
Manual of the MAGMA packageArtinAlgebras

Gabor Wiese∗

8th August 2008

Abstract

This is a short manual for the MAGMA [1] packageArtinAlgebras, which can be downloaded from the

author’s webpage. Most of the package was originally written for computations of weight one modular forms

over finite fields [5], [6], [7] and extended for computations of Heckealgebras, also over finite fields, carried out

together with L.J.P. Kilford [3].

This package is currently needed by the author’s MAGMA packagesWeight1 andHeckeAlgebra, which

have grown out of the two above topics.

Contents

1 Installation and Example 1

2 Mathematical description 3

3 Functions 3

3.1 Affine algebras 3

3.2 Matrix algebra functions 4

3.3 Gorenstein defect 6

1 Installation and Example

You need the packageArtinAlgebras, which can be downloaded from the author’s webpage. For installation,

just unpack the tar-file.

Suppose thatPATH containsArtinAlgebras.spec. Then we attach the package using

> AttachSpec("PATH/ArtinAlgebras.spec");

We first need to create an interesting algebra. Our main source of examples and the motivation for this package

are Hecke algebras, i.e. matrix algebras generated by a certain set ofcommuting matrices. Let us first get some

of those.

> M := CuspidalSubspace(ModularSymbols(229,2,1));

> L := [HeckeOperator(M,n) : n in [1..50]];

Now L contains 50 commuting matrices. We can form the algebra generated by these. It is a matrix algebra over

the rationals.

> A := MatrixAlgebra(L);

Any Artin algebra (like matrix algebras over finite fields) is the direct product of its localisations at the (finitely

many, necessarily maximal) prime ideals. We compute this decomposition likethis:

> D := Decomposition(A);

Let’s see how many factors we have.

> #D;

How do we now access an individual factor? This is easily done; for the first one:

> A1 := BaseChange(A,D[1]);

∗Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstr. 29, D-45326 Essen, Germany.

http://maths.pratum.net/, e-mail:gabor.wiese@uni-due.de

1

> Dimension(A1);

Out of interest, we also computed the dimension of the factor. The same for the second and the third factor:

> A2 := BaseChange(A,D[2]);

> Dimension(A2);

> Basis(A2);

> A3 := BaseChange(A,D[3]);

> Dimension(A3);

We can compute the corresponding idempotents (using a direct algorithm):

> I := CompleteOrthogonalIdempotents(A);

We can also get the idempotents corresponding to the decompositionD above.

> I1 := Idempotents(D);

I do not know which algorithm is faster.

The same things work over a finite field; actually, some more advanced functions are currently only available over

finite fields. So we do the same thing as above again, not over the rationals but overF5.

> M := CuspidalSubspace(ModularSymbols(229,2,GF(5),1));

> L := [HeckeOperator(M,n) : n in [1..50]];

> A := MatrixAlgebra(L);

> D := Decomposition(A);

> #D;

> A3 := BaseChange(A,D[3]);

> Dimension(A3);

Just out of interest, let’s have a look at a basis ofA3 .

> Basis(A3);

In many cases one would like to store an Artin algebra. Storing it as a matrix algebra can take a lot of memory.

The package provides functions for transforming an Artin algebra into an affine algebra, as well as into a tuple

describing an affine algebra up to isomorphism. These functions allow to save an Artin algebra in a file by saving

the tuple. However, the tuples of isomorphic algebras can be different. All this works as follows.

> AffineAlgebraTup(A3);

This is the tuple attached to the algebraA3 above. See the precise description below for the meaning of the

entries of the tuple. We see that the algebra is just a field. Consequently

> AffineAlgebra(A3);

really only is a field. Actually all the seven are:

> [AffineAlgebraTup(BaseChange(A,d)): d in D];

Note that this stops being the case for the corresponding Hecke algebrasin characteristic2. I.e. we do the same

as above again, but now overF2.

> M := CuspidalSubspace(ModularSymbols(229,2,GF(2),1));

> L := [HeckeOperator(M,n) : n in [1..50]];

> A := MatrixAlgebra(L);

> D := Decomposition(A);

> [AffineAlgebraTup(BaseChange(A,d)): d in D];

We can also compute the Gorenstein defect of each factor:

> [GorensteinDefect(BaseChange(A,d)): d in D];

Everything is Gorenstein. Also this may stop if we pass to a different level.

> M := CuspidalSubspace(ModularSymbols(431,2,GF(2),1));

> L := [HeckeOperator(M,n) : n in [1..50]];

> A := MatrixAlgebra(L);

> D := Decomposition(A);

> [AffineAlgebraTup(BaseChange(A,d)): d in D];

> [GorensteinDefect(BaseChange(A,d)): d in D];

That the relation sets are always empty only means that the relations ideal isJn+1 (see the description below).

Let’s have a closer look at the first factor.

> A1 := BaseChange(A,D[1]);

> Basis(A1);

The matrix representation of the algebra is not very nice. We can do better:

2

> A1T := CommonLowerTriangular(A1);

> Basis(A1T);

Now it’s looking much nicer. Note that for the common lower triangular form, the algebra must be defined over

its residue field; this was the case. If not, it can be forced; this we explain using the second factor.

> A2 := BaseChange(A,D[2]);

> Basis(A2);

The basis is looking horrible. But, if we change the algebra to the residue field (and take the first of the conjugate

factors), it is looking much better:

> B2 := ChangeToResidueField(A2)[1];

> Basis(B2);

2 Mathematical description

The mathematics behind the functions of this package is basic commutative algebra. On this subject many excel-

lent text books exist, to which we refer the reader. Quite a detailed description can also be found in Chapter 2 of

the author’s lecture notes [4].

3 Functions

3.1 Affine algebras

Let A be a local Artin algebra over a finite fieldk with maximal idealm. The residue fieldA/m is a finite

extension ofk. By base changing toK and taking one of the conjugate local factors, we assume now thatk = K.

Theembedding dimension e is thek-dimension ofm/m
2. By Nakayama’s lemma, this is the minimal number of

generators form. The name comes from the fact that there is a surjection

π : k[x1, . . . , xe] ։ A.

Its kernel is called therelations ideal. By thenilpotency order we mean the maximal integern such thatmn is

not the zero ideal. (As the algebra is local and Artin, its maximal ideal is nilpotent.) We now know that the ideal

Jn+1 with J := (x1, . . . , xe)

is in the kernel ofπ. So, in order to storeπ, we only need to store the kernelR of the linear map between two

finite dimensional K-vector spaces

π1 : K[x1, . . . , xe]/Jn+1
։ A.

From the tuple< k, e, n, R > the algebra can be recreated (up to isomorphism). Let us point out, however, that

from the tuple it is not obvious whether two algebras are isomorphic. Thatwould have to be tested after recreating

the algebras.

The following functions can be used in order to store such Artin algebras ina way that does not use much memory,

but retains the algebra up to isomorphism.

intrinsic AffineAlgebra (A :: AlgMat : try_minimal := true) -> RngMPo lRes

intrinsic AffineAlgebra (A :: AlgAss : try_minimal := true) -> RngMPo lRes

This function turns the local algebraA into an affine algebra over its residue field. In fact, the algebra is first base

changed to its residue field, then for one of the conjugate local factors anaffine presentation is computed. If the

option try_minimal is true, the number of relations will in general be smaller, but the computation time may be

longer.

intrinsic AffineAlgebraTup (A :: AlgMat : try_minimal := true) -> Tup

intrinsic AffineAlgebraTup (A :: AlgAss : try_minimal := true) -> Tup

Given a local algebraA , this function returns a tuple<k,e,n,R>, consisting of the residue fieldk of A , the em-

bedding dimensione, the nilpotency ordern and relationsR . From these data, an affine algebra can be recreated

which is isomorphic to one of the local factors ofA base changed to its residue field. If the optiontry_minimal

is true, the number of relations will in general be smaller, but the computation time may be longer.

3

intrinsic AffineAlgebra (form :: Rec) -> RngMPolRes

Given a modular form record, this function returns the correspondingHecke algebra as an affine algebra.

intrinsic AffineAlgebra (A :: Tup) -> RngMPolRes

This function turns a tuple<k,e,n,R>, consisting of a fieldk , two integerse, n (the embedding dimension and

the nilpotency order) and relationsR , into an affine algebra.

3.2 Matrix algebra functions

intrinsic MatrixAlgebra (L :: SeqEnum) -> AlgMat

Given a list of matricesL , this function returns the matrix algebra generated by the members ofL .

intrinsic RegularRepresentation (A :: AlgMat) -> AlgMat

This function computes the regular representation of the commutative matrix algebraA .

intrinsic CommonLowerTriangular (A :: AlgMat) -> AlgMat

Given a local commutative matrix algebraA , this function returns an isomorphic matrix algebra whose matrices

are all lower triangular, provided thatA is defined over its residue field.

Base change

intrinsic BaseChange (S :: Tup, T :: Tup) -> Tup

This function computes the composition of the base change matricesT = <C,D>, followed by those inS = <E,F>.

intrinsic BaseChange (M :: Mtrx, T :: Tup) -> Mtrx

Given a matrixM and a tupleT = <C,D> of base change matrices (for a subspace), computes the matrix ofM

with respect to the basis corresponding toT .

intrinsic BaseChange (M :: AlgMat, T :: Tup) -> AlgMat

Given a matrix algebraM and a tupleT = <C,D> of base change matrices (for a subspace), computes the matrix

algebra ofM with respect to the basis corresponding toT .

Decomposition over base field

intrinsic Decomposition (M :: Mtrx) -> Tup

Given a matrixM , this function computes a decomposition of the standard vector space such that the minimal

polynomial ofM is a prime power on each summand. The output is a tuple consisting of basechange tuples

<C,D> corresponding to the summands.

intrinsic Decomposition (L :: SeqEnum) -> Tup

Given a sequenceL of commuting matrices, this function computes a decomposition of the standard vector space

such that the minimal polynomial of eachl in L is a prime power on each summand. The output is a tuple

consisting of base change tuples<C,D> corresponding to the summands.

intrinsic Decomposition (A :: AlgMat) -> Tup

Given a commutative matrix algebraA , this function computes a decomposition of the standard vector space

such that each the minimal polynomial of eacha in A is a prime power on each summand. The output is a tuple

consisting of base change tuples<C,D> corresponding to the summands.

intrinsic AlgebraDecomposition (A :: AlgMat) -> SeqEnum

Given a matrix algebraA over a finite fieldk , returns a list of all local factors ofA .

Decomposition over residue field

intrinsic DecompositionOverResidueField (M :: Mtrx : DegBound := 0) -> Tup

Given a matrixM , this function computes a decomposition of the standard vector space such thatM acts as

multiplication by a scalar on each summand. For this, each local factor of the algebra is base changed to its

residue field. The output is a tuple consisting of base change tuples<C,D> corresponding to the summands.

4

intrinsic DecompositionUpToConjugation (M :: Mtrx : DegBound := 0) -> Tup

Given a matrixM , this function computes a decomposition of the standard vector space such thatM acts as

multiplication by a scalar on each summand. For this, each local factor of the algebra is base changed to its

residue field. The output is a tuple consisting of base change tuples<C,D> corresponding to the summands.

Summands conjugate under the absolute Galois group only appear once.

intrinsic DecompositionOverResidueField (L :: SeqEnum : DegBound := 0) -> Tup

Given a sequenceL of commuting matrices, computes a decomposition of the standard vector space such that

eachl in L acts as multiplication by a scalar on each summand. For this, each local factor of the algebra is base

changed to its residue field. The output is a tuple consisting of base changetuples<C,D> corresponding to the

summands.

intrinsic DecompositionOverResidueField (A :: AlgMat : DegBound := 0) -> Tup

Given a commutative matrix algebraA , this function computes a decomposition of the standard vector space such

that eacha in A acts as multiplication by a scalar on each summand. For this, each local factor of the algebra is

base changed to its residue field. The output is a tuple consisting of base change tuples<C,D> corresponding to

the summands.

intrinsic DecompositionUpToConjugation (L :: SeqEnum : DegBound:= 0) -> Tup

Given a sequenceL of commuting matrices, this function computes a decomposition of the standard vector space

such that eachl in L acts as multiplication by a scalar on each summand. For this, each local factor of the algebra

is base changed to its residue field. The output is a tuple consisting of base change tuples<C,D> corresponding

to the summands. Summands conjugate under the absolute Galois group only appear once.

intrinsic DecompositionUpToConjugation (A :: AlgMat : DegBound := 0) -> Tup

Given a commutative matrix algebraA , this function computes a decomposition of the standard vector space such

that eacha in A acts as multiplication by a scalar on each summand. For this, each local factor of the algebra is

base changed to its residue field. The output is a tuple consisting of base change tuples<C,D> corresponding to

the summands. Summands conjugate under the absolute Galois group onlyappear once.

intrinsic AlgebraDecompositionUpToConjugation (A :: AlgMat : DegBound := 0) -> SeqEnum

intrinsic ChangeToResidueField (A :: AlgMat : DegBound := 0) -> SeqEnum

Given a matrix algebraA over a finite fieldk , these identical functions return a list consisting for each local factor

B of A of one local factor ofB tensorK whereK is the residue field ofB .

intrinsic AlgebraDecompositionOverResidueField (A :: AlgMat : DegBound := 0) -> SeqEnum

Given a matrix algebraA over a finite fieldk , this function returns a list of all local factors ofA after base change

to their residue fields.

Idempotents

intrinsic CompleteOrthogonalIdempotents (L :: SeqEnum) -> SeqEnum

For a list L of commuting algebra elements over a field, this function returns a compelete set of orthogonal

idempotents for all the elements inL . Note that ifL forms a basis of an algebra, then the output is a complete set

of orthogonal idempotents of this algebra. If, however,L only forms a generating set, then it is not guaranteed

that the output is a complete set.

intrinsic Idempotents (D :: Tup) -> SeqEnum, Tup

Given a decompositionD , this function calculates a list of the corresponding idempotents as matrices. The

function also returns base change matrices describing the algebra decomposition in terms of block matrices.

Localisations

intrinsic Localisations (L :: SeqEnum) -> Tup, Tup

intrinsic Localisations (A :: AlgMat) -> Tup, Tup

Given a listL of commuting matrices or a commutative Artin matrix algebraA , this function computes two tuples

C , D , whereC contains a tuple consisting of the localisations ofA , respectively of the matrix algebra generated

by L , andD consists of the corresponding base change tuples. The base field is supposed to be a finite field for

5

technical reasons (the MAGMA functionMaximalIdeals is used). Alternatively, and more generally, the function

Decompositioncan be used. I do not know which one is faster.

intrinsic Localisations (A :: AlgAss) -> SeqEnum

This function returns a list of all localisations of the Artin algebra A which is assumed to be commutative. The

output is a list of associative algebras. This also only works over finite fields; for the same reasons as above.

3.3 Gorenstein defect

Let A be a local Artin algebra over a finite field with unique maximal idealm. That the base field is a finite field

is only due to technical reasons (the MAGMA functionMaximalIdeals is used). We define theGorenstein defect

of A to be(dimA/m A[m]) − 1, which is equal to the number ofA-module generators of the annihilator of the

maximal ideal minus one. The algebra is said to beGorenstein if its Gorenstein is equal to0.

intrinsic GorensteinDefect (A :: RngMPolRes) -> RngIntElt

intrinsic GorensteinDefect (A :: AlgAss) -> RngIntElt

intrinsic GorensteinDefect (A :: AlgMat) -> RngIntElt

These functions return the Gorenstein defect of the local commutative algebraA .

intrinsic IsGorenstein (M :: RngMPolRes) -> BoolElt

intrinsic IsGorenstein (M :: AlgAss) -> BoolElt

intrinsic IsGorenstein (M :: AlgMat) -> BoolElt

These functions test whether the commutative local algebraM is Gorenstein.

References

[1] W. Bosma, J. J. Cannon, C. Playoust.The Magma Algebra System I: The User Language.J. Symbolic

Comput.24 (1997), pp. 235-265

[2] S. J. Edixhoven.Comparison of integral structures on spaces of modular forms of weight two, and compu-

tation of spaces of forms mod2 of weight1. Journal of the Inst. of Math. Jussieu (2006) 5(1), 1-34.

[3] L.J.P. Kilford, G. Wiese.On the failure of the Gorenstein property for Hecke algebras of prime weight.

Experimental Mathematics 17(1), 2008, 37-52.

[4] G. Wiese. Computational Arithmetic of Modular Forms. Lecture Notes from a course at Universität

Duisburg-Essen. Available fromhttp://maths.pratum.net/.

[5] G. Wiese.Computing Hecke algebras of weight1 in MAGMA. Appendix B of [2].

[6] G. Wiese.Modular Forms of Weight One over Finite Fields.PhD thesis, Universiteit Leiden, 2005. Available

from the author’s webpage.

[7] G. Wiese.On the faithfulness of parabolic cohomology as a Hecke module over a finite field. Journal für

die reine und angewandte Mathematik 606 (2007), 79-103.

6

	Installation and Example
	Mathematical description
	Functions
	Affine algebras
	Matrix algebra functions
	Gorenstein defect

