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March 20, 2009

Abstract

This seminar provides an introduction to the Mazur-Tate-Teitelbaum conjecture

(MTT-conjecture). At the end of the seminar, the proof given by Orton (and based

on earlier work of Darmon) is within reach – but due to time constraints will have to re-

main for independent study. There are many other proofs of the conjecture and, in fact,

Orton’s proof is chronologically one of the most recent ones. A good survey over other

proofs as well as alternative definitions of the L-invariant is the article [Co1] together

with our main reference [DT].

The first part of the seminar follows notes of a course given by Colmez, [Co0]. They

contain basic results on L-functions and p-adic L-functions (for modular forms) as well

as the measure theory needed in the construction of the latter. The notes will guide us

up to the statement of the MTT-conjecture.

From there on we shall follow the notes [DT] by Dasgutpa and Teitelbaum from the

Arizona Winter School of 2007. A large part of these notes is devoted to the study of

the p-adic upper half plane Hp which can be thought of as an analog of the complex

upper half plane H∞. On it we shall study modular forms, learn how they are encoded

in harmonic cochains and introduce Teitelbaum’s Poisson kernel as a useful technical

tool. This background will help us to understand parts of Darmon’s theory of period

integrals on Hp × H∞. Having simultaneously p-adic and complex information will be

crucial in the definition of the Orton-L-invariant, as well as for Orton’s proof of the

MTT-conjecture (which as pointed out above will not be given).

• Time: Thursday, 10-12 a.m.

• Place: T03 R04 D10

• Begin: 16 April 2009

• Language: English.

• Webpage (and gateway to bibliography): http://maths.pratum.net/pAdicLF

• Script: Every participant should type some text on his or her talk containing at
least precise definitions and statements of the theorems (that can be done after the
talk). That text will be made available on the webpage.

• Background: Some knowledge of the theory of modular forms.

Complex L-functions and periods

1 (16/04/2009) Complex valued L-functions, t.b.a

The talk should cover the following topics:

(1) Analytic continuation to C of L-functions arising from Mellin-transforms. (§1.1)

(2) The case of the Riemann ζ-function. (§1.1)

(3) Bernoulli numbers as special values of the Riemann ζ-function at odd negative integers.
(§1.1)

(4) The case of modular forms. (§3.1, 3.2)

(5) The Euler product and functional equation of an L-function attached to a modular
form. (§3.1, 3.2) and [DS, 5.9,5.10].
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(6) L-functions for elliptic curves from L-functions of modular forms (of weight 2).[MSD]
or [DS, Thms.8.8.X].

(7) The effect of twisting by characters (Cor. 3.3.2)

With so much material, this talk will be largely a survey talk. I definitely suggest to give the
proof of (1) and explain how to show the analytic continuation of (2). Item (3) is quick if one
is not too precise about estimates from analysis. For (4) one should simply state the standard
bounds for the coefficients of the q-expansion of a modular form. (and recall the form of the
q-expansion for arbitrary subgroups Γ of SL2(Z) of finite index.) In (5) one could recall how
the Euler product is a natural consequence of the identity

∑

TpnXn = 1
1−TpX+pk−1Tp,pX2

(for a form of weight k and a prime p not dividing the level of the form) for the generating
function for Hecke operators together with Tmn = TmTn for relatively prime m,n ∈ N. If one
finds the time to give a second proof (and not just sketch of proof) in this talk, it might be
that of the functional equation.

The all important tool to study the L-function of an elliptic curve is the conjecture of
Taniyama-Shimura. Without there is no known proof of the entireness of the L-function of
an elliptic curve (or the existence of a functional equation). For elliptic curves over Q the
conjecture is a theorem due to Breuil-Conrad-Darmon-Taylor following groundbreaking work
of Wiles. In the present talk, not much can be done beyond stating one or two versions of
the Taniyama-Shimura theorem (and what it means for an elliptic curve to be modular).

Literature: All references starting with § are to [Co0].

2 (23/04/2009) The periods of a newform, t.b.a.

The main results to be presented are the definition of the periods Ω±
f of a newform f and

the algebraicity of the renormalized special values at 1 of the L-function of twists of f . Some
background can be found in §2, in particular in §2.5 and §2.6. The main result is Thm. 3.3.3.
whose prove is given in §3.3. An alternative proof of Theorem 3.3.3 is sketched in [Co1, §1].
It gives less precise information but seems conceptually clearer. Therefore it is recommended
to first give the key ideas of this latter proof before giving the proof of [Co0, §3.3] which uses
the Rankin-Selberg method.

For newforms f of weight 2 with rational Fourier coefficients one should relate the periods
Ω±

f to the periods Ω±
E of the corresponding strong Weil elliptic curve E, e.g. [MSD], [Co2,

§0.2], [Si, Si2].

Literature: All references starting with § are to [Co0].

Functions and distributions on Zp and p-adic L-functions

For any motive M one has a simple recipe by which one attaches a complex L-function
to M , defined as an Euler product whose local terms come from étale realizations of the
motive. It is conjectured that this Euler product, which initially only converges on a right
half plane, extends to an analytic function L(M) : C → C defined on the entire complex plane
except for possibly finitely many poles. Moreover standard conjectures predict a functional
equation. In contrast to this, for arbitrary motives there is only a highly conjectural and
sophisticated method, largely due to Perrin-Riou, to associate with M an analytic p-adic
L-function Lp : Zp → Cp. We make no attempt to understand Perrin-Riou’s framework
but content ourselves in studying the special cases of p-adic L-functions associated with the
Riemann ζ-function and to modular forms. We will follow the classical construction of p-adic
L-functions which are characterized by an interpolation property for certain special values
coming from the complex L-function. The interpolation property can either come from the
density of sets of the form −(p−1)N+c in Zp (for c ∈ −N) or the density of locally polynomial
functions (of bounded degree) in certain spaces of functions Zp → Cp. The key step in the
construction of the p-adic L-function is the construction of a suitable measure µ (associated
with f), so that Lp(s) is, essentially, given by

∫

xsµ, the Mazur-Mellin transform. This
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procedure is formally very similar to the definition of the Mellin transform used to define
complex L-functions (of modular forms).

3 (30/04/2009) Continuous functions and measures on Zp, t.b.a.

This talk should cover §1.2–1.4 of [Co0]. It is contains largely preparatory material for the
later study of p-adic L-functions. Important results are Theorem 1.3.2 on the coefficients of the
Mahler expansion, Theorem 1.4.5 on the coefficients of the Amice transform. It is suggested
that also parts of §1.4.2 are presented. One should keep in mind that all one is doing here is
to describe a Banach space (that of continuous functions on Zp) and its dual. Since we like to
think in terms of bases and sequences, the Mahler expansion and the counterpart by Amice
are enormously useful. I think there is enough time to give the proofs of the main results of
this section.

4 (07/05/2009) The Leopoldt-Kubota p-adic ζ-function and more
functions, t.b.a

Having all the background from the previous talk, the first half of the present talk should cover
§1.5 of [Co0]. Important are the results on the p-adic ζ-function from §1.5 (Def. 1.5.10, Thm.
1.5.7) due to Kubota and Leopoldt. The p-adic ζ-function expresses congruences among the
Bernoulli numbers and among the twisted special values at 1. Further background on p-adic
ζ-functions from a slightly different and perhaps more elementary perspective can be found in
[Ko, §2]. In particular, it contains a good explanation for the factor 1

1−ω(a)1−k〈a〉1−s in [Co0,

Def. 1.5.10].
For the p-adic L-functions of modular forms, the Banach spaces introduced in Talk 3 are

not sufficient. The second half of the present talk introduces further function spaces. It
should cover §1.6 and §1.7.1. It might be useful to start with a survey of what is to come, i.e.,
with an overview, as given for instance in §1.10. Since the functions in §1.6 do not (seem to)
play such an important role in what we do later, the discussion of §1.6. should be kept short,
e.g., one could present subsection 1.6.1 as a survey and skip completely the proof of the main
result Theorem 1.6.3 (and thus subsection 1.6.2).

In the remaining time, I suggest to fully present subsection 1.7.1 on analytic functions on
discs. Its content is basic in the definition of locally analytic functions. It would be nice if
much could be proved.

Literature: Except for [Ko, §2], all references are to [Co0].

5 (14/05/2009) Locally analytic functions and distributions, t.b.a

The aim is to complete the introduction of the function and distribution spaces that are to
be found in the summary §1.10 with the properties given there and to give a detailed proof
of Theorem 1.9.7. The latter will be the main tool in the construction of p-adic L-functions.
The material is 1.7.2–1.10.

Some suggestions: In the previous talk we learned the definition of analytic functions.
This class needs to be extended to so-called locally analytic functions, cf. §1.7.2. Note that
all integrands we shall later consider are locally analytic! It would be good to present a
sizable part of the proof of Theorem 1.7.8. Clearly also the duals of the spaces in §1.7, i.e.,
distributions (of some order) discussed in §1.8.1, will play a key role. Theorem 1.8.4 should
be stated and explained – perhaps also via the examples in 1.8.2. The proof could be skipped.

Theorem 1.9.1 should be easy to prove (if we take earlier results for granted). Theorems
1.9.2 and 1.9.3 will not be needed (they underline, however, the importance of the spaces
Cr). After giving Definition 1.9.4 one should see what is needed to prove 1.9.7 and do it.
One certainly will need the characterizations in Theorem 1.9.5. (I think in the assertion of
Theorem 1.9.7 there is a slight imprecision: Namely the range of j is 0 ≤ j ≤ N and not
j ∈ N.)

Literature: All references are to [Co0].
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6 (28/05/2009) The p-adic L-functions of modular forms and elliptic
curves, t.b.a.

The construction of the p-adic L-function of a newform should be given in detail, following
§3.4. One first obtains a measure and then by integration the p-adic L-function. For the proof
given in §3.4, one may have to recall various results on Hecke operators, periods, twists etc.
(from Chapters 2 and 3 of [Co0] and from the previous talks).

The Mazur-Tate-Teitelbaum conjecture is explained and described at the end: Conjecture
3.4.7. It would be nice to explain how to deduce the special case for the p-adic L-function of
an elliptic curve. One may have to consult [MTT] or [Co2, §03-04]. An overview of this talk
is given in [Co1, §2-4].

The case of elliptic curves over Q has the appealing feature that the constant L can be
explicitly described!, see [MTT, II.1]. Probably this was the first case in which numerical
experiments were possible.

The true nature of the L-invariant may best be explained using either Fontaine theory
and the p-adic local Langlands correspondence, cf. [DT, 4.1].

Literature: References starting with § are to [Co0].

Analysis on the p-adic upper half plane Hp

The rest of the seminar leads toward Orton’s proof of the MTT-conjecture (following earlier
work of Darmon). The main reference will be [DT].

7 (04/06/2009) The p-adic upper half plane, t.b.a

The talk should cover [DT, Ch. 1] except for 1.3.7: introduce the p-adic upper half plane X,
explain the way it is a rigid analytic space and describe its reduction map. As a secondary
reference the book [FvdP] might be helpful – the first edition!!. For our applications, it suffices
to explain affinoid and rigid analytic subspaces of P1.

This talk is either something for someone who knows already a lot about the p-adic upper
half space or who wants to learn a lot about it. The preparation will have to include quite a
number of things not explained in [DT, Ch. 1].

8 (18/06/2009) Morita duality, t.b.a.

This talk consists of three parts of which the last is presumable the longest: In the first
part the notion of locally analytic function needs to be extended from Zp to P1(K) and
GL2(K) (and subgroups of the latter) for K a p-adic (locally compact!) field. I suggest to
be less abstract than [DT, 2.1.1]. For instance one can obtain useful (disjoint coverings) of
the above two spaces from the surjections P1(K) ∼= P1(O) −→→ P1(O/πn) and GL2(K) −→→
GL2(K)/(1 + πnM2(O)) whose images are discrete. One could even assume K = Qp.

The second part should introduce O(k) from [DT, 1.3.7] for k ∈ Z even, explain

0 −→ Pk−1 → O(2 − k)
( d

dx
)k−1

−→ O(k) → H1
dR(X) −→ 0,

introduce Can and C la (I suggest to rename them to C lan and C lag), and to explain for k ≤ 0
the sequence

0 −→ C lag(K, k)/P−k −→ C lan(K, k)/P−k

( d
dx

)1−k

−→ C lag(K, 2 − k) −→ 0.

The main part should be the statement and proof of the Morita equivalence, Theorem 20.
(Note that by functional analysis O(k)′′b is reflexive, i.e., the strong bidual of O(k) is iso-
morphic to O(k).) For the proof of Theorem 20, define Ik, show it is well-defined, introduce
residues and prove surjectivity. (Probably this is too optimistic.)
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9 (25/06/2009) The Poisson kernel and harmonic cochains, t.b.a.

Another important isomorphism is given in Theorem 25, where the Poisson integral is shown
to be the transpose of the map Ik from the previous talk. Theorem 25, as well as Corollary
26, should be stated and proved.

Then harmonic cochains on the Bruhat-Tits tree should be introduced. The residue map
sends then O(k) into Char(k). It would be nice if much of the important Theorem 29 could
be proved. In particular this theorem computes the kernel of the residue map.

In the following section §2.3 it is proved that the restriction of the residue map to bounded
distributions is an isomorphism. Perhaps the proof of Theorem 30 could be skipped. The con-
sequences, Corollary 31 and Theorem 32 should (perhaps again without proof) be explained.

The main application of the correspondence of §2 for bounded distributions is Proposition
33. Here one starts with a quaternion algebra B over Q which is assumed to be ramified at
∞ but not at p. Let D be an order of B over Z[1/p], let M be prime to the discriminant of B
and Γ(M) the level M -congruence subgroup of the group of units of D of reduced norm one.
A summary of the theory of p-adic uniformization is given in the middle of page 28 of [DT].
For us the main consequence is that the residue map defines a Hecke equivariant isomorphism
O(k)Γ(M) → Char(k)Γ(M).

L-invariants

10 (02/07/2009) Modular symbols and Teitelbaum’s L-invariant,
t.b.a.

This talk has a lengthy description which attempts to motivate some definitions and concepts
that will be important in the remaining talks. The audience will have to judge the success of
this attempt.

Motivation for the integrals at the bottom of [DT, p.31]: Let the notation be as at the
beginning of [DT, §3.1]. Suppose, for motivational purposes that the form F from loc.cit. is a
newform of weight 2, has Hecke eigenvalues in Q and corresponds via the Jacquet-Langlands
correspondence to a classical modular form. Then there exists an elliptic curve E over Q with
the same L-function as F . In the same way that E/C is a factor of the Jacobian of X0(pMN),
the curve E/Cp is the factor of the Jacobian of Γ(M)\Hp defined by F .

Observe that since the p-part of the conductor of F is p, the elliptic curve E has split
multiplicative reduction at p. Hence over Cp it has a Tate uniformization E(Cp) ∼= C∗

p/qZ

for some q ∈ C∗
p with |q| < 1. Therefore it is natural to ask about a rigid analytic map from

Γ(M)\Hp to C∗
p/qZ which induces the above-mentioned algebraic map from the Jacobian of

Γ(M)\Hp to E/Cp. Such a map can be given as follows (see [BDG, §2]):
Because F is of weight 2, it defines a Γ(M)-invariant harmonic cocycle cF : Edges(T ) → Cp.

By multiplying F with a suitable scalar, one may assume that c takes its values in Z (and so
that the image spans Z). By the theory of the Poisson kernel, there exists a measure γF on
P1(Qp) such that

F (z) =

∫

P1(Qp)

1

z − t
dλf (t).

Since c is integer-valued, so is µf . This allows one to define for τ1, τ2 ∈ Hp an integral

×

∫ τ2

τ1

f(z)dz := ×

∫

P1(Qp)

( t − τ1

t − τ2

)

dλF (t).

Defining also
∫ τ2

τ1

f(z)dz :=
∫

P1(Qp)
log

(

t−τ1

t−τ2

)

dλF (t), one has the following key result (see

[BDG, §2]):

Theorem 1 (1) ∀γ ∈ Γ(M), τ ∈ Hp: ×
∫ γτ

τ
f(z)dz ∈ qZ.

(2) For fixed τ1 ∈ Hp, the map τ 7→ ×
∫ τ

τ1

f(z)dz induces the map Pic0(Γ(M)\Hp) −→→ C∗
p/qZ.
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(3) ord
(

×
∫ τ2

τ1

f(z)dz
)

=
∫

P1(Qp)
ord

(

t−τ1

t−τ2

)

dλF (t) =
∑

e:v(τ1)→v(τ2)
cF (e), where the second

equality holds for τi above vertices of T under the reduction map and where the sum is
over all edges from the initial to the terminal vertex.

(4) log
(

×
∫ τ2

τ1

f(z)dz
)

=
∫

P1(Qp)
log

(

t−τ1

t−τ2

)

dλF (t).

In the notation on page 31, the expression in (3) and (4) with (τ1, τ2) = (τ, γτ) are called
hF

ord(γ, 1) and hF
log(γ, 1), respectively. As a corollary to the above one deduces:

Corollary 2∀τ ∈ Hp,γ ∈ Γ(M) :
∫

P1(Qp)
log

(

t−γτ
t−τ

)

dλF (t) = log(q)
ord(q)

∫

P1(Qp)
ord

(

t−γτ
t−τ

)

dλF (t).

One can readily verify that the assignments

γ 7→

∫

P1(Qp)

log
( t − τ

t − γτ

)

dλF (t), γ 7→

∫

P1(Qp)

ord
( t − τ

t − γτ

)

dλF (t)

define elements of H1(Γ(M), Cp) = Hom(Γ(M), Cp). Let H1(Γ(M), Cp)
F denote the subspace

on which the Hecke algebra acts in the same way as on F . Then

Theorem 3 The subspace H1(Γ(M), Cp)
F is 1-dimensional (over Cp), it contains both of

the above cocycles and the cocycle for ord is a basis.

The generalization of the above theorem to arbitrary Hecke eigenforms forms and of arbi-
trary weight is [DT, Thm 36]. Teitelbaum’s definition of the L-invariant LT is the analog of
the above corollary. If the above is explained, not much should be said about [DT, Thm 36],
though. However, to give the present talk it is recommended to familiarize oneself with the
above concepts – but not to give proofs.

The next part of the talk should introduce modular symbols as a means to describe classical
modular forms, following [DT, p. 33]. Note that M and N are redefined in [DT, §3.2]; they
satisfy M = pN and the pair (M,N) would have been called (pMN,MN) in the previous
section of [DT]. Let D be the divisors on P1(Q), i.e., the free abelian group on elements of
P1(Q) which should be thought of as the boundary of H∞. Let D0 be the kernel of the degree
map D → Z. To any newform f ∈ Sk(Γ0(M)) one can attach two modular symbols

ϕ±
f ∈ HomZ(D0,HomC(Pk−2(E), E))Γ0(M) (1)

as in [DT, p. 33], where E is the finite extension of Q containing all Hecke eigenvalues of all
eigenforms of Sk(Γ0(M)). It might be helpful to relate the right hand side of (1) in a second
way to the space of cusp forms, namely by stating formula [DT, (13)] and the Eichler-Shimura
isomorphism [DT, (15)]. It is also important to connect Teitelbaum’s definition to [Co0, §3.3].

One of the useful features of modular symbols (which in some way have come up in Talk
6 already) is that they provide closed expressions for the algebraic special values Lalg(f, χ, j),
cf. [DT, Lem. 40]. These are the values that were interpolated to define the p-adic L-functions.
(There is no need to discuss much of this, since this was done in Talk 5.)

11 (16/07/2009) Harmonic modular symbols and the L-invariant of
Orton, t.b.a.

The aim of this talk is the definition of Orton’s L-invariant. The talk starts by introducing
Darmon’s mix of p-adic harmonic cochains and modular forms and symbols. This mix will
be important to define the L-invariant LO in a way analogous to LT and to prove the MTT-
conjecture. All of §3.2.2 should be explained. It would be nice if a proof of Prop. 42 could be
indicated. It is not that long, but one has to look up [Or, §2.1] or [BDG, Prop. 3.2]. Using
now [DT, Prop. 43], one can associate with every cusp form for Γ(M) which is p-new two
(times two) cohomology classes in H1(Γp

0(N),M) as in formulas [DT, (10), (11)].
To properly define the L-invariant, in the remainder of the talk one should cover [DT,

3.3.1–3.3.2]. Some key intermediate results are Lemma 45 and Corollary 55 (whose proof
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depends on Theorem 54). Their combination constitutes the analog of Theorem 3 above.
Note that in even at the end of 3.3.2, Orton’s invariant is not properly defined, because
Corollary 55 requires equation (20) which is only proved in §3.3.3.
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Birkhäuser 1981.

[Ko] N. Koblitz. p-adic numbers, p-adic analysis, and zeta-functions. GTM 58. Springer-
Verlag, New York, 1984.

[MSD] B. Mazur, P. Swinnerton-Dyer. Arithmetic of Weil curves. Invent. Math. 25 (1974),
1–61.

[MTT] B. Mazur, J. Tate, J. Teitelbaum. On p-adic analogues of the conjectures of Birch and
Swinnerton-Dyer. Invent. Math. 84 (1986), no. 1, 1–48.

[Or] L. Orton. An elementary proof of a weak exceptional zero conjecture. Canad. J. Math.
56 (2004), no. 2, 373–405.

[Si] J. Silverman. Advanced topics in the arithmetic of elliptic curves. GTM 151. Springer-
Verlag, New York, 1994.

[Si2] J. Silverman. The arithmetic of elliptic curves. GTM 106. Springer-Verlag, New York,
reprint 1992.

7


