Manual of the NAGMA packageéAr t i nAl gebr as

Gabor Wiesé
8th August 2008

Abstract

This is a short manual for the MsMA [1] packageAr t i nAl gebr as, which can be downloaded from the
author's webpage. Most of the package was originally written for cdatjmns of weight one modular forms
over finite fields/[5],/[6], [7] and extended for computations of Healgebras, also over finite fields, carried out
together with L.J.P. Kilford [3].

This package is currently needed by the authorisa¥a packagedéi ght 1 andHeckeAl gebr a, which
have grown out of the two above topics.
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1 Installation and Example

You need the packagi® t i nAl gebr as, which can be downloaded from the author’s webpage. For installation,
just unpack the tar-file.

Suppose thaPATH containsAr t i nAl gebr as. spec. Then we attach the package using

> AttachSpec("PATH/ArtinAlgebras.spec”);

We first need to create an interesting algebra. Our main source of e the motivation for this package
are Hecke algebras, i.e. matrix algebras generated by a certaincgghofuting matrices. Let us first get some
of those.

> M := CuspidalSubspace(ModularSymbols(229,2,1));

> | := [HeckeOperator(M,n) : nin [1..50]];

Now L contains 50 commuting matrices. We can form the algebra generatedday this a matrix algebra over
the rationals.

> A := MatrixAlgebra(L);

Any Artin algebra (like matrix algebras over finite fields) is the direct pma its localisations at the (finitely
many, necessarily maximal) prime ideals. We compute this decompositiothike

> D := Decomposition(A);

Let’s see how many factors we have.

> #D;

How do we now access an individual factor? This is easily done; for itsieoine:

> Al := BaseChange(A,D[1]);
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> Dimension(A1);

Out of interest, we also computed the dimension of the factor. The sartteefeecond and the third factor:

> A2 := BaseChange(A,D[2]);

> Dimension(A2);

> Basis(A2);

> A3 := BaseChange(A,D[3]);

> Dimension(A3);

We can compute the corresponding idempotents (using a direct algarithm)

> | := CompleteOrthogonalldempotents(A);

We can also get the idempotents corresponding to the decompd3itidnove.

> |1 := Idempotents(D);

| do not know which algorithm is faster.

The same things work over a finite field; actually, some more advancetidas are currently only available over
finite fields. So we do the same thing as above again, not over the ratiohaledFs.

> M := CuspidalSubspace(ModularSymbols(229,2,GF(5),1));

> L := [HeckeOperator(M,n) : nin [1..50]];

> A := MatrixAlgebra(L);

> D := Decomposition(A);

> #D;

> A3 := BaseChange(A,D[3]);

> Dimension(A3);

Just out of interest, let’'s have a look at a basig\8f

> Basis(A3);

In many cases one would like to store an Artin algebra. Storing it as a méjekra can take a lot of memory.
The package provides functions for transforming an Artin algebra imtaffine algebra, as well as into a tuple
describing an affine algebra up to isomorphism. These functions alloawéoan Artin algebra in a file by saving
the tuple. However, the tuples of isomorphic algebras can be differdinhi&\works as follows.

> AffineAlgebraTup(A3);

This is the tuple attached to the algel#& above. See the precise description below for the meaning of the
entries of the tuple. We see that the algebra is just a field. Consequently

> AffineAlgebra(A3);

really only is a field. Actually all the seven are:

> [AffineAlgebraTup(BaseChange(A,d)): d in DJ;

Note that this stops being the case for the corresponding Hecke algelstegracteristiQ. l.e. we do the same
as above again, but now oves.

> M := CuspidalSubspace(ModularSymbols(229,2,GF(2),1));

> | :=[HeckeOperator(M,n) : nin [1..50]];

> A := MatrixAlgebra(L);

> D := Decomposition(A);

> [AffineAlgebraTup(BaseChange(A,d)): d in DJ;

We can also compute the Gorenstein defect of each factor:

> [GorensteinDefect(BaseChange(A,d)): d in D];

Everything is Gorenstein. Also this may stop if we pass to a different level.

> M := CuspidalSubspace(ModularSymbols(431,2,GF(2),1));

> | := [HeckeOperator(M,n) : nin [1..50]];

> A := MatrixAlgebra(L),

> D := Decomposition(A);

> [AffineAlgebraTup(BaseChange(A,d)): d in DJ;

> [GorensteinDefect(BaseChange(A,d)): d in D];

That the relation sets are always empty only means that the relations id&afig'see the description below).
Let’s have a closer look at the first factor.

> Al := BaseChange(A,D[1]);

> Basis(Al);

The matrix representation of the algebra is not very nice. We can do:better



> A1T := CommonLowerTriangular(Al);

> Basis(A1T);

Now it's looking much nicer. Note that for the common lower triangular fotime algebra must be defined over
its residue field; this was the case. If not, it can be forced; this we expd#ig the second factor.

> A2 := BaseChange(A,D[2]);

> Basis(A2);

The basis is looking horrible. But, if we change the algebra to the residdddied take the first of the conjugate
factors), it is looking much better:

> B2 := ChangeToResidueField(A2)[1];

> Basis(B2);

2 Mathematical description

The mathematics behind the functions of this package is basic commutgtaea On this subject many excel-
lent text books exist, to which we refer the reader. Quite a detailed désorgan also be found in Chapter 2 of
the author’s lecture notes [4].

3 Functions

3.1 Affine algebras

Let A be a local Artin algebra over a finite field with maximal idealm. The residue fieldd/m is a finite
extension of. By base changing t& and taking one of the conjugate local factors, we assume nowk thai .
The embedding dimension e is thek-dimension ofm/m?. By Nakayama’s lemma, this is the minimal number of
generators fom. The name comes from the fact that there is a surjection

7w k[ze, ..., ze] > A

Its kernel is called theelations ideal. By thenilpotency order we mean the maximal integersuch thatm™ is
not the zero ideal. (As the algebra is local and Artin, its maximal ideal is teifgg We now know that the ideal

J" T with J = (T1,...,Te)

is in the kernel ofr. So, in order to store, we only need to store the kernglof the linear map between two
finite dimensional K-vector spaces
m Kle, ...z /T - A

From the tuple< k, e, n, R > the algebra can be recreated (up to isomorphism). Let us point ouévieowthat
from the tuple it is not obvious whether two algebras are isomorphic. Wbiald have to be tested after recreating
the algebras.

The following functions can be used in order to store such Artin algebiaway that does not use much memory,
but retains the algebra up to isomorphism.

intrinsic AffineAlgebra (A :: AlgMat : try_minimal := true) -> RngMPo  IRes

intrinsic AffineAlgebra (A :: AlgAss : try_minimal := true) -> RngMPo IRes

This function turns the local algebrainto an affine algebra over its residue field. In fact, the algebra is fisgt ba
changed to its residue field, then for one of the conjugate local factaffine presentation is computed. If the
optiontry_minimal is true, the number of relations will in general be smaller, but the compaotatie may be
longer.

intrinsic AffineAlgebraTup (A :: AlgMat : try_minimal := true ) -> Tup

intrinsic AffineAlgebraTup (A :: AlgAss : try_minimal := true) -> Tup

Given a local algebra , this function returns a tuplek,e,n,R>, consisting of the residue fiekl of A, the em-
bedding dimensio, the nilpotency orden and relationsR. From these data, an affine algebra can be recreated
which is isomorphic to one of the local factors.4fbase changed to its residue field. If the optign minimal

is true, the number of relations will in general be smaller, but the compuotttiee may be longer.



intrinsic AffineAlgebra (form :: Rec) -> RngMPolRes
Given a modular form record, this function returns the correspondetke algebra as an affine algebra.

intrinsic AffineAlgebra (A :: Tup) -> RngMPolRes
This function turns a tuplek,e,n,R>, consisting of a fieldk, two integerse, n (the embedding dimension and
the nilpotency order) and relatiof, into an affine algebra.

3.2 Matrix algebra functions

intrinsic MatrixAlgebra (L :: SeqEnum ) -> AlgMat
Given a list of matriced. , this function returns the matrix algebra generated by the membérs of

intrinsic RegularRepresentation (A :: AlgMat ) -> AlgMat
This function computes the regular representation of the commutativexralatebraA .

intrinsic CommonLowerTriangular ( A :: AlgMat ) -> AlgMat
Given a local commutative matrix algebfg this function returns an isomorphic matrix algebra whose matrices
are all lower triangular, provided thakt is defined over its residue field.

Base change

intrinsic BaseChange (S :: Tup, T :: Tup ) -> Tup
This function computes the composition of the base change mafricesC, D>, followed by those ir§ = <E,F>.

intrinsic BaseChange (M :: Mtrx, T :: Tup ) -> Mtrx
Given a matrixM and a tupleT = <C,D> of base change matrices (for a subspace), computes the matvix of
with respect to the basis correspondingto

intrinsic BaseChange (M :: AlgMat, T :: Tup ) -> AlgMat
Given a matrix algebrd and a tuplel = <C,D> of base change matrices (for a subspace), computes the matrix
algebra ofV with respect to the basis correspondingito

Decomposition over base field

intrinsic Decomposition (M :: Mtrx ) -> Tup

Given a matrixM, this function computes a decomposition of the standard vector spalcetgiche minimal
polynomial of M is a prime power on each summand. The output is a tuple consisting othasge tuples
<C,D> corresponding to the summands.

intrinsic Decomposition (L :: SeqEnum ) -> Tup

Given a sequence of commuting matrices, this function computes a decomposition of the sthneletor space
such that the minimal polynomial of ea¢hin L is a prime power on each summand. The output is a tuple
consisting of base change tupke§,D> corresponding to the summands.

intrinsic Decomposition ( A :: AlgMat ) -> Tup

Given a commutative matrix algebr, this function computes a decomposition of the standard vector space
such that each the minimal polynomial of eacn A is a prime power on each summand. The output is a tuple
consisting of base change tupke§,D> corresponding to the summands.

intrinsic AlgebraDecomposition ( A :: AlgMat ) -> SeqEnum
Given a matrix algebrd over a finite fieldk, returns a list of all local factors k.

Decomposition over residue field

intrinsic DecompositionOverResidueField ( M :: Mtrx : DegBound := 0 ) -> Tup

Given a matrixM, this function computes a decomposition of the standard vector spabetatd/ acts as
multiplication by a scalar on each summand. For this, each local factoedltebra is base changed to its
residue field. The output is a tuple consisting of base change tglg3> corresponding to the summands.



intrinsic DecompositionUpToConjugation (M :: Mtrx : DegBound :=0 ) -> Tup

Given a matrixM, this function computes a decomposition of the standard vector spaketatd/ acts as
multiplication by a scalar on each summand. For this, each local factoeddltebra is base changed to its
residue field. The output is a tuple consisting of base change ts@ld3> corresponding to the summands.
Summands conjugate under the absolute Galois group only appear once.

intrinsic DecompositionOverResidueField ( L :: SeqEnum : DegBound= 0 ) -> Tup

Given a sequenck of commuting matrices, computes a decomposition of the standard veeiog such that
eachl in L acts as multiplication by a scalar on each summand. For this, each lomwaldathe algebra is base
changed to its residue field. The output is a tuple consisting of base chgrlge<C,D> corresponding to the
summands.

intrinsic DecompositionOverResidueField ( A :: AlgMat : DegBound := 0) -> Tup

Given a commutative matrix algeb#g this function computes a decomposition of the standard vector spate suc
that eacha in A acts as multiplication by a scalar on each summand. For this, each lowaldhthe algebra is
base changed to its residue field. The output is a tuple consisting of basgectuples<C,D> corresponding to

the summands.

intrinsic DecompositionUpToConjugation ( L :: SeqEnum : DegBound:= 0) -> Tup

Given a sequence of commuting matrices, this function computes a decomposition of the sthweletor space
such that eachin L acts as multiplication by a scalar on each summand. For this, each lomaldathe algebra
is base changed to its residue field. The output is a tuple consisting of tearsgectuplesC,D> corresponding
to the summands. Summands conjugate under the absolute Galois ghpapmear once.

intrinsic DecompositionUpToConjugation ( A :: AlgMat : DegBound := 0 ) -> Tup

Given a commutative matrix algeb#g this function computes a decomposition of the standard vector spate suc
that eacha in A acts as multiplication by a scalar on each summand. For this, each lowaldathe algebra is
base changed to its residue field. The output is a tuple consisting of basgectuples<C,D> corresponding to

the summands. Summands conjugate under the absolute Galois groapper once.

intrinsic AlgebraDecompositionUpToConjugation ( A :: AlgMat : DegBound := 0 ) -> SeqEnum

intrinsic ChangeToResidueField ( A :: AlgMat : DegBound := 0) -> Seqfum

Given a matrix algebra over a finite fieldk, these identical functions return a list consisting for each local factor
B of A of one local factor oB tensorK whereK is the residue field oB.

intrinsic AlgebraDecompositionOverResidueField ( A :: AlgMat : DegBaind := 0 ) -> SeqEnum
Given a matrix algebra over a finite fieldk, this function returns a list of all local factors Af after base change
to their residue fields.

Idempotents

intrinsic CompleteOrthogonalldempotents ( L :: SeqEnum ) -> SeqBum

For a listL of commuting algebra elements over a field, this function returns a cotepssd¢ of orthogonal
idempotents for all the elementsin Note that ifL forms a basis of an algebra, then the output is a complete set
of orthogonal idempotents of this algebra. If, howe\emnly forms a generating set, then it is not guaranteed
that the output is a complete set.

intrinsic ldempotents (D :: Tup ) -> SeqEnum, Tup
Given a decompositio, this function calculates a list of the corresponding idempotents as matrides
function also returns base change matrices describing the algebraptesiton in terms of block matrices.

Localisations

intrinsic Localisations (L :: SeqEnum ) -> Tup, Tup

intrinsic Localisations (A :: AlgMat ) -> Tup, Tup

Given a listL of commuting matrices or a commutative Artin matrix algefirahis function computes two tuples
C, D, whereC contains a tuple consisting of the localisations\qfrespectively of the matrix algebra generated
by L, andD consists of the corresponding base change tuples. The base fiel¢hasedo be a finite field for



technical reasons (the A6mA function Maximalldeals is used). Alternatively, and more generally, the function
Decompositioncan be used. | do not know which one is faster.

intrinsic Localisations ( A :: AlgAss ) -> SeqEnum
This function returns a list of all localisations of the Artin algebra A which suased to be commutative. The
output is a list of associative algebras. This also only works over finitisfior the same reasons as above.

3.3 Gorenstein defect

Let A be a local Artin algebra over a finite field with unique maximal idealThat the base field is a finite field
is only due to technical reasons (theABIMA function Maximalldeals is used). We define th8orenstein defect

of A to be(dima,/m A[m]) — 1, which is equal to the number ef-module generators of the annihilator of the
maximal ideal minus one. The algebra is said tddoeenstein if its Gorenstein is equal t0.

intrinsic GorensteinDefect ( A :: RngMPolRes) -> RngIntElt

intrinsic GorensteinDefect ( A :: AlgAss) -> RngintElt

intrinsic GorensteinDefect ( A :: AlgMat ) -> RngIntElt

These functions return the Gorenstein defect of the local commutégjebraA .

intrinsic IsGorenstein ( M :: RngMPolRes ) -> BoolElt

intrinsic IsGorenstein (M :: AlgAss ) -> BoolElt

intrinsic IsGorenstein (M :: AlgMat ) -> BoolElt

These functions test whether the commutative local algkbia Gorenstein.
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