The MAGMA package HeckeAlgebra

Gabor Wiese

11th September 2006

Abstract

This is a short manual for the MsmA packageéHeckeAl gebr a, which can be downloaded
from the author’'s webpage. The author would like to thankyti&ilford for very helpful sug-
gestions.

1 Example

The following example explains the main functions of thekzaye. Let us suppose that the file
HeckeAl gebr a. ng is stored in the current path. We first attach the package.
> Attach("HeckeAlgebra.mg");
We want the package to be silent, so we put:
> SetVerbose ("HeckeAlgebra",false);
If we would like more information on the computations beirgfprmed, we should have put the
valuetrue. Since we want to store the data to be computed in a file, we nestesthe file.
>my_file := "datafile";
> CreateStorageFile(my _file);
Next, we would like to compute the Hecke algebras of the didezigenforms of leve2039 over
extensions oF,. First, we create a list of such forms.
> dih := DihedralForms(2039 : ListOfPrimes := [2], completdy split := false);
Now, we compute the corresponding Hecke algebras, printopéne computed data in a human
readable format, and finally save the data to our file.
> for f in dih do
for> ha := HeckeAlgebras(f);
for> HeckeAlgebraPrintl(ha);
for> StoreData(my _file, ha);
for> end for;
Level 2039
Weight 2
Characteristic 2
Gorenstein defect 0

*NWF 1-Mathematik, Universitdt Regensburg, D-93040 Repertgs Germany, e-mail:gabor @r at um net,
http://maths. pratum net

Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 2

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 2
Dimension 6

Number of operators used 4
Primes It Hecke bound 68
Residue degree 2

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 6

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 4

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 4

Level 2039
Weight 2
Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 12

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 12

With the functionDihedralForms one may also compute exclusively representations that are
completely split in the characteristic. The defaultciempletely split := true. By the option
bound we indicate primes up to which bound should be used as thectesistic. The following
example illustrates this.

> dih1 := DihedralForms (431 : bound := 20);

> for fin dih1 do

for> ha := HeckeAlgebras(f);

for> HeckeAlgebraPrint1(ha);

for> StoreData(my _file, ha);

for> end for;

Level 431

Weight 2

Characteristic 2

Gorenstein defect 2

Dimension 4

Number of operators used 6

Primes It Hecke bound 20

Residue degree 1

Level 431

Weight 11

Characteristic 11
Gorenstein defect 2
Dimension 4

Number of operators used 5
Primes It Hecke bound 77
Residue degree 3

One can also compute icosahedral modular forms over ertensiF2, starting from an integer

polynomial with Galois groupis, as follows.

> R<x> := PolynomialRing(Integers());

> pol := X"5-X"4-780*x"3-1795*x"2+3106*x+344;

> f:= A5Form(pol);

With this kind of icosahedral examples one has to pay atient the conductor, as it can be huge.
This polynomial has prime conductor. But conductors negdasquare-free, in general.
> print Modulus(f‘Character);

1951

So it's reasonable. We do the computation.

> ha := HeckeAlgebras(f);

> HeckeAlgebraPrint1(ha);

Level 1951

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 3

Number of operators used 3

Primes It Hecke bound 66

Residue degree 4

Level 1951

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 6

Number of operators used 3
Primes It Hecke bound 66
Residue degree 4

There are two forms, which is okay, since they come from a htedge form in two different
ways and this case is not exceptional. We now save them, ayslw
> StoreData(my _file, ha);

Itis also possible to compute all forms at a given charactdneeight.
> eps := DirichletGroup(229,GF(2)).1;

> ha := HeckeAlgebras(eps,2);

> HeckeAlgebraPrint1(ha);

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 12

Primes It Hecke bound 12

Residue degree 1

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 2

Number of operators used 12
Primes It Hecke bound 12
Residue degree 2

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 4

Number of operators used 12
Primes It Hecke bound 12
Residue degree 1

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 2

Number of operators used 12
Primes It Hecke bound 12
Residue degree 5

> StoreData(my _file,ha);

Next, we illustrate how one reloads what has been saved. @uo&like to type:load my_file;
but that does not work. One has to do it as follows.

> load "datafile";

> mf := RecoverData(LoadIn,LoadInRel);

Now, mf contains a list of all algebra data computed before. Thexesather concise printing
function, displaying part of the information, nameteckeAlgebraPrint(mf); .

One can also create a LaTeX longtable. The entries can berhoguite a flexible way. The

standard usage is the following.

> HeckeAlgebralLaTeX(mf, "table.tex");
A short LaTeX file displaying the table is the following:
\docunent cl ass[11pt]{articl e}

\usepackage{l ongt abl e}
\begi n{docunent }

\i nput {t abl e}
\end{docunent }

The table we created is this one:

Level | Wt | ResD| Dim | EmbDim | NilO | GorDef | #Ops | #(p<HB) | Gp
2039 | 2 2 1 0 0 0 3 68 Ds
2039 | 2 2 6 3 2 2 4 68 D5
2039 | 2 6 1 0 0 0 3 68 Dy
2039 | 2 4 1 0 0 0 3 68 Dis
2039 | 2 4 1 0 0 0 3 68 Dis
2039 | 2 12 1 0 0 0 3 68 Dys
2039 | 2 12 1 0 0 0 3 68 Dys
431 | 2 1 4 3 1 2 6 20 Ds
431 | 11 3 4 3 1 2 5 77 Dy
1951 | 2 4 3 1 2 0 3 66 As
1951 | 2 4 6 2 3 0 3 66 As

229 | 2 1 1 0 0 0 12 12

229 | 2 2 2 1 1 0 12 12

229 | 2 1 4 1 3 0 12 12

229 | 2 5 2 1 1 0 12 12

In the examples of level29 the image of the Galois representation as an abstract gson@ti
know. That is due to the fact that we created these examptbsutispecifying the Galois repre-
sentation in advance.

It is possible to compute arbitrary Hecke operators on thallélecke factors generated by
HeckeAlgebras(), as the following example illustrates.

> A,B,M,C := HeckeAlgebras(DirichletGroup(253,GF(2)).12 : over_residue_field := true);
Suppose that we want to know the Hecke operaigron the4th local factor.

>j:=4;

> T := BaseChange(HeckeOperator(M,17),C[i]);

The coefficients are the eigenvalues (only one):

> Eigenvalues(T);

{<%$.15,8>}

Let us remember the eigenvalue.

> e := SetToSequence(Eigenvalues(T))[1][1];

In order to illustrate the optioaver_residue_field we also compute the following:

> A1,B1,M1,C1 := HeckeAlgebras(DirichletGroup(253,GF(2).1,2 : over_residue_field :=
false);

> T1 := BaseChange(HeckeOperator(M1,17),C1[i]);

> Eigenvalues(T1);

{

The base field is strictly smaller than the residue field ia &xample and the operatdf cannot
be diagonalised over the base field. We checkéhamnevertheless a zero of the minimal polyno-
mial of T1.

> Evaluate(MinimalPolynomial(T1),e);

0

The precise usage of the package is described in the folgpgentions.

2 Hecke algebra computation

2.1 The modular form format

In the package, modular forms are often represented by tloevfog record.
ModularFormFormat := recformat <

Character : GrpDrchElt,
Weight ! RngIntElt,
CoefficientFunction : Map,
ImageName : MonStgElt,
Polynomial : RngUPOIEIt

>
The fieldsCharacter and Weight have the obvious meaning. Sometimes, the image of the

associated Galois representation is known as an abst@ag giThen that name is recorded in

ImageName e.g.A_5 or D_3. In some cases, a polynomial is known whose splitting fiettiés

number field cut out by the Galois representation. Then tiynpanial is stored inPolynomial.

The cases in which polynomials are known are usually icala@henes. TheCoefficientFunc-

tion is a function from the integers to a polynomial ring. For alinpes! different from the

characteristic and not dividing the level of the modulamiaji.e. the modulus of th€harac-

ter), the coefficient function should return the minimal polymal of thei-th coefficient in the

g-expansion of the modular form in question.

2.2 Dihedral modular forms

Eigenforms whose associated Galois representations thkdrdl groups as images provide an
important source of examples, in many contexts. These figes are calledlihedral. The big
advantage is that their Galois representation, and heerggthoefficients, can be computed using
class field theory. That enables one to exhibit Galois remtasions in the context of modular
forms with certain number theoretic properties. The prgptar which these functions were
initially created is that the representations should benified in the characteristic, say and
thatp is completely split in the number field cut out by the repréaton.

We consider dihedral representations whose determintirg lsegendre symbol of a quadratic
field Q(v/N). The representations produced by the functions to be destare obtained by
induction of an unramified characterof Q(v/N') whose conjugate by the non-trivial element of
the Galois group of)(v/N) overQ is assumed to bg .

intrinsic GetLegendre (N :: RngIntElt, K :: FIdFin) -> GrpDr chElt

For an odd positive integg¥, this function returns the element BiirichletGroup(Abs(N),K)
(with K afinite field of characteristic different frof) which corresponds to the Legendre symbol
D (iTN) If N is1 mod4 the signis+1, and—1 otherwise.

intrinsic DihedralForms (N :: RngIntElt :

ListOfPrimes := [], bound := 100, odd_only := true, quad_dig := 0,

completely_split := true, all_conjugacy_classes := true > Rec
This function computes all modular forms (in the sense otiSef1) of levelN and weightp
over a finite field of characteristicthat come from dihedral representations whose determinant
is the Legendre symbol of the quadratic fidld = Q(+/£quad_disc) and which are obtained
by induction of an unramified character &f. If quad_discis 1 mod4 the sign is+1, and—1
otherwise. Ifquad_discis 0, the value ofN is used. If the optiorompletely splitis set, only
those representations are returned which are completi#asp. If the optionListOfPrimes is
assigned a non-empty list of primes, only those primes amsidered as the characteristic. If itis
the empty set, all primes up to thebound are taken into consideration. If the optiodd only
is true, only odd Galois representations are returnedelbititionall_conjugacy classes true,
each unramified character as above up to Galois conjugacynd taking inverses is used.
Otherwise, a single choice is made. That there may be nojugaie characters cutting out the
same number field is due to the fact that there may be non-gatgelements of the same order
in the multiplicative group of a finite field.

2.3 lcosahedral modular forms

Eigenforms whose attached Galois representations takgrthe A5 as projective images are
calledicosahedral. Since extensive tables dfs-extensions of the rationals are available, one can
consider icosahedral Galois representations which onegwery well. That allows one to test
certain conjectures concerning modular forms on icosathedes.

We note the isomorphism; = SLy(F,). Thus, As-extentions of the rationals give rise to
icosahedral Galois representations in characterdstitich (should) come from modular forms
mod2. It would also be possible to use certain other primes, bsttas not been implemented.

intrinsic A5Form (f :: RngUPOIEIt) -> Rec

Returns the icosahedral form in characterigtiand weight2 of smallest predicted level corre-
sponding to the polynomidl which is expected to be of degréeand whose Galois group is
supposed to bds. No checks about are performed.

2.4 The Hecke algebra format

The data concerning the Hecke algebra of an eigenform tlwaingputed by the functiokleck-
eAlgebrasis a record of the following form.
AlgebraData := recformat <

Level . RngIntElt,
Weight ! RngIntElt,
Characteristic > RngIntElt,
BaseFieldDegree . RngintElt,
CharacterOrder . RngIntElt,
CharacterConductor : RngintElt,
Characterindex . RngIntElt,
AlgebraFieldDegree ! RngIntElt,
ResidueDegree : RngintElt,

Dimension ! RngIntElt,

GorensteinDefect . RngIntElt,
EmbeddingDimension : RngIntElt,
NilpotencyOrder ! RngIntElt,
Relations : Tup,
NumberGenUsed : RnglntElt,
ImageName : MonStgElt,
Polynomial . RngUPolEIt

>;

Level and Weight have the obvious meaning. L&t be the base field for the space of mod-
ular symbols used. It is (expected to be) a finite field. T@#@mracteristic is the character-
istic of K and BaseFieldDegreeis the degree of< over its prime field. The entrie€har-
acterOrder, CharacterConductor and Characterindex concern the Dirichlet character for
which the modular symbols have been computed. The lattet ifiethe index of the charac-
ter in Elements(DirichletGroup(-)). Note that that might change between different versions of
MAGMA. The fieldsResidueDegredover the prime field) Dimension and GorensteinDefect

have their obvious meaning for the Hecke algebra in quesliba tuple
<AlgebraFieldDegree, EmbeddingDimension, NilpotencyQier, Relations>

are data from whichAffineAlgebra can recreate the Hecke algebra up to isomorphisiam-
berGenUsedindicates the number of generators used by the packagedaothputation of the
Hecke algebra. This number is usually much smaller than thevSbound. ImageNameand
Polynomial have the same meaning as in the reddatiularFormFormat .

2.5 Hecke algebras

intrinsic HeckeAlgebras (eps :: GrpDrchElt, weight :: RnglntElt :
UserBound := 0, first_test := 3, test_interval := 1, when_tdsp := 3,
when_test_bad := 4, test_sequence := [], dimension_factor 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, Operatoitt := [],
over_residue_field := true, try_minimal := true, force_local := false,
) ->SeqEnum, SeqEnum, ModSym, Tup, Tup
intrinsic HeckeAlgebras (t:: Rec:
UserBound := 0, first_test := 3, test_interval := 1, when_tdsp := 3,
when_test _bad := 4, test_sequence := [], dimension_factor 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, Operatoitt := [],
over_residue_field := true, try_minimal := true, force_local := false,
) ->SeqEnum, SeqEnum, ModSym, Tup, Tup

These functions compute all local Hecke algebras (up to iSaonjugacy) in the speci-
fied weight for the given Dirichlet charactegps respectively those corresponding to the mod-
ular formt given by a record of typdodularFormFormat . The functions return 5 values
A,B,C,D,E. A contains a list of records of typ&lgebraData describing the local Hecke algebra
factors. B is a list containing the local Hecke algebra factors as malgebras.C is the space

9

of modular symbols used in the computatiori3.is a tuple containing the base change tuples
describing the local Hecke factors. We need to kridm order to compute matrices representing
Hecke operators for the local factor. Finally,contains a tuple consisting of all Hecke operators
computed so far for each local factor of the Hecke algebra.

The usage in practice is described in the example at the biegjof this manual. We now
explain the different options in detail.

The modular symbols space to be used in the computationsecdetérmined as follows. The
optionms_spacecan be set to the valuégthe plus-space);-1 (the minus-space) art(the full
space). Whether the restriction to the cuspidal subspaa&es, is determined bguspidal. It is
not necessary to pass to the cuspidal subspace, for exahapbesp form is given by a coefficient
function (see the description of the recaviddularFormFormat).

In some cases, a list of Hecke operators on the modular swspate in question may already
have been computed. In order to prevermtdtma from redoing their computations, they may be
passed on to the function using the opt©peratorList .

Often, one wants to compute the local Hecke algebra of a moéluim whose degree of the
coefficient field over its prime field is known, e.qg. in the ca$an icosahedral form in character-
istic 2 for the trivial Dirichlet character the coefficient fieldlg. By assigning a positive value
to the optionDegreeBoundthe function will automatically discard any systems of eigdues
beyond that bound, which speeds up the computations. Ongb@ashit careful with this option,
as there may be cases when the bound may not be respected aritb@s”. But it usually suf-
fices to take twice the degree of the coefficient field, e.g.anmmsesDegreeBound := 4in the
icosahedral example just described. If no system of eigeasashould be discarded for degree
reasons, one must sBegreeBound :=Q

All of the optionsfirst_test, test interval, when_test pwhen_test bad test sequence
force_local, dimension_factor and UserBound concern the stop criterion. Theoretically, the
Sturm bound (seéleckeBound) tells us up to which bound Hecke operators must be computed
in order to be sure that they generate the whole Hecke algktbpaactice, however, the algorithm
can often determine itself when enough Hecke operators bega computed to generate the
algebra. That number is usually much smaller than the Stwwamdb. The Sturm bound can be
overwritten by assigning a positive numbereerBound.

The stop criterion is the following. Le¥ be the modular symbols space used Aritie set
of Hecke operators computed so far. Theh= @;_, M, (for somer) such that eactd/; is
respected by the Hecke operators and the minimal polynahédchl” € S restricted taV/; is a
power of an irreducible polynomial (i.e. eadlf; is a primary space for the action of the algebra
generated by all elements 6. Let A; be the algebra generated BYy,, forall T € S. One
knows (in many cases, and in all cases of interest) thas equal to a direct product of local
Hecke algebras if one has the equality

f x dim(A;) = dimension ofM;.

Here, f is given bydimension_factorand should bd if the plus-space or the minus space of
modular symbols are used, apdtherwise. The correct assignmentdifnension_factor must
be made by hand, whence experimentations are possiblee $tdip criterion is not reached, the
algorithm terminates at the Hecke bound.

It may happen that, when the stop criterion is reached Angisomorphic to a direct product

10

of more than one local Hecke algebras. If in that case th@woftirce localis true, the com-
putation of Hecke operators is continued until eaghis isomorphic to a single Hecke factor. If
force_localis false, then a fast localisation algorithm is applied to eagh The option is useful,
when one expects only a single local Hecke algebra factog¥ample, when a modular form is
given.

In many cases of interest the Hecke operdipwith p the characteristic is needed in order
to generate the whole Hecke algebra. The optidren_test ptells the algorithm at which step
to computel),. It is very advisable to choose a small number. In practice,stop criterion is
reached after very few steps, e.g. 5 steps, wihigis computed early. Otherwise, the algorithm
often has to continue untll, is computed, although most of the operators before did nagé
the generated algebra. The optiwhen test badhas a similar meaning for tHg for primesl
dividing the level. However, paying attention to them isyoréquired when the modular form is
old at!. Moreover, one can assign a list of primesast_sequenceThe algorithm will then start
with the Hecke operators indicated by that sequence, amdcthrtinue with the others.

The optionfirst_test tells the algorithm at which step the first test for the stapedon is
to be performed. The next test is then carried out afst_interval many steps, and so on.
These numbers should be chosen small, too, unless the dondest takes much time, which is
rare, so that one wants to perform it less often, meaningabsgibly more Hecke operators than
necessary are computed (time consuming).

The optionover_residue_fieldtells the algorithm whether at the end of the computation the
local Hecke factors should be base changed to their resielide ff that is done, only one of the
conjugate local factors of the base changed algebra inestai

Finally, the optiortry_minimal is passed on taffineAlgebra, when the outputis generated.
Calling that function with the option s#tue can sometimes be very time consuming, but makes
the output much shorter.

2.6 Storage functions

The package provides functions to store a list whose eleswaeatrecords of typalgebraData in
a file, and to re-read it. The usage of these functions is &gdéan the example at the beginning
of this manual.

intrinsic CreateStorageFile (filename :: MonStgElt)
This function prepares the fildlename for storing the data.

intrinsic StoreData (filename :: MonStgElt, forms :: SeqEnum)
This functions appends the ligirms of Hecke algebra data to the fifdfename. That file must
have been created WyreateStorageFile

intrinsic StoreData (filename :: MonStgElt, form :: Rec)
This function appends the Hecke algebra daten to the filefilename. That file must have been
created byCreateStorageFile

intrinsic RecoverData (Loadin :: Seqenum, LoadInRel :: Tup) -> SeqEnum
In order to read Hecke algebra data from fitame” , proceed as follows:
> load “name”;

11

> readData := RecoverData(LoadIn,LoadInRel).
ThenreadDatawill contain a list whose elements are records of tyggebraData.

2.7 Output functions

intrinsic HeckeAlgebraPrint (ha :: SeqEnum)

intrinsic HeckeAlgebraPrint1 (ha :: SeqEnum)

These functions print part of the data stored in theHitof records of typeAlgebraData in a
human readable format.

intrinsic GetlLevel (a :: Rec) -> Any

intrinsic GetWeight (a :: Rec) -> Any

intrinsic GetCharacteristic (a :: Rec) -> Any

intrinsic GetResidueDegree (a :: Rec) -> Any

intrinsic GetDimension (a :: Rec) -> Any

intrinsic GetGorensteinDefect (a :: Rec) -> Any

intrinsic GetEmbeddingDimension (a :: Rec) -> Any

intrinsic GetNilpotencyOrder (a :: Rec) -> Any

intrinsic GetHeckeBound (a :: Rec) -> Any

intrinsic GetPrimesUpToHeckeBound (a :: Rec) -> Any

intrinsic GetNumberOperatorsUsed (a :: Rec) -> Any

intrinsic GetPolynomial (a :: Rec) -> Any

intrinsic GetimageName (a :: Rec) -> Any

These functions return the property of the recarof type AlgebraData specified by the name
of the function. If the corresponding attribute is not assid, the empty string is returned.

intrinsic HeckeAlgebralLaTeX (ha :: SeqEnum, filename :: MonStgElt : which :=[
<GetLevel,"Level">, <GetWeight,"Wt">, <GetResidueDegree,"ResD">,
<GetDimension,"Dim">, <GetEmbeddingDimension,"EmbDim">,
<GetNilpotencyOrder,"NilO">, <GetGorensteinDefect,"G orDef">,
<GetNumberOperatorsUsed, "#0ps">,
<GetPrimesUpToHeckeBound,"#(p<HB)">, <GetlmageName,"Gp">])
This function creates the LaTeX fifdfename containing a longtable consisting of certain proper-
ties of the objects ima which are supposed to be records of typlgebraData. The properties
to be written are indicated by the list given in the optishich consisting of tuplesf, name>.
Heref is a function that evaluates a record of typlgebraData to some Magma object which
is afterwards transformed into a string usiBgrint. Examples forf are the function&etLevel
etc., which are described above. Tieme will appear in the table header. For a sample usage,
see the example at the beginning of this manual.

2.8 Other functions

intrinsic HeckeBound (N :: RngIntElt, k :: RngIntElt) -> Rng IntElt

intrinsic HeckeBound (eps :: GrpDrchElt, k :: RngIntElt) -> RngIntEIlt

These functions compute the Hecke bound for welghhd levelN, respectively Dirichelt char-
actereps Note that the Hecke bound is also often called the Sturméoun

12

3 Algebra handling

3.1 Affine algebras

Let A be a commutative local Artin algebra with maximal ideadver a finite fields. The residue
field K = A/mis afinite extension of. By base changing t& and taking one of the conjugate
local factors, we now assume that= K. The embedding dimension e is the k-dimension of
m/m2. By Nakayama’s Lemma, this is the minimal number of genesator m. The name
comes from the fact that there is a surjection

7wk, ...,z > A

Its kernel is called theelations ideal. By the nilpotency order we mean the maximal integer
n such thatn™ is not the zero ideal. (As the algebra is local and Artin, isximal ideal is
nilpotent.) We know that the ideal

JrHLwith J = (21,...,2.)

is in the kernel ofr. So, in order to store, we only need to store the kernklof the linear map
between two finite dimension&lvector spaces

™1 :kz[ml,...,xe]/J""'l — A.

From the tuple< k, e, n, R > the algebra can be recreated (up to isomorphism). Let us poin
out, however, that from the tuple it is not obvious whetheo ®igebras are isomorphic. That
would have to be tested after recreating the algebras.

These functions are used in order to store the Hecke algebraputed byHeckeAlgebras
in a way that does not use much memory, but retains the alggt@isomorphism.

intrinsic AffineAlgebra (A :: AlgMat : try_minimal := true) - > RngMPolRes

intrinsic AffineAlgebra (A :: AlgAss : try_minimal := true) - > RngMPolRes

This function turns the local commutative algeBranto an affine algebra over its residue field. In
fact, the algebra is first base changed to its residue figdd, fitr one of the conjugate local factors
an affine presentation is computed. If the optign minimal is true, the number of relations will
in general be smaller, but the computation time may be longer

intrinsic AffineAlgebraTup (A :: AlgMat : try_minimal :=tru e)-> Tup

intrinsic AffineAlgebraTup (A :: AlgAss : try_minimal := tru e)-> Tup

Given a commutative local Artin algebi, this function returns a tuplek,e,n,R>, consisting
of the residue fielk of A, the embedding dimensian the nilpotency orden and relationsR.
From these data, an affine algebra can be recreated whiamisiphic to one of the local factors
of A base changed to its residue field. If the optign minimal is true, the number of relations
will in general be smaller, but the computation time may beler.

intrinsic AffineAlgebra (form :: Rec) -> RngMPolRes
Given a record of typdlgebraData, this function returns the corresponding Hecke algebraas a
affine algebra.

intrinsic AffineAlgebra (A :: Tup) -> RngMPolRes
This function turns a tuplek,e,n,R>, as above consisting of a fiekd, two integerse, n (the
embedding dimension and the nilpotency order) and relafiyrinto an affine algebra.

13

3.2 Matrix algebra functions

intrinsic MatrixAlgebra (L :: Seqenum) -> AlgMat
Given a list of matriced , this function returns the matrix algebra generated by teenbers
of L.

intrinsic RegularRepresentation (A :: AlgMat) -> AlgMat
This function computes the regular representation of tmercatative matrix algebra .

intrinsic CommonLowerTriangular (A :: AlgMat) -> AlgMat

Given a local commutative matrix algebfg this function returns an isomorphic matrix algebra
whose matrices are all lower triangular, after a scalamesiés to the residue field and taking one
of the Galois conjugate factors.

Base change

intrinsic BaseChange (S :: Tup, T :: Tup) -> Tup
This function computes the composition of the base changaaeaT = <C,D>, followed by
those inS = <E,F>

intrinsic BaseChange (M :: Mtrx, T :: Tup) -> Mtrx
Given a matrixM and a tupleT = <C,D> of base change matrices (for a subspace), this function
computes the matrix d¥f with respect to the basis correspondingto

intrinsic BaseChange (M :: AlgMat, T :: Tup) -> AlgMat
Given a matrix algebr and a tuplel = <C,D> of base change matrices (for a subspace), this
function computes the matrix algebraMf with respect to the basis correspondingto

Decomposition

intrinsic Decomposition (M :: Mtrx : DegBound :=0) -> Tup

intrinsic DecompositionUpToConjugation (M :: Mtrx : DegBo und := 0) -> Tup

Given a matrixM, these functions compute a decomposition of the standabvepace such
that M acts as multiplication by a scalar on each summand. The bigtputuple consisting of
base change tuplesC,D> corresponding to the summands. With the second usage, sutisma
conjugate under the absolute Galois group only appear once.

intrinsic Decomposition (L :: SeqEnum : DegBound := 0) -> Tup

intrinsic DecompositionUpToConjugation (L :: SeqEnum : DegBound := 0) -> Tup

Given a sequende of commuting matrices, these functions compute a decortiposif the stan-
dard vector space such that each matrik iacts as multiplication by a scalar on each summand.
The output is a tuple consisting of base change tuglé€> corresponding to the summands.
With the second usage, summands conjugate under the ab&alldis group only appear once.

intrinsic Decomposition (A :: AlgMat : DegBound :=0) -> Tup

intrinsic DecompositionUpToConjugation (A :: AlgMat : DegBound := 0) -> Tup

Given a commutative matrix algeb#g, these functions compute a decomposition of the standard
vector space such that each elemeriacts as multiplication by a scalar on each summand. The
output is a tuple consisting of base change tugl€sD> corresponding to the summands. With
the second usage, summands conjugate under the absolote @alip only appear once.

14

intrinsic AlgebraDecomposition (A :: AlgMat : DegBound := 0) -> SeqEnum
intrinsic AlgebraDecompositionUpToConjugation (A :: AlgMat : DegBound :=0)

-> SeqEnum
Given a matrix algebra over a finite field, these functions return a local factoAo&fter scalar
extension to the residue field. With the second usage, factorjugate under the absolute Galois
group only appear once.

intrinsic ChangeToResidueField (A :: AlgMat) -> SeqEnum
This function is identical tAlgebraDecompositionUpToConjugation

Localisations

intrinsic Localisations (L :: SeqEnum) -> Tup, Tup

intrinsic Localisations (A :: AlgMat) -> Tup, Tup

Given a listL of commuting matrices or a commutative matrix algefrahis function computes
two tuplesC, D, whereC contains a tuple consisting of the localisationg\gfrespectively of the
matrix algebra generated thy, andD consists of the corresponding base change tuples.

3.3 Associative algebras

intrinsic Localisations (A :: AlgAss) -> SeqEnum
This function returns a list of all localisations of the AxtalgebraA, which is assumed to be
commutative. The output is a list of associative algebras.

3.4 Gorenstein defect

Let A be alocal Artin algebra over a field with uniqgue maximal idealWe define th&sorenstein
defect of A to be(dim 4/ A[m]) — 1, which is equal to the number ef-module generators of the
annihilator of the maximal ideal minus one. The algebraid tabeGorenstein if its Gorenstein
defect is equal to.

intrinsic GorensteinDefect (A :: RngMPolRes) -> RngIntElt

intrinsic GorensteinDefect (A :: AlgAss) -> RnglIntElt

intrinsic GorensteinDefect (A :: AlgMat) -> RngIntElt

These functions return the Gorenstein defect of the loaalnoatative algebra .

intrinsic IsGorenstein (M :: RngMPolRes) -> BoolElt

intrinsic IsGorenstein (M :: AlgAss) -> BoolElt

intrinsic IsGorenstein (M :: AlgMat) -> BoolElt

These functions test whether the commutative local algkbia Gorenstein.

15

	Example
	Hecke algebra computation
	The modular form format
	Dihedral modular forms
	Icosahedral modular forms
	The Hecke algebra format
	Hecke algebras
	Storage functions
	Output functions
	Other functions

	Algebra handling
	Affine algebras
	Matrix algebra functions
	Associative algebras
	Gorenstein defect

