgalfall idempotents inS can be obtained as
sums of elements in the subset).
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(c) Write a function computing a complete set of pairwise orthogonal idengfor a commutative
matrix algebraA over a field by multiplying together the idempotents of the matrices in a basis
and selecting a subset as in (b).

(d) Use Computer Exercise 9 to compute the maximal ideals of

Computer exercise 13Let A be a commutative matrix algebra over a perfect figldSuppose thatt
is a field (for instance obtained as the quotient of a lodddy its maximal ideal computed in Computer
Exercise 9). Write a function returning an irreducible polynomiauch thatA is K[X]/(p).

If possible, the algorithm should not use factorisations of polynomialsalpigctical realisation
of Kronecker’s primitive element theorem.

Computer exercise 14Let A be a commutative matrix algebra over a perfect fi&ld Suppose that
the minimal polynomial of each element of a generating set is the povegprirhe polynomial (i.e. it
is primary).

Write a function computing base change matrices such that the base chalygdbra consists
only of lower triangular matrices (cf. Exercise 25).



Stage 3

Homological algebra

3.1 Theory: Categories and Functors

Definition 3.1.1 A categoryC consists of the following data:
e aclassobj(C) of objects
e asetHom¢(A, B) of morphismof every ordered paif A, B) of objects,
e anidentity morphismid, € Hom¢ (A, A) for every object4, and
e acomposition function
Home(4, B) x Home (B, C) — Home (A, C), (f,9) —go f
for every ordered tripld A, B, C') of objects
such that

e (Associativity)(h o g) o f) = ho (go f) forall f € Hom¢(A, B), g € Home(B,C), h €
Hom¢(C, D) and

e (Unit Axiom)idg o f = f = foidy for f € Homc (A, B).
Example 3.1.2 Examples of categories are
e Sets: objects are sets, morphisms are maps.

e Let R be a not necessarily commutative ring. LEAmModules R — modules): objects areR-
modules, morphisms ate-module homomorphisms. This is the category we are going to work
with most of the time. Note that the categoryemodules is the category of abelian groups.

¢ Right R-modulesfhodules — R): as above.

e Etc.

45
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Definition 3.1.3 LetC andD be categories. Aovariant/contravariant functdr : C — D is
e aruleobj(C) — obj(D), C — F(C) and

covariantcase:  Hom¢(C1, C2) — Homp(F(Ch), F(Ca)), f+— F(f)
contravariant case: Hom¢ (Cy, C2) — Homp (F(Cs), F(CY)),

e arule

—
1

=

=

such that
° F(id()) = idF(C’) and

covariantcase:  F(go f) = F(g) o F(f)
contravariant case: F(go f) = F(f) o F(g)

Example 3.1.4 e LetM € obj(R — modules). Define
Homp(M,-) : R — modules — Z — modules, A — Homp(M, A).
This is a covariant functor.

e Let M € obj(R — modules). Define
Hompg(-, M) : R — modules — Z — modules, A +— Hompg(A, M).
This is a contravariant functor.

e LetM € obj(R — modules). Define
-®gr M : modules — R — Z — modules, A+— A®gr M.
This is a covariant functor.

e Let M € obj(modules — R). Define
M ®p - : R —modules — Z — modules, A— M Qg A.
This is a covariant functor.
Definition 3.1.5 e A covariant functorF’ : C — D is calledleft-exact if for every exact sequence
0—-A—-B—C

the sequence
0—>F(A) —>F(B) —>F(C)

is also exact.
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e A contravariant functorF’ : C — D is calledleft-exact if for every exact sequence
A—-B—-C—0

the sequence
0— F(C)— F(B)— F(A)

is also exact.
e A covariant functort” : C — D is calledright-exact if for every exact sequence

A—-B—-C—=0

the sequence
F(A)—- F(B)— F(C)—0

is also exact.
e A contravariant functorF’ : C — D is calledright-exact if for every exact sequence
0—A—-B—C

the sequence
F(C)— F(B)— F(A) —0

is also exact.

e A covariant or contravariant functor iexactif it is both left-exact and right-exact.

Example 3.1.6 Both functorsHompg(-, M) andHompg (M, -) for M € obj(R — modules) are left-
exact. Both functors@r M for M € obj(R — modules) and M ®p - for M € obj(modules — R)
are right-exact.

Proof. Exercisé 26. O

Definition 3.1.7 Let R be a not necessarily commutative ring. A IBfmoduleP is calledprojective
if the functorHompg (P, -) is exact. A leftR-module! is calledinjectiveif the functorHomg(-, I) is
exact.

Lemma 3.1.8 Let R be a not necessarily commutative ring and/be a leftR-module.
Show thatP is projective if and only ifP is a direct summand of some fr&module. In particu-
lar, free modules are projective.

Proof. Exercisé 27. O
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3.2 Theory: Complexes and Cohomology

Definition 3.2.1 A (right) chain complexC, in the categoryR — modules is a collection of objects
C), € obj(R —modules) for n > m for somem € Z together with homomorphisnd$, ;1 Oni1, Ch,
ie.

On+1 o, Om+2 Om+1 1)
T n—i—lL)Cn—n)Cn—l_)"'_) m—i-ZL)Cm—i—lL)Cm—m)O’

such that
ﬁn o 8n+1 =0

for all n > m. The group ofi-cyclesof this chain complex is defined as
Zn(Cs) = ker(0y).
The group ofi-boundarie®f this chain complex is defined as
B, (Ce) = 1im(0p+1)-
Then-th homology groupf this chain complex is defined as
H,(Cs) = ker(0y,)/im(0p+1).

The chain complex’, is exactif H,, (C,) = 0 for all n. If C, is exact andn = —1, one often says
that C, is aresolutionof C_;.

A morphism of right chain complexes, : C, — D, is a collection of homomorphisms, :
C, — D, for n € Ny such that all the diagrams

6n+1
Cn+1 — Oy

¢n+1l ¢nl

Ot
Dn+1 = Dy,

are commutative.

If all ¢,, are injective, we regard’, as a sub-chain complex d¥,. If all ¢,, are surjective, we
regard D, as a quotient complex @f,.

Definition 3.2.2 A (right) cochain complex’® in the categoryR — modules is a collection of objects
C"™ € obj(R—modules) for n > m for somem € Z together with homomorphisnig® L crtl
i.e.

02 om 2, omat O, o2, L, onm1 90, om O, omtt

such that
8n+1 o 8” =0

for all n > m. The group of-cocyclesof this cochain complex is defined as

7Z"(Cy) = ker(9™11).
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The group ofi-coboundariesf this cochain complex is defined as
B"(C,) = im(0y).
Then-th cohomology grouf this cochain complex is defined as
H"(C*®) = ker(9" ") /im(d").

The cochain complex” is exactif H"(C,) = 0 for all n. If C* is exact andn = —1, one often says
thatC* is aresolutionof C 1.

A morphism of right cochain complexeés : C* — D* is a collection of homomorphismg' :
C™ — D" for n € Ny such that all the diagrams

are commutative.
If all ™ are injective, we regard’® as a sub-chain complex d@°. If all ¢™ are surjective, we
regard D® as a quotient complex @f°.

In Exercise 28 you are asked to define kernels, cokernels and imagesghisms of cochain
complexes and to show that morphisms of cochain complexes induce natpsabmthe cohomology
groups. In fact, cochain complexesBfmodules form an abelian category.

Example: standard resolution of a group

Let G be a group and& a commutative ring. We describe tetandard resolutior'(G). of R by free
R[G]-modules:

0 R <~ F(G)y = R[G] <~ F(G), := R[G?] <& ...,

where we put (the “hat” means that we leave out that element):

n

Op 1= Z(—l)ldl and di<907 - ;gn) = (go7 R 7.in; . ;gn)-
i=0
The mape is the usual augmentation map defined by sendirgG to 1 € R. We havedy = 0 by
definition.
In Exercise 29 you are asked to check that the standard resolution ediadesolution, i.e. that
the above complex is exact.
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Example: bar resolution of a group

We continue to treat the standard resoluti®rby R[G]-modules, but we will write it differently.
[Weibel] calls the following theinnormalised bar resolutioof G. We shall simply sapar resolution
If we leth, := g,T_llgr, then we get the identity

(907917927 cee ;gn) = gO'(17 h17 h1h27 R hth cee ’h’n) = gﬂ[hl‘h2| B h’ﬁj

The symbolgh,|hs| ... |hy] with arbitraryh; € G hence form aR[G]-basis of F(G),,, and one has
F(G), = R|G] ®r (free R-module onh|hs| .. .|hy]). One computes the action @f on this basis
and gets

halhal . .. |hn] i=0
dilhi] .. |ha] = < [ha]. .. |hihiga] ... |hn] 0 <i<n
[h1] ... |hn-1] 1=n.
We will from now on, if confusion is unlikely, simply writéh;, ..., h,) instead offh1| . .. |h,].

Example: resolution of a cyclic group

Let G = (T') be an infinite cyclic group (i.e. a group isomorphic(f, +)). Here is a very simple
resolution ofR by free R[G]-modules:

T-1
—

0 — R[G] R[G] S R —0.

Let nowG = (o) be a finite cyclic group of ordet. Here is a resolution oR by free R|G|-
modules:

- — RG] Y= RG] =2 RG] &= RG] =% R[G] — -+ — R[G] =% R[G] S R — 0.

In Exercise 30 you are asked to verify the exactness of these tworsasgie

Example: simplicial cohomology

Please have a look at the definition of simplicial cohomology in any textbook cgb#dgc Topology.

Group cohomology

Definition 3.2.3 Let R be aring,G a group. andM a left R[G]-module. Recall that'(G). denotes
the standard resolution @k by free R[G]-modules.

(@) Let M be a left R[G]-module. When we apply the functbiompgc (-, M) to the standard
resolution F'(G), cut off at0 (i.e. F(G); o, F(G)o S, 0), we get the cochain complex
Hompg)(F(G)e, M) :

n+1

— Hompe) (F(G)n—1, M) * Hompicy(F(G)n, M) *— Hom g (F(G)ns1, M) — .
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Define then-th cohomology group af with values in theZ-moduleM as

H™(G, M) := H" (Hom i (F(G)a, M)).

(b) LetM be arightR[G]-module. When we apply the functof g - to the standard resolution
F(G). cut off at0 we get the chain compleX @ F/(G). :

On n
— M @pie) F(Q)ni1 =5 M @pi F(G)n 25 M @iy F(G)n1 — -

Define then-th homology group of7 with values in theZ-moduleM as

Hn(G,M) = Hn(M ®R[G] F(G).)

In this lecture we shall only use group cohomology. As a motivation for lapkingroup coho-
mology in this lecture, we can already point out that

H' (1 (N), Vi—a(R)) = M(T1(N), R),

provided that is invertible in R. We shall prove this later in this lecture.
The reader is invited to compute explicit descriptiongl8f Hy andH! in Exercise 31.

3.3 Theory: Cohomological Techniques

The cohomology of groups fits into a general machinery, namely that edielunctor cohomology.
Derived functors are universal conomologiéglnctors and many properties of them can be derived
in a purely formal way from the universality. What this means will be explimethis section.
We omit all proofs. We will also be sloppy about categories. When we wategory below, we
really mean abelian category, since we obviously need the existencenefkemages, quotients etc.
Here we should really understand the word category not in its precise matilcal sense but as a
placeholder forR — modules, or (co-)chain complexes d® — modules and other categories from
everyday life.

Definition 3.3.1 LetC andD be (abelian) categories (for instana@the right cochain complexes of
R — modules andD = R — modules). A positive covariant conomologicalfunctorbetweerC and
D is a collection of functor$l” : C — D for n > 0 together withconnecting morphisms

" HY(C) — Hn+l(A)

which are defined for every short exact sequehee A — B — C' — 0in C such that the following
hold:

(a) (Positivity)H™ is the zero functor ifv < 0.



52 STAGE 3. HOMOLOGICAL ALGEBRA

(b) For every short exact sequenge—~ A — B — C' — 0in C there is thelong exact sequence
inD:

677,

LHY ) 2L HA) - HY(B) — HY(C) 2 (A) —

where the mapH"(A4) — H"(B) — H"(C) are those that are induced from the homomorphisms
in the exact sequente— A — B — C — 0.

(c) For every commutative diagram ¢h

0 A B C 0
N
0 A B c’ 0

with exact rows the following diagram i commutes, too:

571,—1

() 2— H'(A) —— H"(B) —— H"(C) —— H""1(4)
H"—lw)l H"(f)l H”’(g)l Hn(’"‘)l H”“(f)l
Hn—l(c/) sn—t Hn(A/) Hn(B/) Hn(c/) " Hn-i—l(A/)

Theorem 3.3.2 Let R be a ring (not necessarily commutative). Cedtand for the category of cochain
complexes of lefR-modules. Then the cohomology functors

H" : C — Z — modules, C*+— H"(C?®)
form a cohomologicad-functor.

Proof. This theorem is proved by some 'diagram chasing’ starting from the deak@a. See
Chapter 1 of [Weibel] for details. O

It is not difficult to conclude that group cohomology also forms a cohomoédg-functor.
Proposition 3.3.3 Let R be a commutative ring an@ a group.

(@) The functor fronR[G| — modules to cochain complexes @t[G] — modules which associates to
a left R[G]-moduleM the cochain compleom p) (F(G)., M) with F(G)e the bar resolution
of R by free R|G]-modules is exact, i.e. it takes an exact sequénee A — B — C' — 0 of
R[G]-modules to the exact sequence

0 — Homp(g)(F(G)e, A) — Hompg(g)(F(G)e, B) — Hompg) (F(G)e,C) — 0
of cochain complexes.
(b) The functors
H"(G,") : R[G] — modules — R — modules, M — H"(G, M)

form a cohomologicad-functor.
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Proof. Exercisé 32. O

We will now come to universal-functors. Important examples of such (among them group co-
homology) are obtained from injective resolutions. Although the followingudision is valid in any
abelian category (with enough injectives), we restrickte modules for a not necessarily commuta-
tive ring R.

Definition 3.3.4 Let R be a not necessarily commutative ring andéte obj(R — modules).
A projective resolutiorof M is a resolution

P2 P %P M,

i.e. an exact chain complex, in which all ti for n > 0 are projectiveR-modules.
Aninjective resolutiorof M is a resolution

o-M—-1"2 2,

i.e. an exact cochain complex, in which all thefor n > 0 are injectiveR-modules.

We state the following lemma as a fact. It is easy for projective resolutionsegpuites work for
injective ones.

Lemma 3.3.5 Injective and projective resolutions exist in the categorjzahodules, wheré is any
ring (not necessarily commutative). O

Note that applying a left exact functdr to an injective resolution
0—-M—1°-T1" - 1% — ...
of M gives rise to a cochain complex
0— F(M)— FI) — F(I') — F(I*) — ...,

of which only the pard — F(M) — F(I°) — F(I') need be exact. This means that Hifeof the
(cut off at0) cochain complexr (1°) — F(I') — F(I?) — ... is equal taF (M).

Definition 3.3.6 Let R be a not necessarily commutative ring.

(a) LetF be a left exact covariant functor on the categoryfmodules (mapping for instance to
Z — modules).

Theright derived functors™ F(-) of F are the functors on the category Bf-modules defined as
follows. For M € obj(R — modules) choose an injective resolutiah— M — [0 — ' — ...
and let

R'"F(M):=H" (F(I°) - F(I") - F(I*) — ...).
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(b) LetG be a left exact contravariant functor on the categoryf?bimodules.

Theright derived functorg?"G(-) of G are the functors on the category B modules defined as
follows. For M € obj(R — modules) choose a projective resolution- — P, — Py — M — 0
and let

R'G(M) := H" (G(Py) — G(P1) — G(P) — ...).

We state the following lemma without a proof. It is a simple consequence of theite re-
spectively projectivity of the modules in the resolution.

Lemma 3.3.7 The right derived functors do not depend on the choice of the resolutidtheey form
a cohomologicab-functor. O

Of course, one can also define left derived functors of right éactors. An important example
is theTor-functor which is obtained by deriving the tensor product functor in g &l toExt (see
below).

As already mentioned, the importance of right and left derived functorges from their univer-
sality.

Definition 3.3.8 LetC and D be two categories and’ and GG two covariant functors betwe&hand
D. Anatural transformation : F' = G is a rule that associates a morphism

ne : F(C) — G(C)

for everyC' € obj(C) such that to every : C — C” in Hom¢(C, C”) the diagram

F(e) = F(C)

le] Uleld l

ac) <2 a(c)

3

commutes. For contravariant functors we make the same definition withotimhtal arrows in the
diagram reversed.

Example 3.3.9Let R be a not necessarily commutative ring and }etB € obj(R — modules)
as well asC,D € obj(modules — R) with morphismsA — B andC — D. Then there are
natural transformationdlompz(B, ) = Hompg(A, ) and Hompg(-, A) = Hompg(-, B) as well as
-QrA=-QrBandA®gr-= BQ®pg -

Proof. Exercisé 33. O

Definition 3.3.10 (a) Let(H"),, and (7™),, be cohomologicad-functors. Amorphism of cohomo-
logical §-functorsis a collection of natural transformationg’ : H” = T™ that commute with the
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connecting homomorphisnisi.e. for every short exact sequerte~ A — B — C' — 0 and
everyn the diagram

__5__) Hn+1 (A)

e l it l

™(C) —2— T (4)

commutes.

(b) The cohomological-functor(H"),, is universalif for every other conomologicatfunctor(77),,
and every natural transformation’ : H°(-) = T9(-) there is a unique natural transformation
n™ : H"(-) = T™(-) for all n > 1 such that the;” form a morphism of cohomologicé&ifunctors
between(H"),, and (T™),,.

For the proof of the following central result we refer[Weibel, Chapter 2.

Theorem 3.3.11Let R be a not necessarily commutative ring and}ebe a left exact covariant or
contravariant functor on the category &-modules (mapping for instance #o— modules).
Theright derived functor§ R" ¥ (-)),, of F form a universatohomologicab-functor.

Example 3.3.12(a) LetR be a commutative ring an@ a group. The functor
()¢ : R[G] — modules — R — modules, M +— MY

is left exact and covariant, hence we can form its right derived fundiis). Since we have
the special caséR’(-)%)(M) = M, universality gives a morphism of cohomologigdlinctors
R"(-)% = H"™(G,-). We shall see that this is an isomorphism in a moment.

(b) Let R be a not necessarily commutative ring. We have seen that the fuibtaig (-, M) and
Homp (M, -) are left exact. We write

Extk(-, M) := R"Homp(-,M) and Extk(M,-):= R"Hompg(M,-).
By definition we havél" (G, M) = Extk(-, M)(R).

(c) If R is again commutative an@' a group, then due to the universality afitbm g (R, M) =
MY we have thaR™(-)¢ is isomorphic tdExt, (R, -).

(d) Many cohomology theories in (algebraic) geometry are also of at mighived functor nature.
For instance, letX be a topological space and consider the category of sheaves of aediaps
on X. The global sections functoF — F(X) = H°(X, F) is left exact and its right derived
functors R*(HY(X, -)) can be formed. They are usually denotediBy(X,-) and they define
'sheaf cohomology’ otX. Etale cohomology is an elaboration of this based on a generalisation
of topological spaces.
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Universal properties of group cohomology

Theorem 3.3.13Let R be a not necessarily commutative ring. Thet-functor isbalanced This
means that for any tw&®-modulesM, N there are isomorphisms

(Exty(-, N))(M) = (Ext}h(M, ) (N) =: Ext}y(M, N).
Proof. [Weibel],Theorem 2.7.6. O

Corollary 3.3.14 Let R be a commutative ring an@ a group. For everyR[G]-module)M there are
isomorphisms
H"™(G, M) = Extlye (R, M) = (R"()%)(M)

and the functord H" (G, -)),, form a universal cohomological-functor. Moreover, instead of the
standard resolution of by free R[G]-modules, any other resolution &fby projectiveR[G]-modules
may be used to computé™ (G, M).

Proof. We may computeExtg[G(-, M)(R) by any resolution of? by projective R[G]-modules.
Our standard resolution is such a resolution, since any free module istprejeHence H" (G, M) =
Exti (-, M)(R). The key is now thaExt is balanced (Theorem 3.3.13), since it giVES(G, M) =
Ext%[G](R, V(M) = R*(-)(M) = Ext%[G](R, M). As theExt-functor is universal (being a right
derived functor), alséf" (G, -) is universal. For the last statement we recall that right derived fusictor
do not depend on the chosen projective respectively injective resolutio O

You are invited to look at Exercise 34 now.

3.4 Theory: Generalities on Group Cohomology

We now apply the universality of th&functor of group cohomology. Let : H — G be a group
homomorphism andd an R[G]-module. Viag we may considerd also as ank[H]-module and
res : HY(G,-) — HY(H, -) is a natural transformation. By the universalityid¥(G, -) we get natural
transformations

res" : H*(G,-) — H"(H, ).

These maps are calleéstrictions See Exercise 35 for a description in terms of cochains. Very often
¢ is just the embedding map of a subgroup.

Assume now thaf{ is a normal subgroup @& and A is an R[G]-module. Then we can consider
¢ : G — G/H and the restriction above gives natural transformaties® : H*(G/H, (-)") —
H"(G, (-)). We define thenflation mapgo be

infl" : H*(G/H, A") 25 7qn(G, AP) — H"(G, A),

where the last arrow is induced from the natural inclusidh— A.
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Under the same assumptions, conjugationgbys G preservesd and we have the isomor-
phism HO(H,A) = A7 2% AH — HO(H, A). Hence by universality we obtain natural maps
H™(H,A) — H"(H, A) for everyg € G. One even gets aR[G]-action onH" (H, A). Ash € H is
clearly the identity orf1’(H, A), the above action is in fact also &jG/ H]-action.

Let now H < G be a subgroup of finite index. Then the noVp, == >, € R[G] with {g;} a
system of representatives@f/ H gives a natural transformatieores® : H'(H, -) — H°(G, -) where
- is anR[G]-module. By universality we obtain

cores” : H"(H,-) — H"(G, ),

the corestriction (transfernaps.

The inflation map, the?[G/ H]-action and the corestriction can be explicitly described in terms
of cochains of the bar resolution (see Exercise 35).

It is clear thatcores® o res” is multiplication by the indexG : H). By universality, als@ores” o
res” is multiplication by the indeXG : H). Hence we have proved the first part of the following
proposition.

Proposition 3.4.1 (a) Let H < G be a subgroup of finite indeG : H). For all < and all R|G]-
modulesM one has the equality

cores% oresy = (G : H)
on all H(G, M).

(b) LetG be a finite group of orden and R a ring in whichn is invertible. Therdl (G, M) = 0 for
all < and all R[G]-modulesM .

Proof. Part (b) is an easy consequence with= 1, since

G
coresH

. res@ . .
HY(G, M) —% H'(1, M) H'(G, M)

is trivially the zero map, but it also is multiplication by O
The following exact sequence turns out to be very important for oyrqaas.

Theorem 3.4.2 (Hochschild-Serre)Let H < G be a normal subgroup and an R[G]-module.
There is the exact sequence:

0 — HYG/H, ATy 2L qY(@G, A) =5 HY(G, A)H - 12(G/H, A®) 25 12(G, A).

Proof. We only sketch the proof for those who know spectral sequences.hibigever, possible
to verify the exactness on cochains explicitly (after having defined the rgissap appropriately).
Grothendieck’s theorem on spectral sequences ([Weibel], 6.8 @jiasss to the composition of func-
tors

(A AT (ATGIHY = (A — A%)
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the spectral sequence
EX . HP(G/H,HY(H, A)) = H’* (G, A).

The statement of the theorem is then justitierm sequence that one can associate with every spectral
sequence of this type. O

Coinduced modules and Shapiro’s Lemma

Let H < G be a subgroup and be a leftR[H]|-module. TheR[G]-module
Coind%(A) := Hom gy (R[G], A)

is called thecoinductionor thecoinduced modulfom H to G of A. We makeCoind%(A) into a left
R[G]-module by

(9-0)(9") = ¢(d'9) Vg,9" € G, ¢ € Homp)(R[G], A).
Proposition 3.4.3 (Shapiro’s Lemma) For all n > 0, the map
Sh : H*(G, Coind%(A)) — H"(H, A)
given on cochains is given by
cr— ((h1,...,hn) — (c(hy,. .., hy)) (1))
is an isomorphism.

Proof. Exercise 36. O

Mackey'’s formula and stabilisers

If H < G are groups anl is an R[G]-module, we denote bRes’ (V) the modulel” considered as
anR[H]-module.

Proposition 3.4.4 Let R be a ring,G be a group and{, K subgroups of5. Let furthermoré/ be an
R[H]-module.Mackey’s formulas the isomorphism

ResfCoindfV e [  Coindfn, 15,7 (Resf g1 V).
geH\G/K

Hereg(ResgngKg_lm denotes thé&k[K Ng~! H g]-module obtained frory via the conjugated action
g thg.,v == h.wforv eV andh € H such thatythg € K.
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Proof. We consider the commutative diagram

Res?(HomR[H] (R[G], V) e/ Hompgng-1mg (RIK], g(ResgmgKg,l V)

\

[ye /i Hompimngrg-1(RlgK g™, Resiin iy 1 V)-

The vertical arrow is just given by conjugation and is clearly an isomonmmhighe diagonal map is
the product of the natural restrictions. From the bijection

-1 gkg*1>—>Hgk
T

(HNgKg ')\gKg H\HgK

it is clear that also the diagonal map is an isomorphism, proving the proposition. O
From Shapiro’s Lemma we directly get the following.
Corollary 3.4.5 In the situation of Proposition 3.4.4 one has

H'(K,CoindfV) =[] H(Kng 'Hg,9Resf x,1V)
geH\G/K

~ J] ®HNgKg " Resfn g, V)
geH\G/K

forall € N. O

3.5 Theoretical exercises
Exercise 26 Verify the statements of Example 3!1.6.
Exercise 27 Prove Lemma 3.118.

Exercise 28 Let¢® : C* — D* be a morphism of cochain complexes.

(a) Show thaker(¢*®) is a cochain complex and is a subcomplexC8fin a natural way.
(b) Show thatm(¢*) is a cochain complex and is a subcomplexX3fin a natural way.
(c) Show thatoker(¢*®) is a cochain complex and is a quotientidf in a natural way.

et

(d) Show that* induces homomorphisnig’ (C*) H™(D*) forall n € N.

Exercise 29 Check the exactness of the standard resolution of a gédup

Exercise 30 Check the exactness of the resolutions given for an infinite and a finite cyalip gn

page 50.
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Exercise 31Let R, G, M be as in the definition of group (co-)homology.

(@) ProveH"(G, M) = MY, theG-invariants of M.

(b) ProveHy(G, M) = Mg, theG-coinvariants ofM .

(c) Prove the explicit descriptions:
MG, M) = {f : G — M map| f(gh) = g.f(h) + f(9) Vg, h € G},
BYG,M)={f:G— Mmap|3ImeM: f(g)=(1-g)mVg € G},
HY(G, M) = ZY(G, M)/BY(G, M).

In particular, if the action ofG on M is trivial, the boundariesBl(G, M) are zero, and one has:
H'(G, M) = Homgroup(G, M).
Exercise 32 Prove Proposition 3.3!3.

Exercise 33 Check the statements made in Exangh&9.

Exercise 34 Let R be a commutative ring.
(a) LetG = (T') be afree cyclic group and/ any R[G]-module. Prove
HY(G,M)=M/(1-T)M and H(G,M)=0
forall 7 > 2.
(b) For a finite cyclic groug= and anyR[G]-module)M prove that
HY(G, M) = H"(G, M)
forall 7 > 1.

Exercise 35 Let R be a commutative ring.

(@) Lety : H — G be a group homomorphism antlan R[G]-module. Prove that the restriction
mapsres” : H"(G,A) — H"(H, A) are given in terms of cochains of the bar resolution by
composing the cochains lay

(b) Let H be a normal subgroup af. Describe the inflation maps in terms of cochains of the bar
resolution.

(c) Let H be a normal subgroup off and A an R[G]-module. Describe thé[G/H]-action on
H™(H, A) in terms of cochains of the bar resolution.

(d) Let nowH < G be a subgroup of finite index. Describe the corestriction maps in terms of
cochains of the bar resolution.

Exercise 36 Prove Shapiro’s lemma, i.e. Prap. 3.4.3.
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Cohomology ofPSLy(Z)

4.1 Theory: PSLy(Z) as a free product

As already done for the modular symbols formalism, we shall also base oup gohomological
treatment of modular symbols on the grd@PLs(Z), rather tharbLo(Z), which simplifies the treat-
ment, sincé’SLy(Z) has a very simple structure, namely as a free product of two cyclic grdinas
is what we are going to treat first.

Definition 4.1.1 Let G and H be two groups. Théee productG « H of G and H is the group
having as elements all the possiblerds i.e. sequences of symbalsas . .. a, witha; € G — {1}
or a; € H — {1} such that elements fro& and H alternate (i.e. ifa; € G, thena;,;1 € H and
vice versa) together with the empty word, which we denoté. bijhe group operation itz * H is
concatenation of words, possibly multiplying the two symbols that meet ebtloatenation point.

The integen is called thdengthof the group element (wor@d)= ajas . . . a,, and denoted b¥(g).
We put/(1) = 0 for the empty word.

In Exercise 37 you are asked to verify thex H is indeed a group and to prove a universal
property.
We define the matrices 6fLy(Z)

o=(0%), m=(1h), T=@h=r0
They have the following conceptual meaning:
<:|:U> = StabSL2(Z) (Z), <i7’> = StabSLQ(Z)(Cﬁ) and <iT> = StabSLQ(Z)(OO)

with ¢g = /6. From now on we will often represent classes of matricé29h,(Z) by matrices in
SL2(Z). The orders ot andr in PSLy(Z) are2 and3, respectively. These statements are checked
by calculation. Exercise 38 is recommended at this point.

61
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Theorem 4.1.2 The groupPSL2(Z) is the free product of the cyclic grougs) of order2 and (r) of
order 3. In particular, as an abstract grouf?SL2(Z) can be represented by generators and relations

as(o,7|0? =73 =1).

Proof. Let P = (o) * (7). In last term’s course we proved th#lt»(Z) is generated by andr,
hence the universal property of the free product gives us a siorjeaf groupsP — PSLy(Z).

Let B be the geodesic path frogy to 7, i.e. the arc betweely andi in positive orientation
(counter clockwise) on the circle of raditisaround the origin. Define the map ('graph’)

PSL,(Z) 2 {Paths inH}

which sendsy € PSL»(Z) to v.B, i.e. the image ofB under~. The proof of the theorem is now
finished by showing that the composite

P — PSLy(Z) 2 {Paths inH}

is injective, as then the first map must be an isomorphism.

Why this composition is injective, is easily seen and explained by looking at thellson of
the upper half plane by the standard fundamental domain and by marking the ohg, i.e. all the
~+.B. Neighbouring edges of the edgeB arevo.B,y7.B,y72.B and the three neighbouring edges
are distinct. Just by looking at the imageggfone sees that it forms a tree, i.e. a graph without circles.
Hence, applying any word as . . . a,, of positive length: > 1 as in the definition of the free product,
one never ha® = aias...a,.B, as desired. [Show some picture.] O

4.2 Theory: Mayer-Vietoris for PSLy(Z)

Motivated by the descriptioRSL2(Z) = C5 = C5, we now consider the cohomology of a groGp
which is the free product of two finite groups, andG,, i.e.G = G * Go.

Proposition 4.2.1 The sequence
0 — R[G] = R[G/G1] ® R[G/G2] = R — 0
with a(g) = (9G1, —gG2) ande(gG1,0) = 1 = €(0, gG2) is exact.

Proof. This proof is an even more elementary version of an elementary proof thand in
[Bieri]. Clearly, ¢ is surjective and alseo o = 0.
Next we compute exactness at the centre. We first claim that for evengpte € G we have

g—1= Zajgj(hj —1) € R[G/G1]
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for certaina; € R and certaing; € G, h; € G and analogously with the roles ¢f; and G
exchanged. To see this, we wrife= ajas . . . a,, (We do not need the uniqueness of this expression).
If n =1, there is nothing to do. I, > 1, we have

aias...an — 1 :alag...an_l(an— 1)+(a1a2...an_1 — 1)

and we obtain the claim by induction. Consequently, we have fok al ) r;,¢;G1 and allp =
Zk TLgrGo With r;, 7, € Randg;, g, € G

A — ZrilGGl = Zajgj(hj — 1) S R[G/Gl]
i J

and

p—Y FleGa =Y agi(h —1) € RIG/G)
k z

for certaina;, &y € R, certaing;, g; € G and certaim; € G, h; € G1. Suppose now that with
andp as above we have
e p) =D i+ =0
i k
Then we directly get
a(d ajgi(hy —1) =Y agi(h — 1)+ > rila) = (A p)
j l i

and hence the exactness at the centre.

It remains to prove thatv is injective. Now we use the freeness of the product. het
Y waww € R[G] be an element in the kernel of. Hence,)  a,wGi = 0 = > a,wGo.
Let us assume that £ 0. It is clear that\ cannot just be a multiple df € G, as otherwise it would
not be in the kernel o. Now pick theg € G with a4 # 0 having maximal length(g) (among all the
l(w) with a,, # 0). It follows thatl/(g) > 0. Assume without loss of generality that the representation
of g ends in a non-zero element@f. Further, sincey, # 0 and0 = ) a,wGa, there must be an
h € G with g # h, gG2 = hG4 anday, # 0. As g does not end i, we must havé, = gy for some
0 # y € Go. Thus,l(h) > I(g), contradicting the maximality and proving the proposition. O

Proposition 4.2.2 (Mayer-Vietoris) Let G = G; * Gy be a free product. Led be a left R[G]-
module. Then the Mayer-Vietoris sequence gives the exact sequences

0— MY - M% @M% - M — HYG, M) == HY(Gy, M) @ HY(Ga, M) — 0.
and for all¢ > 2 an isomorphism

H'(G, M) = H'(Gy, M) @ H (G2, M).
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Proof. We see that all terms in the exact sequence of Proposition 4.2.1 arB-fresdules. We
now apply the functoHomp(-, M) to this exact sequence and obtain the exact sequenBg8f
modules

0 — M — Hompq,(R[G], M) ® Hompgq, (R[G], M) — Hompg(R[G], M) — 0.

The central terms, as well as the term on the right, can be identified with agdduodules. Hence,
the statements on cohomology follow by taking the long exact sequenceahobtgy and invoking
Shapiro’s Lemma 3.4.3. O

We now apply the Mayer-Vietoris sequence (Prop. 4.2.2)30,(Z) and get that for any rin@®
and any leftR[PSLy(Z)]-moduleM the sequence

0 — MPSL@) _, prlo) o prim) 0
o m HY(PSLy(Z), M) 25 HY (o), M) & HY((7), M) — 0 (4.2.1)
is exact and for all > 2 one has isomorphisms

H(PSLy(Z), M) = H'((0'), M) ® H'((), M). (4.2.2)

Thel-cocyclef,, can be explicitly described as the cocycle giveryhyo) = (1—o)m andf,, (1) =
0 (see Exercise 40).

Lemma 4.2.3 LetT" < PSLy(Z) be a subgroup of finite index and lete H U P*(Q) be any point.

(&) The map
I\PSLy(Z)/PSLy(Z), +=25 T\PSLy(Z)x

is a bijection.

(b) Recall thatPSL2(Z), denotes the stabiliser of for the PSLy(Z)-action. Forg € PSLy(Z) the
stabiliser ofgx for theI'-action is

Tyr =T NgPSLy(Z),g~"

(c) Foralli e N, Mackey’s formula (Prop. 3.4.4) gives an isomorphism

H(PSLy(Z),, Coindpo 2Pvy= T[] H(T, V).
y€M\PSLy(Z)z

Proof. (a) and (b) are clear and (c) follows directly from Mackey’s formula. O

Corollary 4.2.4 Let R be a ring andl’ < PSLy(Z) be a subgroup of finite index such that all the

orders of all stabiliser group$',, for = € H are invertible inR. Then for allR[I']-modulesl” one has

HY(T, V) = M/(M'® + M™) with M = Coind."">'") (V) andH/(T', V) = 0 for all i > 2.
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Proof. By Exercise 38, all non-trivial stabiliser groups for the actioi’adn H are of the form
gloyg~t NT or g(r)g~! N T for someg € PSLy(Z). Due to the invertibility assumption we get
from Prop! 3.4.1 that the groups on the right in the equation in Lemma 4.2.85(epe0. Hence, by
Shapiro’s lemma (Prop. 3.4.3) and Equations (4.2.1) and (4.2.2) we obtginoasition. O

By Exercise 38, the assumptions of the proposition are for instance abadigfied ifR is a field
of characteristic no2 or 3. Look at Exercise 39 to see for whic¥i the assumptions hold fat; (V)
andIl'g (V) over an arbitrary ring (e.g. the integers).

4.3 Theory: Parabolic group cohomology

Let R be a ring,I" < PSL9(Z) a subgroup of finite index. One defines th&rabolic cohomology
group for the leftR[T']-moduleV” as the kernel of the restriction map in

0— HE

par

T,V) - H(T,V) = 11 HY(T N (gTg™ ), V). (4.3.3)
9g€T\PSLs(2)/(T)

Proposition 4.3.1 Let R be a ring andl’ < PSLy(Z) be a subgroup of finite index such that all the
orders of all stabiliser group$',, for x € H are invertible inR. LetV be a leftR[I']-module. Write
for shortG = PSLy(Z) and M = Hompg ) (R[G], V). Then the following diagram is commutative,
its vertical maps are isomorphisms and its rows are exact:

1 1 res 11 HYT' N (gTg=1),V)
00— Hpar(l“, V) H'(T,V) ———— g€T\PSLy(Z)/(T) —Vr—0
ShapiroT Shapiro Macke)ﬁ‘
0 —= Hy. (G, M) HY(G, M) —= H'((T), M) Ve —>0
H WﬂnT et d
0 —=HL (G, M) —= M/(M'@) + M) = /(1= T) M ——————— Mg —=0

The mapp : Mg — Vi is given asf — ZgEF\G f(g).

Proof. The commutativity of the diagram is checked in Exercise 41. By Exercisee8Aave
H((T > M) = M/(1-T)M. Due to the assumptions we may apply Corollary 4.2.4. The cokernel of
MM 4 My U™ v -7 M is immediately seen to b /((1— o) M+ (1—T)M),
which is equal taV/, asT ando generaté®S1»(Z). Hence, the lower row is an exact sequence.

We now check that the mapis well-defined. For this we verify that the imagef{iy) in V1 only
depends on the cosE{G:

flg) — flvg) = flg) —vf(g) =1 —v)f(g) =0€ V.

Hence, for anyh € G we get

s(L—h).f)= > (flg)—flgh) =0,

gE€T\PSL»(Z)
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asgh runs over all cosets. Thus,is well-defined. To show that is an isomorphism, we give an
inversey to ¢ by

gu, forgeTl

Y : Vr — Hompr)(R[G], V)G, v e, With e,(g) =
0, forg¢T.

It is clear thatp o v is the identity. The map is an isomorphism, as is surjective. Fix a system of
representative§l = g1, g2, . .., gn} for I'\PSLy(Z). We have

f=2 0ies) =D erg) + D1 9)efg) € m(w),
i=1 i=2 =2
as needed. [Actually, a more conceptual proof would be to first iderifiycanonically the coinduced
moduIeCoindESL"’(Z)(V) with the induced ondeSLz(Z)(V) = R[G] @R V (see later). We claim
that theG;-coinvariants are isomorphic ® |V = Vr. As R-modules we hav&[G] = IGO R1g,
sincer — 1 defines a splitting of the augmentation map. ConsequeRily] @ zirV = (IG @pg(r
V) @ R ®@pr) V. The claim follows, sincd G(R[G] @gr V) = IG Qg V]
Since all the terms in the upper and the middle row are isomorphic to the regpiectivs in the

lower row, all rows are exact. O

4.4 Theory: Dimension computations

This seems to be a good place to compute the dimensitit @f, V;,_»(K)) andH!_ (T, Vi_o(K))

par

over a fieldK under certain conditions. The results will be important for the proof of ticll&r-
Shimura theorem.

Lemma 4.4.1 LetR be aring and let» > 1 be aniintegert = (') andt’ = (5 9).
(a) Ifn!N is not a zero divisor ink, then for thet-invariants we have
Va(R) = (X™)

and for thet’-invariants
V(R = (v,

(b) If n!V is invertible in R, then the coinvariants are given by
Vi(R) gy = Va(R) /(Y™ XY™ 1, .. X"Y)

respectively
Vi(R)ry = Va(R)/(X™, X" 1Y, ..., XY™ 1),

(c) If n!N is not a zero divisor inR, then theR-module ofl’(N)-invariants V,,(R)" ™) is zero. In
particular, if R is a field of characteristi® andT is any congruence subgroup, thép(R)" is
zero.
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(d) If n!N is invertible in R, then theRz-module ofl’(N)-coinvariantsV;, (R)r(y) is zero. In partic-
ular, if R is a field of characteristi® andT" is any congruence subgroup, thep(R)r is zero.

Proof. (a) The action of ist.(X"*Y") = X" /(N X + Y)’ and consequently
(t o 1)_(Xn_ZYZ) _ (Z (;) Nl—]Xl—]Y])Xn—z _ X"yt — ZTI'JX”_]Y]
=0 '
with r; ; = N ( ) which is not a zero divisor, respectively invertible, by assumption. aFer
Y@ XY we have

n

(t—1).x ZQZZXH Iyi = ZX" Y ( Z airi;)

=0 7=0 i=j41

1 2 2
= XY"" apTpn—1 + XYy (anrn,an + anflrnfl,nf2) +....

If (t—1).z = 0, we conclude foy = n— 1 thata,, = 0. Next, forj = n— 2 it follows thata,,—; = 0,
and so on, untik; = 0. This proves the statement on th@variants. The one on thé-invariants
follows from symmetry.

(b) The claims on the coinvariants are proved in a very similar and straiglafdwvay.

(c) and (d) AsI'( V) contains the matricesandt’, this follows from Parts (a) and (b). O

Proposition 4.4.2 Let K be a field of characteristio andI" < PSLy(7Z) be a congruence subgroup
of finite indexu: such thafl', = {1} forall y € H (e.g.I' = I'1(N) with N > 4).
Then

1 # +5k,2

dimg Hl(F,kaz(K)) = (k- )6

and

dimg HL (T, Vi_o(K)) = (k — 1)% — Vso + 2010,

wherev,, is the number of cusps bf

Proof. Let M = Coind?SLZ(Z)(Vk_Q(K)). This module has dimensiofk — 1)u. From the
Mayer-Vietoris exact sequence

0 — M) Mo g M) — M — HY(PSLy(Z), M) — 0,
we obtain
dim HY(T, Vj_o(K)) = dim M + dim MP522) _ dim H((0'), M) — dim HO((7), M).

Recall the leftPSLy(Z)-action onHom gy (K [PSLa(Z)], Vi—2(K)), which is given by(g.¢)(h) =
¢(hg); it is clear that every function ifom g (K [PSL2(Z)], Vi—2(K))PSM2(2) is constant and
equal to its value al. The I'-invariance, however, imposes additionally that this contant lies in
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Vi_o(K)'. Hence, by Lemma 4.4.dim MP512(2) = §, ,. The termH’((0), M) is handled by
Mackey’s formula:

I

dimH°((c), M) = 2 dim Vj_o (Kt = (k — 1)#(I'\PSLy(Z).i) = (k — 1)
x€T\PSL2(Z).i

=

since alll’,, are trivial by assumption and there are hence precigglypoints inYr lying overi in
Ys1,(z)- By the same argument we get

dim HO((r), M) = %
Putting these together gives the first formula:
dimpg HY(D, Vip_o(K)) = (k — 1) (1 — g . g) + O = (k— 1)% + 0o

The second formula can be read off from the diagram in Proposition 4t3jites directly

dim Hrl)ar (Fa Vi—2 (K)) =

dim HY(T, Vi—o(K)) + dim Vi—2(K)r — > dim H'(I' N (gTg™ "), Vi—2(K)).
g€M\PSL2(Z)/(T)

All the groupsl’ N (¢Tg~!) are of the form{7T™) for somen > 1. Since they are cyclic, we have
dim HY(T' N (gTg "), Vi—2(K)) = dim Vi o(K) (my = 1
by Lemma 4.4.1. As the s€\PSL2(Z)/(T) is the set of cusps df, we conclude
S dmH(TN (9T ), Viea(K)) = vee.
gET\PSL2(Z)/(T)

Moreover, also by Lemma 4.4dim V,_o(K)r = d; 2. Putting everything together yields the formula

dimHL (T, Vi_o(K)) = (k — 1)% + 2039 — Voo,

par

as claimed. O

Remark 4.4.3 It is easy to derive a formula for the dimension, evdnig not torsion-free. One only
needs to compute the dimensidfs »(K)(“ andV;_(K)(" and to modify the above proof slightly.

45 Theoretical exercises

Exercise 37 (a) Verify thatG x H is a group.

(b) Prove the following universal property. Lgi : G — G H andvy : H — G« H be the natural
inclusions. LetP be any group together with group injectiong : G — P andny : H — P,
then there is a unique group homomorphigm G x H — P such thatng = ¢ o ¢ and

NH =¢oLy.



4.6. COMPUTER EXERCISES 69
Exercise 38 (a) LetM € SL,(Z) be an element of finite orden. Determine the primes that may
dividem. [Hint: Look at the characteristic polynomial @i/ .]

(b) Determine all conjugacy classes of elements of finite ordeSihy (Z).

Exercise 39 (a) Determine théV > 1 for whichI'; (V) has no element of finite order apart from the
identity. [Hint: You should gelV > 4.]

(b) Determine theV > 1 for whichT'o(/N) has no element of order. Also determine the cases in
which there is no element of ordér

Exercise 40 Prove the explicit description gf,, in the Mayer-Vietoris sequence (Equation 4.2.1).

Exercise 41 Verify the commutativity of the diagram in Proposition 4.3.1.

4.6 Computer exercises

Computer exercise 15Let N > 1. Compute a list of the elementsBf(Z/NZ). Compute a list
of the cusps of'o(N) andI';(N) (vgl. [Stein], p. 60). | recommend to use the decomposition of
P(Z/NZ) into P (Z/p"Z).

Computer exercise 16Let K be some field. Let : (Z/NZ)* — K* be a Dirichlet character
of modulusN. For givenN and K, compute the group of all Dirichlet characters. Every Dirichlet
character should be implemented as a map Z — K* such thatp(a) = 0 for all a € Z with
(a,N) # 1and¢(a) = x(a mod N) otherwise.
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Modular symbols and Manin symbols

5.1 Theory: Manin symbols

Manin symbols provide an alternative description of modular symbols. Wewswathis description
for the comparison with group cohomology and for implementating the modular dgtidomalism.
We stay in the general setting over a riRg

Proposition 5.1.1 The sequence d@t-modules

N 2L R0

0 — R[PSLa(Z)]N, + R[PSLs(Z)|N, — R[PSLa(Z)] L7422, pipl(Q
is exact. (We are considering[PSLy(Z)] as a right R[PSLy(Z)]-module.)

Proof. For a finite subgroup! of a groupG, one easily checks that the map

Homp(R[H], RIH\G]) — R[G], [ Y h.f(h)
heH

whereH\ G stands for a fixed system of representatives of the cosets, is an idusmorf his yields
via Shapiro’s lemma that

H'({o), R[PSL2(2)]) = H'((1), R[(0)\PSLa(Z)]) = 0

for all i > 1, and similarly for(r). The resolution for a cyclic group on page 50 gives

R[PSLy(Z)|Ny = kergipsi,(z)(1 — o) = R[PSLa(Z)]",

R[PSL(Z)]N; = ker gpsry(z)) (1 — 7) = R[PSL2(Z)]7,
R[PSLa(Z)](1 — o) = kerpgpsr,(z) No and
R[PSLa(Z)|(1 — 7) = kergpsry(z)) Nr-

By Proposition 4.2.]1, we have the exact sequence

0 — R[PSLy(Z)] — R[PSLQ(Z)k@ @ R[PSL, (Z)](ﬂ — R — 0.

70
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The injectivity of the first map in the exact sequence (which we recall iaeguence dPSLy(Z) =
(o) * ()) means
RIPSLy(Z)|(1 — o) N RIPSLy(Z)|(1 - 7) = 0.

We identify R[PSLy(Z)]/R[PSL2(Z)](1—T) with R[P*(Q)] by sendingy to goo. Now we show
the exactness a@t[PSL2(Z)], which comes down to proving that the equatidil — o) = y(1 — T)
for 2,y € R[PSLy(Z)] implies thatz is in R[PSLy(Z)](") + R[PSLy(Z)]‘7.

Using the formular = T'o we obtain thate(1 — o) = y(1 - T) = y(1 — 7) —yT'(1 — o). This
yieldsz(1 — o) + yT'(1 — o) = y(1 — 7). This expression, however, is zero. Consequently, there is a
z € R[PSL2(Z)] such thaty = zN,. Hence, using’ = 7o and consequentlyy,T' = N.o, we get

y(1—-T)=2zN;(1-T)=2N;(1—-0) =y(1 —o0).

The equation:(1 — o) = y(1 — o) means that: — y is in R[PSL(Z)]¢"’. As we know thaty €
R[PSLy(Z)]‘"), we see that = (z — y) + y is in R[PSLy(Z)]{”) + R[PSLy(Z)](™, as required.

The exactness a@t[P!(Q)] can be seen as follows (we avoid here the traditional continued frac-
tions argument). Since and7 = 7o generatePSLy(Z), the kernel of R[PSLy(Z)] L Ris
R[PSLy(Z)](1 — o) + R[PSL2(Z)](1 — T). Taking the quotient byR[PSLo(Z)](1 — T') gives the
desired exactness. O

Lemma 5.1.2 The sequence dt-modules

{(X,,B}'_’B—O[
_—>

0 — Mg RIPY(Q)] “=5 R — 0

is exact.

Proof. The injectivity of the first arrow is clear, since we can write any elemenMp as
> atoo Tal0o, a} With 7o € R, using the relations defining/z. The image of this element un-
der the firstarrow i, ., 7o — (3_, 200 Ta)oo. If this is zero, clearly alt, are zero, proving the
injectivity of the first arrow.

Suppose now we are givén, r,« € R[P*(Q)] in the kernel of the second arrow. Thgn, r, =
0 and consequently we have

Zraa: Z TaQ — (Z To )00

o aF#00 aF#00

which is in the image of the first arrow, as noticed before. O
Proposition 5.1.3 The homomorphism d-modules
R[PSLy(Z)] 2, Mp, g+~ {9.0,g9.00}

is surjective and its kernel is given B{PSL2(Z)| N, + R[PSLy(Z)] N .
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Proof. This is a direct consequence of Proposition 5.1.1 and Lemma 5.1.2. O

We are now ready to prove the description of modular symbols in terms of Mamibols. For
this we need the notion of an induced module. In homology it plays the role thabthduced module
plays in cohomology.

Definition 5.1.4 Let R be a ring,G a group, H < G a subgroup and’ a left R[H|-module. The
induced modul®f V' from H to GG is defined as

Ind% (V) := R[G] Qg 'V,

where we viewR[G] as a right R[H]-module via the natural action. The induced module is a left
R[G]-module via the natural left action @f on R[G].

In case ofH having a finite index inG (as in our standard examplg (N) < PSLy(Z)), the
induced module is non-canonically isomorphic to the coinduced one:

Lemma5.1.5 Let R be a ring,G a group, H < G a subgroup of finite index and a left R[H]-
module.

(a) Ind% (V) and Coind$; (V') are (non-canonically) isomorphic as Ie]G]-modules.

(b) Equip(R[G]®r V') with the diagonal left7-actionh.(g ® v) = hg ® h.v and the rightG-action
(9 ®wv).§ = g§ ®v. Consider the induced moduled$ (V) as a right R|G]-module by inverting
the left action in the definition. Then

Indf (V) = (RG] ®r V)i, g@vi g™ @v
is an isomorphism of righR[G]-modules.

Proof. Exercise 42. O

Theorem 5.1.6Let M = Ind?SLZ(Z)(V), which we identify with the righR[PSL2(Z)]-module

(R[PSL2(Z)] ®r V)r as in Lemma 5.115 (b). The following statements hold:
(2) The homomorphism from Proposition 5.1.3 induces the exact sequendg-ofodules
0— MNy,+MN; - M — Mg, V) — 0.

The homomorphisi/ — Mpz(T', V) is given byg ® v — {g.0,g.00} @ v.
Elements il /(M N, + M N, ) are calledManin symbols
(b) The homomorphism[PSL(Z)] — R[P'(Q)] sendingg to g.co induces the exact sequence of

R-modules
0->M1-T)— M — Br(I',V) —0.
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(c) The identifications of (a) and (b) imply the isomorphism
m—m(l—o)

CMRg(,V) = ker (M/(MNy + MN;) ————> M/M(1 —T)).

Proof. (a) We derive this from Proposition 5.1.3, which gives the exact seguen
0 — R[PSLy(Z)]N, + R[PSLy(Z)|N,; — R[PSLy(Z)] — M3(R) — 0.
Tensoring withV" over R, we obtain the exact sequence of I8ff"]-modules
0 — (R[PSL2(Z)] ®r V)Ny + (R[PSL2(Z)] ®r V)N — (R[PSL2(Z)| @r V) — MRr(V) — 0.

Passing to lefl’-coinvariants yields (a). Part (b) is clear from the definition and Pahds already
been noticed in the proof of Proposition 5.1.1. O

In the literature on Manin symbols one usually finds a more explicit versioreafttuced module.
This is the contents of the following proposition. It establishes the link with the th@orem on
Manin symbols in [Stein], namely Theorem 8.4.

Since in the following proposition left and right actions are involved, we siones indicate left
(co-)invariants by using left subscripts (resp. superscripts) ahd (Gg-)invariants by right ones.

Proposition 5.1.7 Let x : (Z/NZ)* — R* be a character such that(—1) = (—1)*. Consider
the R-moduleX := R[I';(N)\SL2(Z)] ®r Vk—2(R) @ r RX equipped with the righLy(Z)-action
(T1(Nh®V @7r)g = (I'1(N)hg ® g~ 'v ® r) and with the leff"; (N)\Io(N)-actiong(I'; (N)h ®

v@r)=(T1(N)gh®v® x(g)r).

Then X is isomorphic as a rightR[SLy(Z)]-module and a leftR[I'; (NV)\I'o(/V)]-module to
Indffl“f](vz))(vkx(}%)), and, moreoverr, (vy\r,(v)X IS isomorphic toIndIS%(zj(VZ))(VkX(R)). If N > 3,
then the latter module is isomorphiclﬂdifa\igﬁﬂ}(VkX(R)).

Proof. Mappingg ® v ® 7 to g ® g~ 'v ® r defines an isomorphism of rigii[SLs(Z)]-modules

and of leftR[I"; (N )\I'o(N)]-modules
(V) (R[SL2(Z)] ®r Vi—2(R) ®p RX) — X.

As we have seen above, the left hand side module is naturally isomorphic todiineed module
Indﬁf@(f))(vkx(z%)) (equipped with its right?[SLy(Z)]-action described before). This establishes the
first statement. The second one follows fregm)\r, () (FI(N)M) = povyM for any 'o(NV)-
module M. The third statement is due to the fact thaty (R[SL2(Z)] ®r V,X ,(R)) is naturally
isomorphic taR[PSLy(Z)|®r V,* 5 (R), since—1 acts trivially on the second factor, as the assumption

assures that1 € I'o(IV) but—1 € I'1 (N). ]

For one more description of the induced modtﬂé?f(L]@g%%ﬂ}(ka(R)) see Exercise 43. Itis this
description that uses up the least memory in an implementation.

Now all the prerequisites have been provided for implementing Manin symsaysférT'o(NV)
and a character). This is the task of Computer Exercise 17.
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5.2 Theory: Manin symbols and group cohomology
LetI' < PSLy(Z) be a subgroup of finite index, anda left R[I'|-module for a ringR.

Theorem 5.2.1 Suppose that the orders of all stabliser subgroups fufr the action ori are invert-
ible in R. Then we have isomorphisms:

HY (T, V) = Mg, V)

and
Hl (Fv V) = CMR<F7 V)

par

Proof. This follows immediately from comparing the Manin symbols description of modular
symbols (Theorem 5.1.6) with the corollary of the Mayer-Vietoris exactieece (Corollary 4.2.4),
using Mackey'’s formula as in Lemma 4.2.3 (c) and the resolutioR &dr a free group on page 50.

O

5.3 Algorithms and Implementations: Conversion between Manin and
modular symbols

We now use the Euclidean Algorithm to represent any elemenPSLs(Z) in terms ofo andT'.

Algorithm 5.3.1 Input: A matrix M = (24)
Output: A list of matrices [A;, Ag, ..., A
alternate.

with integer entries and determinant 1.
o] Whereall A; € {T"n € Z}U{c}and o and T"

(1) Create an empty list out put .
(2) if |c| > |a| then

3) Append ¢ to out put .

(4) M := oM.

(5) end if;

(6) while ¢ # 0do

(7) q:=adivec.

(8) Append T to out put .

9) Append ¢ to out put .
(10) M :=oT M.

(11) end while;
12) if M ¢ {(§9), (5 %)} then  [Atthis point M € {({%), (T %)}
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(13) Append M to out put .
(14) end if;
(15) return out put .

This algorithm gives a constructive proof of the fact tR&fi.,(Z) is generated by andT’, and
hence also by andr. Note, however, that the algorithm does not necessarily give the shetieh
representation. See Exercise 44 for a relation to continued fractions.

We can use the algorithm to make a conversion between modular symbols and $yienbols,
as follows. Suppose we are given the modular symbalsx} (this is no loss of generality, as we
can represenfa, 5} = {a, 00} — {3, 00}). Supposey is given asgoo with someg € SLa(Z) (i.e.
representing the cusp as a fractfbwith (a, c) = 1, then we can find, d by the Euclidean Algorithm
such thaty = (g 3) € SL»(Z) satisfies the requirements). We now use Algorithm 5.3.1 to represent
gasoT*oT*¢g ... T o (for example). Then we have

{a,00} = 0T"0T%0 ... T"{0,00}+0T0cT0 ... T {0,00}+ - -+0T{0,00}+{0, c0}.
If ¢ does not end i butT%", then we must drofi* from the above formula (sincE stabilisesx).
If g starts iNT* (instead ofr), then we must drop the last summand.

In Computer Exercise 18 you are asked to implement a conversion betwagn &hd modular
symbols.
5.4 Theoretical exercises
Exercise 42 Prove Lemm#&.1.5.
Exercise 43 Assume the set-up of Proposition 5.1.7. Describe a i, (Z)-action on

Y := R[PY(Z/NZ)] ®r Vi_2(R) ®r RX

and an isomorphism

I (VDo) X =Y
of right PSLy(Z)-modules.

Exercise 44 Provide a relationship between Algorithm 5.3.1 and continued fractions.

5.5 Computer exercises

Computer exercise 17Use the description of Exercise 43 and your results from Computer i&rsrc
15 and 16 to implement Manin symbols fay(/V) and a character over a field. As a first approach
you may use the trivial character only.
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Computer exercise 18(a) Write an algorithm to represent any elementRL2(7Z) in terms ofo
andT.

(b) Write an algorithm that represents any modular symge]3} as a Manin symbol (inside the
vector space created in Computer Exercise 17).
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Eichler-Shimura

6.1 Theory: Petersson scalar product

Recall the (closed) standard fundamental domairsferZ) (from last term’s course)
1
F={z=a+iycH|lz| > L]a| < 5}.

Every subgroup’ < SLy(Z) of finite index has a fundamental domain, &.4,.r pg;,, z) 77 for any
choice of system of representatives of the coB&l3SLy(Z), where we pul’ = I'/((£1) N T).

Lemma6.1.1 (a) LetD’ < SLs(Z) be a subgroup of finite index. Lgt € M (I'; C) andg €
Sk(T'; C). We have with: € H
F(r2)9(v2)(vz = 72" = fl(2)gl, () (= — 2)*
for all 4 € SLy(R). The functionG(z) := f(2)g(z)(z — Z)* is bounded off.
(b) We havelyz = —Ldz forall v € SLy(R).

(cz+d)?

(c) The differential form®/% is SLy(R)-invariant. In terms of: = z + iy we have’%; =

i deAdy )
2 y?
(d) LetT' < SLs(Z) be a subgroup with finite index = (PSLy(Z) : T'). The volume of any

fundamental domairFr for T" with respect to the differential forg j_/\g%, ie.

2dz N dz
1 = —_—
vol7r) /]—'F i(z — %)%

is equal tou 7.
Proof. (a) The first statement is computed as follows:
b Z+0b
10290 (v =72)* = (e + gk Ees + P (g + o
= [l (2)gl,(2)((az + b)(¢z + d) — (aZ + b)(cz + )"
= fl(2)gl,(2)(z = 2)",

)k

77
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where we writey = (g g) By the preceding computation, the functiGiiz) is invariant undery € T".
Hence, it suffices to check tha¥(z)| is bounded on any closed fundamental doma&infor I'. For
this, it is enough to verify for every in a system of representatives BfSLy(Z) that any of the
functionsG(~z) is bounded on the closure of the standard fundamental daffiaBy the preceding
computation, we also haw@(vz) = f|,(2)gl,(2)(z — 2)¥ for v € SLy(Z). Note thatf(z)g(2)

is a cusp form inSy,(I'; C), in particular, for everyy € SLy(Z) the functionf|,(z)g|,(z) has a
Fourier expansion ino of the form>"°° | a,e*™**". This series converges absolutely and uniformly
on compact subsets &f, in particular, for anyC' > 1

) ‘ ‘ 0o
K,y — Z |an€2m(a¢+zC)n| _ Z |an|6—27rCn
n=1 n=1

is a positive real number, depending @ifin a system of representative§SLy(Z)). We have with
z=u1x+iyandy > C

oo oo
GO2)| < 2) Y Jaale ™ = (20)672 3 fagle 20

n=1 n=1
oo
< (Qy)ke—%ry Z ’an|€—27rC(n—1) < (Qy)k6_27ryK,y€27rC.
n=1
This goes td) if y tends tooo. Consequently, the functiof(yz) is bounded on all of the standard

fundamental domain, as desired.
(b) Again writingy = (¢ %) we have

dvz  dE 1 p ; 1
dz ~ dz (cz+d)2(a(cz+ )~ (az+ b)) = (cz +d)?%’

which gives the claim.
(c) This is again a simple computation:

az+b az+b _, o, 9 _
cz+d+ci+d) (cz+d) “(cz+d) “dzNdz

= (2 —2%)2dz A dz,

(yz —72)Pdyz Advyz = (

using (b). The last statement is

dzNdz  (dx+idy) A (de —idy)  —2ide ANdy  idx Ady

2—7Z)2 2i1)? — 492 292
( ) Y y Yy

(d) Due to thd -invariance, it suffices to show

/ dz Ndz _m
Flz=2)?% 6

Letw = —-%2.. The total derivative of is

z—

dz Ndz

do=((z—2)%dz — (2 —2)7%dZ) Ndz = CEEE
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/ dz Ndz __/ dz
F(z=22 Jopz—%

wheredF is the positively oriented border of, which we desribe concretely as the pattirom co
to (3 on the vertical line, followed by the patti from (5 to (s on the unit circle and finally followed
by —T'A. Hence withz = z + iy we have

/ dz/\dz / / dz / dz 1 dz
- I + 7) - 5 )
F(z—2)? A TA Y cy 2i Jo y
sincedz = dT'z. Using the obvious parametrisation@fwe obtain
1 1 27 /6 1 i} 1 27 /6 ip
_ dz:_,/ _ 1 de? d¢:_/ —__dg
2i Jo y 2i Jonss Im(ei?) dg 2 Jorsz Im(ei)

_ L [ eos(@) g, i 2w 2wy i
=2 L G =2 )

Hence, Stokes’ theorem yields

sincesin is symmetric around /2 andcos is antisymmetric, so that the integral O\fsén((% cancels.
O

Definition 6.1.2 LetT" < SLy(Z) be a subgroup of finite index and lgt:= (PSLy(Z) : T') be the
index ofl = T'/({£1) NT) in PSLy(Z). We define th@etersson pairings

My(T'; C) x S(T'; C) = C, (f,g) — 1 F(2)9(2) (2 Z)kw

w Jr i—=p o

whereFr is any fundamental domain far.

Proposition 6.1.3 (a) The integral in the Petersson pairing converges. It does notrdkpe the
choice of the fundamental domaf-.

(b) The Petersson pairing is a sesqui-linear pairing (linear in the first ant-linear in the second
variable).

(c) The restriction of the Petersson pairing $@(I"; C) is a positive definite scalar product (the
Petersson scalar prodct

(d) If f, g are modular (cusp) forms for the grodpandI” < I is a subgroup of finite index, then the
Petersson pairing of andg with respect td" gives the same value as the one with respett to

Proof. (a) By Lemma 6.1.1 the integral converges, since the funation) := f(2)g(z)(z — 2)*
is bounded orfFr and the volume ofFr for the measure in question is finite. The integral does not
depend on the choice of the fundamental domain by the invarianG¢zgfunderT".

(b) is clear.

(c) The product tdq f, f) is % [7f(2)[2y*~2dx A dy, which is clearly non-negative. It sif and
only if f is the zero function, showing that the product is positive definite.
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(d) If Fr is a fundamental domain far, thenuwer,\F ~JFr is a fundamental domain fav (for
any choice of representativesiof\I"). But on everyyFr the integral takes the same value. O

Proposition 6.1.4 Let f, g € Si(T"; C). We have

i 0
(f,9) :ii 72 /CB/OOfv(z)gh(z)(z—z)k_dedz.
~€T\PSL;(Z)

Proof. Let us write for shortG., (2, %) = f|(2)gl,(2)(z — 2)¥ for v € SL2(Z). Then
i dz A cF dz ANdz
—(f,9) = / G(z, / G (2,%)
2 (1.9) U, +F (2,2 (z —2) Z (z—2)?

by Lemma 6.1.1, where the union resp. sum runs over a fixed system eif repgesentatives of
T'\PSL2(Z); by our observations everything is independent of this choice. Cansidedifferential
form

o= ([ fhotu)(u— 2 2du)gl, Gz

Note that the integral converges, singeis a cusp form. The total derivative af, is dw, =
G, (z,7) &9  Consequently, Stokes’ theorem gives

(z—2)%"
_ dzNdz z g -
Z/ GV(Z’Z)(Z—Z)Q:%:/Q}-(/OO f|,y(u)(u—z)’C 2du)g|v(z)d2

where as abov@F is the positively oriented border of the standard fundamental dofaivhich we
describe as the path along the vertical line fromo to (3, followed by the pathB from (3 to i along
the unit circle, followed by-o B and by—T A.

We now make a small calculation. Let for thisbe any (piecewise continuously differentiable)
path inH andM € SLy(Z):

/Mc /oo Fla(w)gly () (w = 2)*dudz

Mz AM=
= /C Fly () gl (M 2) (u — M7)F2du d;dz

e}

=[] Gl — 2
CJM-1oo
? _ M~ 1co -
:/C/Ooth(U)ghM(z)(uZ)k—2dudz/C/ Flyar (gl () (u — 2)F2dudz.

(o)

This gives

/CMC /OO Fla(u)gly (2)(u —2)* 2 dudz =

// G (u, z))dudz—i—/c/ooMloo Goyar(u, Z)dudz.
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Continuing with the main calculation, we have

”‘ // Gyr(u, z))dudz+/ /T_loo Goyr(u, 2)dudz]
—1—2// +(u,Z) = Gyo(u, Z) ducf—l—// Gro(u, Z)dudz]

:Z/B/OOGW(u,z)dudz,

usingT oo = oo, 0 'oo = 0 and the fact that theT and~o are just permutations of the cosets.
O

6.2 Theory: The Eichler-Shimura map

LetT' < SLy(Z) be a subgroup of finite index.

Definition 6.2.1 The space o&ntiholomorphic cusp formS;(I"; C) consists of the functions —
f(2) := f(z) with f € Si(T; C).
We fix somezg, 21 € H. For f € My(I'; C) with £ > 2 andg, h in SL2(Z) let
hzg
I1(gz0, h2o) == f(2)(Xz4Y)E2dz € Vj_5(C)

gzo

and

hzi
(g1, ha) = / (X7 + Y)F2dz € Vi_s(C).
g

21

The integral is to be taken coefficient wise. Note that it is independeneathibsen path, since
we are integrating a holomorphic respectively anti-holomorphic function.

Lemma 6.2.2 For any zy € H and any matriceg, h € Z2*? with positive determinant we have

I¢(20,g9hz0) = If(20,920) + 17(920, ghzo)

and

I+(g20, ghzo) = det(g)2_kg.(1ﬂg(zo, hz))

and similarly for f.



82 STAGE 6. EICHLER-SHIMURA

Proof. The first statement is clear. Write= (¢ %). Recall that by Lemma 6.1.1 (b), we have
dgz = 29) 7. We compute further

(cz+d)?
ghzo
I¢(gz0, ghzo) = / fR)(Xz+ Y)k_de

g0

hzo k—2dgz
= fl92)(Xgz +Y)" " ——dz
% dz
hzo az+b

= det(g)z_k flg(2)(cz + d)k_Q(X - + Y)k_de

20

T d
= det(g)*7* " flg(2)(X (az +b) + Y (cz + d))F2dz
det() [ Fl()(Xat Ye)s + (Xb+ Yad)E-2ds

hzg
= det(g)* " Flg(2)(g-(Xz +Y)"?)dz
hzo
= det(g)Q_kg.( flg(2)(Xz+ Y)k_de)

= det(g)**g. (If|g (20, hz0)).

We recall that for a polynomiaP(X,Y’) we have the actioig. P)(X,Y) = P((X,Y)(2})) =
P(Xa+Ye, Xb+ Yd). The statement ol is proved in exactly the same way. O

Proposition 6.2.3 Letk > 2 andI" < SL9(Z) be a subgroup of finite index and fix, z; € H.
(a) TheEichler-Shimura map
M(I'; C) & Si(T'; €©) — HY(T, Vi2(C)),
(f,9) = (v = If(20,720) + Ig(21,721))
is a well-defined homomorphism@fvector spaces. It does not depend on the choieg ahdz; .

(b) Theinduced Eichler-Shimura map

M(T'; C) ® Si(T'; C) — H'(SLy(Z), Homgyry (C[SLa(Z)], Vi—2(C))),
(f,9) — (a— (b If(bzg,bazy) + Iz(bz1,baz1)))

is a well-defined homomorphism@fvector spaces. It does not depend on the choieg ahdz; .
Via the map from Shapiro’s lemma, this homomorphism coincides with theamdd).

Proof. (a) For checking that the map is well-defined, it suffices to computeythatl (2o, vz0)
is al-cocycle:

It(20,v020) = I¢(20,720) + L§(v20,7020) = I¢(20,7v20) + 7-If(20,020),
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using Lemma 6.2.2 anfl, = f, sincey € I".
The independence of the base point is seen as followszglst another base point.

I1(%0,720) = If(Z0, 20) + I (20, v20) + Lf(v20,720) = If(20,720) + (1 — 7)1 (Z0, 20)-

The difference of the cocycley — I;(Z,vZ0)) and(y — If(z0,720)) is hence the coboundary
(v = (1 = )¢ (%0, 20))-

(b) We first check that the ma — 1;(bzo,bazo) + I5(bzo, bazp)) is indeed in the coinduced
moduleHomg ) (C[SLz2(Z)], Vi—2(C)). For that lety € T'. We have

I (vbzo, vbazo) = 7.(If(bzo, bazo))

by Lemma 6.2.2, as desired. The maa) := (b — I;(bzo,bazo) + I5(bz1,baz1)) is a cocycle:

¢(a1a2)(b) = If(bZo, bachQZo) = If(bZo, balzo) + If(balzo, bachQZo)
= ¢(a1)(b) + d(az)(bar) = ¢(a1)(b) + (a1.(¢(a2)))(b),

by the definition of the left action &§L.(Z) on the coinduced module.
Note that the map in Shapiro’s lemma in our situation is given by

¢ = (v = ¢(v)(1) = If(20,720)),

which shows that the maps from (a) and (b) coincide. The independerehe base point in (b)
now follows from the independence in (a). O

Proposition 6.2.4 LetI" < SLy(Z) be a subgroup of finite index and I& be a ring in which2 is
invertible. LetV be a leftR[I']-module. Assume that eitherl & I or —1 € I" acts trivially onV'.

Then Hl(SLQ(Z),HOHIR[F](R[SLQ(Z)], V)) and Hl(PSLQ(Z),HomRm (R[PSL9(Z)],V)) are
naturally isomorphic. We shall make this identification from now on.

Proof. Due to the invertibility of2, the Hochschild-Serre exact sequence gives an isomorphism

H' (PSLa(Z), Hom gy (R[SLa(2)], V) (=1) 25 H(SLa(2Z), Hom gy (R[SLa(Z)], V).
If —1 ¢ T, thenT" = T andHom gy (R[SLa(Z)], V){=1 consists of all the functions satisfying
f(g) = f(—g) forall g € SLy(Z), which are precisely the functions lom g (R[PSLa2(Z)], V).
If —1 € I" and—1 acts trivially onV, then f(—g) = (—1).f(g9) = f(g) and so—1 already
acts trivially onHom gy (R[SL2(Z)], V). This R[SL2(Z)]-module is then naturally isomorphic to

Hompp (R[PSL2(Z)], V), since any function is uniquely determined on its classes mogulo.
O
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Proposition 6.2.5 The kernel of the Eichler-Shimura map composed with the restriction

M(T'; €)@ S(T; C) — HY(T, Vi2(C)) —  [[  H'(Te, Va2(C))
c€T\PL(Q)

is equal taS;(I"; C) @Sk (I"; C). In particular, the image 08, (I"; C) &Sk (I"; C) under the Eichler-
Shimura map lies in the parabolic cohomoldgl%{ar(l“, Vi—2(C)).

Proof. The composition maps a modular forfrto thel-cocycle (fory € T',)

y m f(2)(Xz+Y)F2dz

20
with a fixed base point, € H. The aim is now to move the base point to the cusps. We cannot
just replacezg by oo, as then the integral might not converge any more (it converges orfaunsp).
Letc = Moo be any cusp with/ = (2%) € SLy(Z). We then havd. = (MTM ') NT =
(MTT™M~') for somer > 1. Sincef is holomorphic in the cusps, we have

flu(z) = ane®™™ = ag + g(2)

n=0
and thus

£(2) = aola-1(2) + gl () = ¢ gy (2).

—cz +a)k
Now we compute the cocycle evaluatedyat MTSM

%0 3 Y20 (X z 4+ V)2 %0 3
(Z)(XZ+Y)k 2dz:a0/ (<_Zcz_i_i)kdz+/ g|M71(Z)(XZ+Y)k QdZ.
20 20 20

Before we continue by evaluating the right summand, we remark that theahtegr

Moo [e'S)
Iy (20, Moo) = / gly-1(2)( Xz 4+ YY) 2dz = M. g(2)(Xz+Y)2dz

20 M_IZO

converges. We have

YZ0 Moo YZ0
(N X2+ YY) 24y = () Xz + V)22
/ gl (2)(Xz +Y) (/ +L Jgla- (2)(Xz +Y)

20 20 Moo

Moo
—=) [ g @+ )R
20
sinceg|y;-1,(2) = glpsp-1(2) = glar-1(2). Thel-cocycley — f;;zo gla-1(2)( Xz 4+ Y)E2dz is
thus al-coboundary. Consequently, the class of the imaggisfequal to the class of thecocycle

) /m (X2 442
— ——dz.
7 0 ; (—cz +a)k

0

We have the isomorphism (as always for cyclic groups)

p=¢(MT"M 1)
_—

HY(T., V_2(C)) Vi—o(C)r,.
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Furthermore, we have the isomorphism

N 1 P—P(0,1
Vioo(C)p, 2222y 2(C) sy P=POY |~

with polyomials P(X,Y’). Note that the last map is an isomorphism by the explicit description of
Vi—2(C)(7s). Under the composition the image of the cocycle coming from the modular fasm

YZ0 X Y k—2 Y20 (X Y k—2
agM ™t / 2t T L —dz(0,1) = ao/ %dz(fc, a)
0 —cz+a) w0 (—cz4a)

Yzo 1 T M1
:ag/ de:ao/ dz:ao(M_lzo—l-r—M_lzo) = rag,
20 (_CZ =+ Cl) M—1zg

as(0,1)M~1 = (0,1) (4 2?) = (—¢,a). This expression is zero if and onlydf, = 0, i.e. if and
only if f vanishes at the cusp
A similar argument works for anti-holomorphic cusp forms. O

6.3 Theory: Cup product and Petersson scalar product
This part owes much to the treatment of the Petersson scalar producbbylatal.

Definition 6.3.1 LetG be a group and\// and N be two leftR[G]-modules. We equip! @ p N with
the diagonal leftR[G]-action. Letm,n > 0. Then we define theup product

U:H"(G,M)®r H™"(G,N) — H""™(G, M @ N)
by
(¢7¢) — ((917 9y Gnt1y - - - 7gn+m) — ¢(gl7 cee )gn) & g?"ww(gn-‘rlv ... 7gn+m)
on cochains of the bar resolution.
In Exercise 45 it is checked that the cup product is well-defined. Weawegoing to formulate a
pairing on cohomology, which will turn out to be a version of the Peterssalaisproduct. We could

introduce compactly supported cohomology for writing it in more conceptualstebut have decided
not to do this in order not to increase the amount of new material even more.

Definition 6.3.2 Let M be anR[PSLy(Z)]-module. Thearabolicl-cocyclesare defined as

Zh(T M) = ker(Z T, ) ™ T ZHC 0 (gTg ). V)).
g€\PSL2(Z) /(T)

Proposition 6.3.3 Let R be a ring in which6 is invertible. LetM, N be left R[PSLy(Z)]-modules
together with a homomorphism: M @ g N — R of R[PSLy(Z)]-modules, where we equiv ® p N
with the diagonal action. Writé&; for PSLy(Z). We define a pairing

(,):ZYG, M) x Z"(G,N) — R
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as follows: Left(¢, w) be a pair ofl-cocycles. Form their cup produpt:= 7, (¢U1) in Z*(G, R) via
7?(G,M ®r N) = 7Z2(G, R). AsH?(G, R) is zero (Corollary 4.2.4)p must be a&2-coboundary,
i.e. thereisu : G — R such that

p(g,h) = m(d(g9) ® g.p(h)) = g.a(h) — a(gh) + a(g).

We define the pairing by

(¢, 4) := a(T).
(a) The pairing is well-defined and bilinear. It can be expressed as
1 1
($:0) = —p(r,0) + 5p(0,0) + 3 (p(7,7) + p(7,77)).

(b) Ifp € Zpar(G, M), thenp(r,0) = p(o,0) and

(6,9) = —50(0,0) + 5

Moreover,(¢, 1)) only depends on the class®fin H (G, N).

p(r,7) + p(7,7%)).

(c) Ify € Zpar(G, N), thenp(r, o) = p(r,72) and

1 2

(6,9) = 39(0,0) + 50(7,7) — 2p(r, 7).

Moreover,(¢, 1)) only depends on the class®fin H (G, M).

d) If¢ € 2},.(G,M) andy € Z},.(G, N), thenp(o, o) = p(7,7%) and

par(

1

(6,4) =~ p(3,0) + 5p(r. 7).

Proof. (a) We first have

0=m(o(1) @9(1)) = p(1,1) = a(l) = a(1) +a(1) = a(1),

since¢ and1) arel-cocycles. Recall that the value oflacocycle atl is always0 due to¢(1) =
#(1-1) = ¢(1) + ¢(1). Furthermore, we have

p(r,0) =a(t) —a(T) + alo

plo,0) =a(o) —a(l) + a(o) = 2a(o)
p(1,7%) = a(t?) — a(1) + a(r) = a(7) + a(r?)
p(1,7) = a(t) — a(t?) + a(7) = 2a(7) — a(r?)

Hence, we get(T) = —p(7,0) + a(o) + a(r) anda(o) = $p(0, o) as well asu(t) = 3 (p(7,7) +

p(7,7%)), from which the claimed formula follows. The formula also shows the indegrezelof the
choice ofa and the bilinearity.
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(b) Now assume(7T) = 0. UsingT" = 7o we obtain

p(1,0) = m(o(1) @ TY(0)) = —7(7.¢(0) ® T)(0))
= —7(¢(0) @ ¢(0)) = 7((¢(0) @ 0¢(0))) = p(0,0)
becaus® = ¢(T) = ¢(70) = 7.¢(c) + ¢(7) and0 = (1) = ¥(c?) = o.1b(o) + (o). This yields
the formula.

We now show that the pairing does not depend on the choiteotycle in the class af. To see
this, lety)(g) = (9 — 1)n be al-coboundary. Pui(g) := —¢(g) ® gn. Then one immediately checks
the equality

p(g,h) = ¢(g) ® g(h — 1)n = g.b(h) — b(gh) + b(g).
Hence,(¢, ) is mapped td(T) = —¢(T) @ Tn =0® Tn = 0.

(c) Let now(T) = 0. Then0 = (T) = w(ro) = 7¢(o) + (1) and0 = (r3) =

T (72) + (1), whencery(72) = 11 (o). Consequently,

p(r,0) = m(d(1) ® T(0)) = 7(6() ® TY(7?)) = p(T,7%),

implying the formula.
The pairing does not depend on the choicéd-abcycle in the class ab. Let¢(g) = (g — 1)m
be al-coboundary and put(g) := m ® ¥(g). Then the equality

p(g:h) = (g — 1)m @ gip(h) = g.c(h) — c(gh) + c(g)

holds. Hence(¢, v) is mapped ta(T) = m @ ¢(T) =m ® 0 = 0.
(d) Suppose now that(7T") = 0 = ¢ (T), then by what we have just seen

p(1,0) = plo,0) = p(1,7°).
This implies the claimed formula. O

Our next aim is to specialise this pairing to the cocycles coming from modularsfander the
Eichler-Shimura map. We must first define a pairing on the modules used inltbenology groups.

On the moduleSym*~2(R?) we now define thesymplectic pairingover any ringR in which
(k — 2)!is invertible. Letn = k — 2 for simplicity. The pairing fom = 0 is just the multiplication
on R. We now define the pairing for = 1 as

R*x R* - R%* (%)e(h):=det(2b).
For anyg € SLy(Z) we have
9(2)eg(g) =detg () =det (23) = (2)e(g)-
As the next step, we define a pairing on th¢h tensor power of2?

(R?®Rr---®r R) x (R?®R---®r R*) - R
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by
(e ne(h)eo(h) =

This pairing is still invariant under thelL,(Z)-action.

Now we use the assumption on the invertibilitysdfin order to embed&ym™(R?) as anR[S,,)-
module in then-th tensor power, where the action of the symmetric graup on the indices. We
have that the map (in fact/n! times the norm)

1 n
Sym"(R?) - R0 0p B, ()00 (@) — 3 () oo ()
gES,

is injective (one can use Tate cohomology groups to see this), as theabrflgiis invertible in the
ring.

Finally, we define the pairing oflym™(R?) as the restriction of the pairing on theth tensor
power to the image ofym™(R?) under the embedding that we just described. This pairing is, of
course, stillSLy(Z)-invariant.

We point to the important special case

()7F 0 () = (ad —be)* .

Hence, after the identificatioBym”*~2(R?) = V,_,(R) from Exercise 10, the resulting pairing on
Vi—2(R) has the property

(aX +cY)* 2 o (bX +dY)E2 = (ad — be)F 2.
This pairing extends to a paring on induced modules
7 : Hompr)(R[PSLa(Z)], Vk—2(R)) ®r Hompr) (R[PSL2(Z)], Vk—2(R)) — R
by mapping(a, 5) t0 >~ cp\psr,(z) @(Y) ® B(7)-

Proposition 6.3.4Letk > 2. Letf,g € Sg(I'; C) be cusp forms. Denote hy; and ¢ the 1-
cocycles associated withand f under the Eichler-Shimura map for the base points= oo, i.e.

f(a) = (b If(boo, baco)) € Z'(PSLy(Z), Coindho P (V4 _,(C)))

and
¢5(a) = (b Iz(boo, baco)) € ZH(PSLy(Z), Coindy @ (Vi _5(C))).

Similarly, denote by), and; the 1-cocycles associated withand g for the base point; = (.
Define a bilinear pairing as in Proposition 6.3.3

(,) : ZY(PSLy(Z), Coindi o™ (V,_y(C))) x Z!(PSLy(Z), Coind L") (V;,_,(C))) — C

with the product on the coinduced modules described above.
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Then the equations

(b,10g) = %(f,g)
(g, ¢5) = (=1)" H¢s,15) and
(b7, ¥g) = (=1)* g, bp)
hold, where(f, g) denotes the Petersson scalar product antthe index of" in PSLy(Z).

Proof. Note that the choice of base poist is on the one hand well-defined (the integral con-
verges, as it is taken over a cusp form) and on the other hand it etsates (1") = ¢(T) = 0.
Now consider ¢y, vg). Letp(a,b) := w(¢f(a) ® arpg(b)). We first describe(a, b):

Yaoo ~yabCe
pla,b) = Z (/ f(2)(Xz+ Y)k_de) . (/ g(2)(Xz+Y)k 2dz)

vade
~vab(e

'yaoo
/ / (Xz+Y) 2o (XZ+Y)?)dzdz
vace Yoo
yabe vaoo
/ / z — Z)k*Zdsz
v Jvade Yoo

ab(e aoco
Z/ / fly(2)gly(2)(z — 2)F2dzdz.
'y C6 00
where the sums run over a system of representative§B$1L»(Z). We obtain
0%l oo L
plo, o) = Z/C / fly(2)gl4(2)(z = 2)" " “dzdz
v o(e e}
w e PEY k—2
=3 [ [ btk -2 e,
v 4-3 o0

% 0 o1 a0
=3[/ [ Fh=ghE)E -2 2dedz + Fr(2)gh () (2 — 2)F2dzdz]
G
o 3 J OO ol

¢3 Jooo

% 0 i 0
:Z [/@/OOf|7(z)g|7(z)(z—z)k_zdzdf—l—/@/oof\w(z)g\w(z)(z—z)k_zdzdﬂ
i 0
-2% / / Fl(2gh () — ) 2ddz,
p(7,7) Z/ l f|w (2)gl,(2)(z — 2)*2dzdz = 0 and
T,7%) = h ~(2)gl4 (2 2z —2)*2dzdz = 0,
p(r,7?) Z/C /OO Fh (2@ -2

sincer stabilises(s. It now suffices to compare with the formulas computed before (Propaosition

6.3.3 and 6.1.4) to obtaifp s, ¥g) = £(f,9).
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Now considervyg, ¢r). Let A(a, b) := 7(vg(a) ® aps(b)). We now describe\(a, b):

yaboo

~vale
et =3 |y e ([ e+ ) )

~C6 Yyaoo
aboo
-3 / e EE - o) R,

where again the sums run over a system of representatiNédfl,(Z). We find further

o) = (1Y [ [ e - o
Ce
0Dy / [ LG - 2z = plovo),
(1, 7) y ~(2)(Z — 2)¥2dzdz = 0 and
2/4/ ()R - 2) an
A7) =3 /4 6 '/ :O P29k ()(z — 2)2dzdz = 0.

We can again appeal to Propositions 6.3.3/and 6.1.4 to obtgi ) = —1)k1L £(f,9).
To prove the final equation we proceed precisely as in the precedmglaiaius and obtains

(gb?, Yg) = (=1)F gy, gbﬁ. To conclude, one uses

- 1 o 1 da 1 o -
LF(z)dz:/O F(oz(t))(fltdt:/o F(oz(t))ilﬁdt:/o Fla ())Cfi—dt /aF(z)dz

for any piecewise analytic path: [0, 1] — C and any integrable complex valued functibn O

6.4 Theory: The Eichler-Shimura theorem

We can now, finally, prove that the Eichler-Shimura map is an isomorphisroltid be pointed out
again that the cohomology groups can be replaced by modular symbotsiagcm Theorem 5.2.1.

Theorem 6.4.1 (Eichler-Shimura) Let N > 4 and k > 2. The Eichler-Shimura map and the in-
duced Eichler-Shimura map (Proposition 6.2.3) are isomorphism&*fes T';(N). The image of
Sk(I'1 (V) ; C) @ Si(I'1(N); C) is isomorphic to the parabolic subspace.

Proof. We first assert that the dimensions of both sides of the Eichler-Shimura gnap and
also that twice the dimension of the space of cusp forms equals the dimengmmprabolic sub-
space. The dimension of the cohomology group and its parabolic subspa@®mputed in Proposi-
tion'4.4.2. For the dimension of the left-hand side we refer to last terms cffarsven weights) or
to [Stein].
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Due to Proposition 6.2.5 it suffices to prove that the restriction of the EiSGtienura map to
SK(I'1(N); C) @ S(T'1(N); C) is injective. In order to do this we choosg = z; = oo as base
points for the Eichler-Shimura map, which is possible as the integrals c@wargusp forms (as in
Proposition 6.2.3 one sees that this choice of base point does not dhangghomology class). As
in Proposition 6.3.4, we writg andgbf for the 1-cocycles associated with a cusp fofrfor the base
pointoo and alsay; andy; for the base poine.

We now make use of the pairing from Proposition 6.3.4200PSLx(Z), Coind,.
where we pul” := I'; (V) for short. This pairing induces a pairing

(,) : Z} o (PSLa(Z), Coindp 2P (V;,_p)) x H'(PSLy(Z), Coindr> ™ (V,p)) — R.

Let f,g € Si(I'1(N); C) be cusp forms and assume thak] + [¢g] = 0. By [-] we denote
cohomology classes. We must make a distinction between odd and even wAggume first thak
is even. Then the formulae from Proposition 6.3.4 give

0= (=7 + 8y 105] + o)) = ~(&7. [6]) + (5. [03]) — (O [85]) + (Jy. (1)

= —(67.65) + {09, 05) — (07,05 + (B9, 65) = —(p, &5) + (Bg0g) — (D7) + (g, b5)
= (07, 97) + (¢g: Vg) + (g, Of) + (g, by)

= L((£.1)+ (9.9)) +2Re((1y, 61)).

Hence,(f,f) = 0 = (g,9) and, thus,f = g = 0, since the Petersson scalar product is positive
definite. Ifk is odd, we conclude similarly:

0= (5 + b, 0] + [ég)) = (67, [651) + (65, [6)) + (07, [6g) + (84, 64])
= (6, 81) + (99, 63) + (67, 85) + (B, 85) = (V7 65) + (b, V) + (b7 ¥g) + (. 6)
= (67, 97) + (99, Yg) + [0y 67 + (V. &)
= Z((£.1) + (9. 9)) + 2Re({4y, 61)).

Hence, agairf = g = 0. This proves the injectivity. O

Remark 6.4.2 The Eichler-Shimura map is in fact an isomorphism for all subgrdup$SL2(Z) of
finite index. The proof is the same, but must use more involved dimdosimrae for the cohomology
group (see Remark 4.4.3) and modular forms.

In Corollary|7.4.1 we will see that there also is an Eichler-Shimura isomismlwith a Dirichlet
character.

6.5 Theoretical exercises

Exercise 45 Check that the cup product is well-defined.
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Hecke operators

7.1 Hecke rings

Definition 7.1.1 Let N, n € N. We define

AG(N) ={(25) e Mx(2)| (¢5) = (5%) mod N, (a,N) =1det (¢7) =n},
AT(N) ={(24) € Ma(2)| (2 3) = (5%) mod N,det (27) =n},
Ao(V) = | A5(N),

neN

A(N) = | AT(N).

neN

In the following we always le{A,T") = (A1(N),I'1(N)) oder (A,T') = (Ag(N),To(NV)),
unless we state something different explicitly.

Lemma 7.1.2 Leta € A. We put
I'o=TNa 'Taandl'* =T Nnalat

Thenl',, has finite indexX” and a~'T'a (one says thal’ and o~ 'T'ov are commensurable), and also
I'® has finite index il andal'a~! (hencel andal'a~! are commensurable).

Proof. Letn = det a. One checks by matrix calculation that
o~ 'T(Nn)a € T(N).

Thus,
I'(Nn) C o 'T(N)a C a 'Ta.

Hence, we havé&'(Nn) C T',, and the first claim follows. For the second claim, one proceeds simi-
larly. O

92
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Example 7.1.3LetI’ = I'y(/V) andp a prime. The most important case for the sequel is ((1J 2)
An elementary calculation shows
[ =To(Np).

Definition 7.1.4 Leta € A. We consider the diagram

Lo \H ———"—T*\H
To T
T\H T\H,

in which 7 and =, are the natural projections. One checks that this is well defined by using
alqa~t =Te,

Themodular correspondence Hecke correspondeneg is defined as
7o : Div(Yr) 7% Div(Yr, ) 25 Div(Yie) 2 Div(Yr).

Here, 7* is the pull-back of divisors and}, and 7$ are the maps which one obtains by applying
and~® to the points of the divisor.

These modular correspondences will be described more explicitly in a moRiestta lemma:

Lemma 7.1.5 Leta; € I' for i € I with some index sdt Then we have

= |_| Fha; < Tal = |_| Taa;.
iel el

Proof. Last term’s course. A simple calculation. O

Corollary 7.1.6 Leta € A andl'al’ = | |,c; Faa;. Then the Hecke corresondencge: Div(Yr) —
Div(Yr) is given byr — . _; a7 for representatives < H.

Proof. It suffices to check the definition using the Lemma. |

Remark 7.1.7 We haveA™ = (J,c A det a—n ['@1” @nd one can choose finitely mamyfor i € I such

Definition 7.1.8 Let A" = | |,.; 'y T". The Hecke operatdr;, on Div(Yr) is defined as

T, = ZTai.

iel

We have already seen in the beginning:
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Lemma 7.1.9 For (a, N) = 1 there is a matrixo, € T'o(N) with o, = (2, 9) mod N.

Proof. From(a, N) = 1 we conclude the existence afs with 1 = ar — N's. Hence the matrix
(& 5)isinTo(N) and further(§ 5) = (¢," ) mod N. Now it suffices to clear the top right
corner in order to find the desired matrix. We pyt= ( 5) (§ ) € To(IN). A short matrix
calculation shows that, satisfies the demands. O

Proposition 7.1.10 (a) We have the decomposition
= LU (52
wherea runs through the positive integers with| » and (a, N) = 1 and b runs through the
integers such thal < b < d =: n/a.

(b) For (a, N) = 1 we choose a matrix, as in the Lemma. Then we have the decomposition
= UL ea (54)

with a, b, d as in (a).
Proof. Last term’s lecture. This proof is elementary. O
For completeness we give an interpretation of the Hecke opéfgiarterms of the moduli inter-

pretation of the modular curvg. )

Proposition 7.1.11 On Y1, the Hecke operatdf), for a prime numbep is given by

-1 .
Zi:o%_b‘i‘pﬂ pr)(N,

Yoo &, if p| N.

Tp: 7+

Under the identifications

To(N\E — {(E,C)}/ 2, 7 (C/Ar, )

andDiv(Yr,(n)) = Div({(E£,C)}/ =) we have

TP : (Ev C) = Z (E/>Cl)a
(E,C")

where the sum is taken over alisogenies® — E’ andC’ denotes the image 6f.

Proof. The first statement follows from the preceding proposition. For the skopa only has
to convince oneself whatisogenies for the elliptic curv€ /A, look like. The details of this simple
calculation were presented in last term’s course. O

Next, we turn to the important description of the Hecke algebra as a dowte¢ aigebra.
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Definition 7.1.12 TheHecke ringR(A, ') is the free abelian group on the double cosEtd" for
a € A.

As our next aim we would like to define a multiplication, which then also justifiesaingei'ring”.
Firstletl'al’ = | |, I'a; undT'AT = | |72, I'8;. We just start computing.

Tol' - TAT = | JTal'p; = | JT ;.
J ,J

This union is not necessarily disjoing. The left hand side can be writterdesgoent union of double
cosetq |;,_, I'yI'. Each of these double cosets is again of the form

Nk

[y I’ = |_| Ty
=1

We obtain in summary

Tal' - TAT = | JTauB; = | || | T
l

%,] k
We will now introduce a notation for the multiplicity with which every coset on thétrigppears in
the centre. For fixed we define for every

my = #{(4,5)|Tyks = T}
The important point is the following lemma.

Lemma 7.1.13 The numberny, ; is independent of We putmy, := my, ;.
Proof. See last term’s course. The proof is combinatorial and quite straighafdrw O

In conclusion, Lemma 7.1.13 tells us that the cd3gt; appears precisely:, times in

JTeiB; =Tal - T80 = | [Tyl =| || |Tyey-
k1

1,5 k

Definition 7.1.14 We define the multiplication oR(A, T") by
n
Tol -TA =Y muly T,
k=1

using the preceding notations.

In Exercise 46 you are asked to check that the Hecke ring is indeed.aTtegdefinition of the
multiplication makes sense, as it gives for Hecke correspondences:

n
Ta OTg = g M Ty, -
k=1
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Definition 7.1.15 For o € A let 7, = I'al’. We define (as above)
T, =) 7o € R(AT),
where the sum runs over a setobuch thatA™ = | | I'aI'. Fora | d and(d, N) = 1 we let
T(a,d) =To, (§%)T € R(A,T).
From Exercise 47, we obtain the the following important corollary.

Corollary 7.1.16 We haverl,,,T,, = T,,T,, and henceR(A,T") is a commutative ring. O

7.2 Hecke operators on modular forms

In this section we again 1€\, ") = (Ag(NV),To(V)) or (A1 (NV),T'1(N)). We now define an action
of the Hecke ringk(A, T") on modular forms.

Definition 7.2.1 Letar € A. Suppos&'al’ = | | ; T'ey; and letf € My (T). We put

fTa = Zf’%
i=1

Lemma 7.2.2 The functionf.r, again lies inM(T").

Proof. For~ € T" we check the transformation rule:
Zf|04i’7 = Zf‘aw = Zﬂaw

since the cosetB(«;y) are a permutation of the cosdts;. The holomorphicity off.7 is clear and
the holomorphicity in the cusps is not difficult. O

This thus gives the desired operation/fA, I') on M (T').

Proposition 7.2.3 Let (A, T") = (A¢(N),T'o(N)) and f € My (T"). The following formulae hold:

m_q

@) (f-T)(T) = & X (aN)=1 20 “kf(%fab)’

(b) an(me) = Za‘(mﬂz),(a,]\f):l ak"_lamign_

a

Similar formulae hold fofA;(N),I'1(NN)), if one includes a Dirichlet character at the right places.

Proof. (a) follows directly from Proposition 7.1.10.
(b) is a simple calculation using

S onitn _ )0, ifdin
d, ifd|n.

For details, see last term’s course. O
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Remark 7.2.4 The Hecke ring?(A, I") also acts onS,(I).

Corollary 7.2.5 Let (A, T") = (Ap(NV),To(N)). For the action of the Hecke operators an (I")
and Sy (I") the following formulae hold:

(@) T, 1,, = Tpm for (n,m) =1,
(b) Tpy+1 = T, T — p" ' Tmn, if pt N, and
(€) Tyrr =TT, ifp | N.

Here,p always denotes a prime number. Similar formulae hold fvy(N), "1 (N)), if one includes
a Dirichlet character at the right places.

Proof. These formulae follow from Exercise 47 and the definition of the action. O

The formulae from the corollary can be expressed very elegantly like this:

Proposition 7.2.6 (Euler product) The action of the Hecke operatdfs on modular forms satisfies
the formal identity:

ZT n® = H — Tp~* + pF172)"1. H(l _ )l

ptN p|N

That the identity is formal means that we can arbitrarily permute terms in sumsraddcis
without considering questions of convergence.

Proof. The proof is carried out in three steps.

1ststeplLetg : Z — C be any function. Then we have the formal identity

11 ig(p’") = i IT 9"

p primer=0 n=1pr|n

For its proof, let firstS be a finite set of prime numbers. Then we have the formal identity:

o0 oo
1> 90 = > IT 90"
peS r=0 n=1,n only has prime factors i§' p”||n

which one proves by multiplying out the left hand side (Attention! Here omenptes the terms!).
We finish the first step by letting run through arbitrarily large sets.
2nd stepForp 1 N we have

ZTTP 1_ pp +pk 1725):1

and forp | N:

(Z Tyrp™ ™)1 =Tpp~®) = 1.
r=0
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The proof of the second step consists of multiplying out these expresaioin® identify a “tele-
scope”. For details see last term’s course.

3rd step:The proposition now follows by using the first step witfp”) = T,,-p~"* and plugging
in the formulae from the second step. O

7.3 Hecke operators on group cohomology

In this section we again [\, T") = (Aog(N),To(N)) or (A1(N),['1(NV)). Let R be aring and/
a left R[I']-module which extends to a semi-group action by the semi-group consistinigf far
o € A" forall n. Recall that(¢ )" = (4 ).

c a

Recall the definition of the Hecke operat@ron Div(I"\H).

Definition 7.3.1 Leta. € A. TheHecke operator,, acting on group cohomology is the composite
HY(T, V) 25 HY(re, V) < g, V) S 1qi(D, V).
The first map is theestriction and the third one is theorestriction We explicitly describe the second
map on cocycles:
conj, : HY(I'*, V) = H' (Lo, V), ¢+ (ga — a".clagaa™)).
There is a similar description on the parabolic subspace and the two arpatilie, see Exercise 48.
Proposition 7.3.2 Letov € A. Suppose thafal' = [ J;, I'é; is a disjoint union. Then the Hecke

operator 7, acts onH* (T, V) and Hrl,ar(l“, V) by sending the non-homogeneous coeyte 7,c
defined by

(tac)( Z d;c(d:g6, lz)
for g € T'. Hereo, (i) is the index such thal-géggl(i) el.

Proof. We only have to describe the corestriction explicitly. For that we useltrat J;" , T'og;
with ag; = §;. Furthermore, by Exercise 49 the corestriction of a non-homogeneaysle v €
HY(T,, V) is the cocycleores(u) uniquely given by

cores(u Z gz u(g; ggo_( 0) ) (7.3.1)

for g € I'. Combining with the explicit description of the magnj,, yields the result. O

Definition 7.3.3 For a positive integen, theHecke operatof’, is defined a$__, 7., where the sum
runs through a system of representatives of the double cb§et8 /T

Let a be an integer coprime t&v. Thediamond operatofa) is defined as, for the matrix
oq € To(N), defined in Equation 1.1.1 (if tHe-action onV" extends to an action of the semi-group
generated by andat; note thata € A}, but in general not imA1).
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It is clear that the Hecke and diamond operators satisfy the “usual” Exddupt.

Proposition 7.3.4 The Eichler-Shimura isomorphism is compatible with the Hecke operators.

Proof. We recall the definition of Shimura’s main involutioi? 5)" = ( ¢, .?). In other words,
for matrices with a non-zero determinant, we have

(25)" = (et (25))- (2h) "

Let now f € Mg(T'; C) be a modular formy € T" andz, € H. For any matrixg with non-zero
determinant, Lemma 6.2.2 yields

Iy, (20,720) = 9" 1 (920, 9720)-
Leta € A. We show the compatibility of the Hecke operatgrwith the map
f = (v If(20,720))

betweenM(T"; C) andH!(T", Vi _»(C)). The same arguments will also hold for anti-holomorphic
cusp forms.

Consider a coset decompositibnI’ = | |, I'6;. We use the notations as in Proposition 7.3.2. We
compute:

I+, £(20,720) = Iy, 115, (20,720) fo|5 (20,720) Z5fff(5izo,5wzo)
= Z 0; If 3i20, 20) + If(Z(), (51'7507(1.),20) + Iy (51’750_71(1.)20, 51")/(5;/1(1.) 5Uv (i)Zo))
= Z(SLIf 20,5175 Z() —I-Z(S If (5 Z(),Z() Z65@75;71(1')[}6(607(2')20’ZO)

= Zéiff 20,51"75;7(1.)20) + 1—7 Z(Siff 5@'20,»20)7

sincedjémd;wl(i) = yéﬁ”(i). Up to coboundaries, the cocycle— I, ¢(z0,7v20) is thus equal to
the cocycley — >, 6414 (z0, 5Z~fy<5(;1(l.)zo), which by Propositioh 7.3.2 is equal tg applied to the

cocycley — I¢(zo,7v20), as required. O

Remark 7.3.5 The conceptual reason why the above proposition is correct, is, abepthat the
Hecke operators come from Hecke correspondences. Formulatingrolog using the definition of
Hecke operators rather than Proposition 7.3.2 makes it more lengthynaube also less mysterious.

7.4 Theory: Eichler-Shimura revisited

In this sections we present some corollaries and extensions of the Egttilaiira theorem. We first
come to modular symbols with a character and, thus, also to modular symbolg f6).
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Corollary 7.4.1 (Eichler-Shimura) Let N > 1,k > 2 andx : (Z/NZ)* — C* be a Dirichlet
character. Then the Eichler-Shimura map gives isomorphisms

Mi(N, x; €) @ Sk(N, x; C) — H'(I'g(N), VX,(C)),

and
Sk(N,x; C) @ Sk(N,x; C) — HL.(Do(N), VX ,(C)).

par

Proof. Recall that ther, are a system of coset representativedigiV)/T'1 (N) =: A and that
the groupA acts onH!(I'o(N), V) by sending a cocycle to the cocycleic (for § € A) which is
defined by

v = (5.0(5_1’)/5).

With § = 0! = ¢, this reads
v obclo; yo,) = alelog yog) = To,¢ = (a)e.

Hence, theA-action is through the diamond operators.
We now appeal to the Hochschild-Serre exact sequence, using trattbeology groups (from
index1 onwards) vanish if the group order is finite and invertible. We get the ispniem

res

H' (To(NV), V4,(C)) =5 HY(T1(N), X5 (C).
The Eichler-Shimura theorem we proved further gives us an isomormifistacke modules
M(T1(N); €) © S(T1(N); C) — HY(T1(N), VX 5(C)),

since as &' (IV)-moduleV,* ,(C) = V;,_»(C). To finish the proof, it suffices to tak&-invariants on
both sides, i.e. to take invariants for the action of the diamond operatorse$hk on the parabolic
subspace is proved in the same way. O

Corollary 7.4.2 LetI’ =TI'; (V). The maps
Sk(I'; C) — Hpor (T, Viea(R),  f = (v = Re(I(20,720)))
and

Sk(I's C) — Hpop (I, Va2 (R),  f = (v = Im(Zy(20,720)))

are isomorphisms (of real vector spaces) compatible with the Heckatopg A similar result holds
in the presence of a Dirichlet character.

Proof. We consider the composite

f=3(f+1) Eichler-Shimura 11
2 H

Sk(rv C) Sk(Fa (C) D Sk(ra C) - par(F’Vk—Q(C))

It is clearly injective. Note thaIY(zo, v20) = If(20,720). Hence, the composite map coincides with
the first map in the statement. Its image is thus already contaidéﬁa;mr, Vi—2(R)). Since the real
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dimensions coincide, the map is an isomorphism. In order to prove the secomorghism, we use
f— 3(f — f) and proceed as before. -

We now treat the+ and the—-space for the involution attached to the matyix= (' V) (see
p./13). The action of; on H(I", V) is the action of the Hecke operatey, strictly speaking, this
operator is not defined because the determinant is negative, howeweenhe same definition. To

be precise we have
7 HY(, V) = HY(T, V), e (v n'.c(nm)),

provided, of course, that acts onV (compatibly with thel-action).
We also want to define an involutiary on S;(I"; C) @ S(I"; C). For that recall that iff (z) =
S a,e?™% then f(z) := 3 a,e2™"* is again a cusp form i, (I'; C), since we only applied a
field automorphism (complex conjugation) to the coefficients (think of cuspg@as maps from the
Hecke algebra ove( to C). We definer, as the composite
o (—1)k—1F FoF o
Sk ©) 25 g s o) 1L 5T T
Similarly, we also define;, : S;(I'; C) — S, (I'; C) and obtain in consequence an involutignon
Sk(T'; C) @ S(T'; C).
Let us consider the functiof-1)*—! f(z) as a function of:

(“DF () = ()R @i = (~1)F Y ane™ ) = (1) (=2) = £l (2).

Proposition 7.4.3 The Eichler-Shimura map commutes with

Proof. Let f € Si(I"; C) (for simplicity). We have to check whethey of the cocycle attached
to f is the same as the cocycle attached,tp. We evaluate the latter at a geneyat I and compute:

Yz0

1 +(20,720) = (=1)* ! (2)(XZ +Y)*%dz

(=DF=1f

R R N R A LT ™

20

- (—1)’“*2 /Wzof(z)(X(—z) + Y)k*Zdz

0

nyn(—2o)
=7 / f()(Xz+Y)"2dz.

-7
If we change the last expression by a suitable coboundary, then itas tequ
nYnzo
o[ s Y s,
20

which is T, of the cocycle attached tf, as required. O
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Corollary 7.4.4 LetI’ =T'; (V). The maps

Sk(I'; C) — Hp (T, Vea(C)F, f—= (14 7).(v = If(20,720))

and
Sk(rﬂ C) par(F Vk 2(C))_a f = (1 - 7_77)'<7 = If(207720))

are isomorphisms compatible with the Hecke operators, wheretrtkespectively the-) indicate
the subspace invariant (respectively anti-invariant) for the involutignA similar result holds in the
presence of a Dirichlet character.

Proof. Both maps are clearly injective (consider them as being givefiby f + 7, f followed by
the Eichler-Shimura map) and so dimension considerations show that thepr@phisms. O

Note that if the coefficients of are real, thery = f and the image of under the maps from
the two preceding corollaries is the same (possibly up to a sign). You aredrivitiake a look at
Exercise 50.

7.5 Theory: Transfer of Hecke operators to Manin symbols

We first prove that the Hecke operators are compatible with Shapiro’s leffiihigwas first proved
by Ash and Stevens. We first need to say what the action @ A on the coinduced module
Hom pry(R[SL2(Z)], V') should be. Here we are assuming thatarries an action by the semi-
groupA‘ (that is,. applied to all elements ah).

Let Uy be the image ofA* in Maty(Z/NZ). The natural map

IN\SL2(Z) — Un\ Mato(Z/NZ)
is injective. Its image consists of tho&g; g such that
(%) (0,1)g = (u,v) with (u,v) = Z/NZ.

If that is so, then we say for short thats (x). Note that this condition does not depend on the choice
of g in Uyg. Define theR[A‘]-moduleC(N, V') by

C(N,V)={f € Homgr(R[Unx\Maty(Z/NZ)| | f(g) = 0if gisnot(x)}

with the action ofd € A* given by(d.f)(g) = 9.(f(gd)). The moduleC (N, V') is isomorphic to the
coinduced modulélom ) (R[SL2(Z)], V') as anR[I']-module by

Hompr (R[SL2(Z)],V) — C(N,V), fr {(g — gf(g71)) foranyg € SLy(Z)

if gis not(x).

Note that
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Proposition 7.5.1 The Hecke operators are compatible with Shapiro’s Lemma. More plgcior
all n € N the following diagram commutes:

Tn

HY(T, V) HY(T,V)
ShapiroT ShapiroT
H' (SL2(Z), C(N, V) = H!(SLa(Z), C(N, V).

Proof. Letd;, fori = 1,...,r be the representatives 81.2(Z)\A(1)"™ provided by Proposi-
tion|7.1.10. Say, that they are ordered such thdor : = 1,...,s with s < r are representatives
for I'\A. This explicity means that the lower row éf is (0, a) with (a, N) = 1 (or even(0,1)
if we are in thel'; (IV)-situation) fori = 1,...,s. If s < i < r, then the lower row igu, v) with
(u,v) < Z/NZ.

Letc € H'(SLy(Z),C(N, V)) be al-cochain. Then

T

ShapirdT;,(c))(v) = Y (6}-(870, " (5 9)) = D 8i(e(878, ) )(57))

=1 =1

=3 84(e(615, 1, )((59))) = To(Shapirge)) (+).

i=1

as required. O

Remark 7.5.2 A very similar description exists involviigSLa(Z).

[For the rest of this section only hand-written notes exist presently. Wiebe typed once the
author is more satisfied with the presentation than he currently is.]
7.6 Theoretical exercises
Exercise 46 Check that thatf?(A, T") is a ring (associativity and distributivity).
Exercise 47 Show the formula

T Ty = > dT(d,d)Tmp.
d|(m,n),(d,N)=1

Also show thaf?(A, I') is generated by}, andT'(p, p) for p running through all prime numbers.
Exercise 48 Check that the Hecke operatay from Definition 7.3.1 restricts tHl}m(F, V).
Exercise 49 Prove Equation 7.3]1.

Exercise 50 Does the Eichler-Shimura map send the subspace of Eisenstein seriesftesfface
HY(T, V},_»(C))*, to the—-space or to none of them (in general)?
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7.7 Computer exercises

Computer exercise 19Implement Hecke operators.
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Computational Galois Representations



Stage 8

Images of Galois Representations

As time is running short, we shall only treat images of Galois representatitimsutvactually speak-
ing about Galois representations. This will be done in next term’s lecturetail d
The main theorem in this context is due to Deligne and Shimura.

Theorem 8.0.1 (Shimura, Deligne)Let f € Si(N, x ; C) be a normalised Hecke eigenform. Denote
by Qy the coefficient field 0@, i.e. Q(a,|(n, N) = 1), where theu,, are the coefficients of in the
g-expansion at infinity.

For any prime ideatp of (the ring of integers off),, there exists a Galois number fiekd with
Galois groupGal(K/Q) =: G such that

e K is unramified outsidévp, wherep is the residue characteristic g8;

e there is a group injectiorG := Gal(K/Q) N GLy(F,), wheregq is the cardinality of the
residue field ofj3;

o for all maximal idealsA of (the ring of integers off) ; coprime top /N we have
charpoly(p(Froby)) = X% — @, X + 171X (1),
wherel is the residue characteristic df and- denotes the reduction modulé;
e K is totally imaginary ifp # 2.

We quickly explain the notion of Frobenius elemeni&ob,. The decomposition group
is a subgroup ofzal(K/Q) and, sinceA is unramified, reduction moduld gives an isomorphism
betweenD, andGal((Oq,/A)/F;). The latter Galois group is cyclic and generated by the Frobenius
automorphisme — z!. By Frob, we denote the unique element@hl(K/Q) lying in D whose
reduction modula\ gives the Frobenius automorphism of the finite field.

One often writedrob; instead offrob,. If one does this, one has to keep in mind that the actual
elementtrob, depends on the choice of a prilmeabovel. Another choice, sa)’ would giveFrob
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andFrob, andFrob,: are conjugate by some elementinl( K /Q) (namely ther € Gal(K/Q) such
thatA’ = oA).

The above theorem, however, only makes statements about charactetigtiorpials of images
of Frobenius elements. Characteristic polynomials only depend on the eagjaass. Thus, for the
above purpose, it is enough to writeob;.

In the lecture so far we have explained how one computes coefficientscaflandorms, i.e. the
an. Now we ask the question what we can determine about the numbeli&idm Deligne’s and
Shimura’s theorem. In this final lecture we shall show that we can deternnimadst cases) the
groupG. Calculating a polynomial whose splitting field &6 is much much more difficult; but the
guestion has been solved in principle by Edixhoven et al. last year. Waatilbe able to treat the
answer here.

The determination of the grou@is very much simplified by the fact that the subgroup structure of
GLy(F,) is very simple. This is a fact that goes back into the 19th century (see alsurthduction).

Theorem 8.0.2 (Dickson)Letp be a prime and? a subgroup oPGL»(FF,). Then a conjugate off
is isomorphic to one of the following groups:

e finite subgroups of the upper triangular matrices (order dividirig — 1))
o PSLy(FF,r) or PGLy(F,r) with Fyr C I,

o dihedral groupsD, of order2r withr | g —1orr | g+ 1,

e cyclic groupsD,. of order2r withr | g—1orr | ¢+ 1,

° A4, A5 or 54.

Corollary 8.0.3 Let H C GLy(F,) be a subgroup containing, y, z such that
e ord(z) # 2 # ord(y) andord(z) > 5
e charpoly(z) = (X —a)(X —b) witha, b € F,[X] anda # b,
e charpoly(y) is irreducible overF,
e charpoly(z) # (X — ¢)? foranyc € F,.

ThenH modulo scalars i€ SLy(FF,-) or PGLy(F,-) for someF,- — F,.
If furthermore s is the minimum such thd,: containsa and b and .. contains the roots of
charpoly(y), thens | r.

Proof. The order ofr dividesq — 1 and the order of; dividesq + 1. Since the greatest common
divisor of¢ — 1 andq + 1 is 2, the dihedral, cyclic and upper triangular groups appearing in Dickson’
theorem are excluded. The presence of a non-scalar element obagder tharb excludesAy, Sy
andAs. a
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Proposition 8.0.4 The set of subgroups? C GL2(F,)|SL2(F,) C H} is in bijection with the set of
subgroup{ R C F}.

The bijection associates with &t the groupR := {det(h)|h € H} and with anR the group
H :={g € GLy(F,)| det(g) € R}.

Proof. Just notice that the determinant gives a group isomorphiga(F,)/SLz(F,) — F. The
statement is then a well-known result from algebra. O

Proposition 8.0.5 Assume the situation of Deligne’s theorem and supposeihdftt,) C G. Then

{det(g)lg € G} = (W, F, V) C FY,

whereW = {x(n)|(n, N) = 1} C F.

Proof. The number field cut out by, i.e. the number field. such thatGal(Q/L) is the kernel
of x : Gal(Q/Q) — CX, is unramified at. Hence, its intersection with the atotally ramified field
Q(¢;) is Q. Hence, the Galois grougal(M/Q) of the compositéll = LQ((;) is the direct product
of Gal(L/Q) = W andGal(Q({;)/Q = F/. The isomorphisms are given rob, — x(r) and
Frob, — r mod [. Chebotarev’s density theorem hence tells us that for a givenlit” and a given
residue clasae mod [ there exist infinitely many primes such thaty(r) = w andr = a mod I.
Consequently, every element of the form”*~! lies in the left hand side group. The other inclusion

is trivial. O

Now we dispose of the necessary tools for writing down an algorithm thatrdanes the Galois
group of the extensiok’/Q from Deligne’s and Shimura’s theorem. More precisely, the algorithm
will return a minimals as in Corollary 8.0.3, or it will return the answer that the algorithm was not
conclusive. IfF,s = FF,, then by Propositions 8.0.4 and 8.0.5 the Galois group can be determined
precisely.

Algorithm 8.0.6 Input: A field IF and a list Char Pol yLi st of < a,b >, where a is the trace
and b is the determinant of a 2 x 2-matrix over IF, where F is some extension of [F;.

Output: A boolean value concl usi ve and an integer s. If concl usi ve is false, the
algorithm was not conclusive. If concl usi ve is true, then any matrix algebra containing
matrices with trace and determinant given in the input contains the group SLy(FF}).

(1) divplus := false; divnin := false; bigorder := false; s := 1;
(2) for t in CharPol yList do

3 f = X2 —t[1]X +t[2] € F[X] [This is the characteristic polynomial of any matrix with
the given trace and determinant.]

(4) Factor f over F[X].
(5) if f# (X —c)? then [Thisexcludes that the matrix is scalar.]
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(6) if ((#°—1 mod f) # 0)and ((z*—1 mod f) # 0) and ((z3—1 mod f) # 0)
t hen
(7) bi gorder := true;
(8) end if; [If the condition is true, then the order of any matrix with the given

polynomial is bigger thais.]

9) i f fisirreducible over F[X], t hen
(10) Factor f over the quadratic extension of F.
(12) Let a be 1/2 times the degree of the first zero of f in the quadratic
extension of F.
(12) Let s be the lowest common multiple of ¢ and s.
(13) di vpl us : = true; [the charpoly is irreducible oveF, hence, the order

dividesq + 1 with ¢ = |F|]

(14) el se

(15) Let a be the degree of the first zero of f in F.

(16) Let b be the degree of the second zero of f in F.

a7) Let s be the lowest common multiple of a, b and s.

(18) divmn ;= true; [the charpoly is reducible oveF, hence, the order
dividesq — 1.]

(19) end if;

(20) end if;

(21) end for;

(22) return divplus and divm n and bi gorder, s;
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