Manual of the MAGMA package PADICALGEBRAS

Gabor Wiese

24th January 2014

1 Introduction

1.1 Some commutative algebra

We start with a simple case which we will prove directly. Let \mathbb{T} be an *Artinian* algebra, i.e. an algebra in which every descending chain of ideals becomes stationary. Our main example will be finite dimensional algebras over a field. That those are Artinian is obvious, since in every proper inclusion of ideals the dimension diminishes.

For any ideal \mathfrak{a} of \mathbb{T} the sequence \mathfrak{a}^n becomes stationary, i.e. $\mathfrak{a}^n = \mathfrak{a}^{n+1}$ for all n "big enough". Then we will use the notation \mathfrak{a}^∞ for \mathfrak{a}^n .

Proposition 1.1. Let \mathbb{T} be an Artinian ring.

- (a) Every prime ideal of \mathbb{T} is maximal.
- (b) There are only finitely many maximal ideals in \mathbb{T} .
- (c) Let \mathfrak{m} be a maximal ideal of \mathbb{T} . It is the only maximal ideal containing \mathfrak{m}^{∞} .
- (d) Let $\mathfrak{m} \neq \mathfrak{n}$ be two maximal ideals. For any $k \in \mathbb{N}$ and $k = \infty$ the ideals \mathfrak{m}^k and \mathfrak{n}^k are coprime.
- (e) The Jacobson radical $\bigcap_{\mathfrak{m}\in \operatorname{Spec}(\mathbb{T})} \mathfrak{m}$ is equal to the nilradical and consists of the nilpotent elements.
- (f) We have $\bigcap_{\mathfrak{m}\in \operatorname{Spec}(\mathbb{T})} \mathfrak{m}^{\infty} = (0).$
- (g) (Chinese Remainder Theorem) The natural map

$$\mathbb{T} \xrightarrow{a \mapsto (\dots, a + \mathfrak{m}^{\infty}, \dots)} \prod_{\mathfrak{m} \in \operatorname{Spec}(\mathbb{T})} \mathbb{T}/\mathfrak{m}^{\infty}$$

is an isomorphism.

(h) For every maxmimal ideal \mathfrak{m} , the ring $\mathbb{T}/\mathfrak{m}^{\infty}$ is local with maximal ideal \mathfrak{m} and is hence isomorphic to $\mathbb{T}_{\mathfrak{m}}$, the localisation of \mathbb{T} at \mathfrak{m} .

A useful and simple way to rephrase a product decomposition as in (g) is to use idempotents. In concrete terms, the idempotents of \mathbb{T} (as in the proposition) are precisely the elements of the form $(\ldots, x_{\mathfrak{m}}, \ldots)$ with $x_{\mathfrak{m}} \in \{0, 1\} \subseteq \mathbb{T}/\mathfrak{m}^{\infty}$.

Definition 1.2. Let \mathbb{T} be a ring. An idempotent of \mathbb{T} is an element e that satisfies $e^2 = e$. Two idempotents e, f are orthogonal if ef = 0. An idempotent e is primitive, if $e\mathbb{T}$ is a local ring. A set of idempotents $\{e_1, \ldots, e_n\}$ is said to be complete if $1 = \sum_{i=1}^n e_i$.

In concrete terms for $\mathbb{T} = \prod_{\mathfrak{m} \in \operatorname{Spec}(\mathbb{T})} \mathbb{T}/\mathfrak{m}^{\infty}$, a complete set of primitive pairwise orthogonal idempotents is given by

 $(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1, 0), (0, \dots, 0, 1).$

We now turn to a more general setting, namely working with a finite algebra \mathbb{T} over a complete local ring instead of a field. We will lift the idempotents of the reduction of \mathbb{T} (for the maximal ideal of the complete local ring) to idempotents of \mathbb{T} by Hensel's lemma. This gives us a proposition very similar to Proposition 1.1.

Proposition 1.3. Let \mathcal{O} be an integral domain of characteristic zero which is a finitely generated \mathbb{Z} module. Write $\widehat{\mathcal{O}}$ for the completion of \mathcal{O} at a maximal prime of \mathcal{O} and denote by \mathbb{F} the residue field
and by K the fraction field of $\widehat{\mathcal{O}}$. Let furthermore \mathbb{T} be a commutative \mathcal{O} -algebra which is finitely
generated as an \mathcal{O} -module. For any ring homomorphism $\mathcal{O} \to S$ write \mathbb{T}_S for $\mathbb{T} \otimes_{\mathcal{O}} S$. Then the
following statements hold.

(a) The Krull dimension of $\mathbb{T}_{\widehat{O}}$ is less than or equal to 1, i.e. between any prime ideal and any maximal ideal $\mathfrak{p} \subset \mathfrak{m}$ there is no other prime ideal. The maximal ideals of $\mathbb{T}_{\widehat{O}}$ correspond bijectively under taking pre-images to the maximal ideals of $\mathbb{T}_{\mathbb{F}}$. Primes \mathfrak{p} of height 0 (i.e. those that do not contain any other prime ideal) which are properly contained in a prime of height 1 (i.e. a maximal prime) of $\mathbb{T}_{\widehat{O}}$ are in bijection with primes of \mathbb{T}_K under extension (i.e. $\mathfrak{p}\mathbb{T}_K$), for which the notation \mathfrak{p}^e will be used.

Under the correspondences, one has

$$\mathbb{T}_{\mathbb{F},\mathfrak{m}}\cong\mathbb{T}_{\widehat{\mathcal{O}},\mathfrak{m}}\otimes_{\widehat{\mathcal{O}}}\mathbb{F}$$

and

$$\mathbb{T}_{\widehat{\mathcal{O}},\mathfrak{p}}\cong\mathbb{T}_{K,\mathfrak{p}^e}.$$

(b) The algebra $\mathbb{T}_{\widehat{\mathcal{O}}}$ decomposes as

$$\mathbb{T}_{\widehat{\mathcal{O}}} \cong \prod_{\mathfrak{m}} \mathbb{T}_{\widehat{\mathcal{O}},\mathfrak{m}}$$

where the product runs over the maximal ideals \mathfrak{m} of $\mathbb{T}_{\widehat{O}}$.

(c) The algebra $\mathbb{T}_{\mathbb{F}}$ decomposes as

$$\mathbb{T}_{\mathbb{F}} \cong \prod_{\mathfrak{m}} \mathbb{T}_{\mathbb{F},\mathfrak{m}},$$

where the product runs over the maximal ideals \mathfrak{m} of $\mathbb{T}_{\mathbb{F}}$.

(d) The algebra \mathbb{T}_K decomposes as

$$\mathbb{T}_K \cong \prod_{\mathfrak{p}} \mathbb{T}_{K,\mathfrak{p}^e} \cong \prod_{\mathfrak{p}} \mathbb{T}_{\widehat{\mathcal{O}},\mathfrak{p}},$$

where the products run over the minimal prime ideals \mathfrak{p} of $\mathbb{T}_{\widehat{\mathcal{O}}}$ which are contained in a prime ideal of height 1.

1.2 The Newton method

Here we present a special instance of the Newton method. Let R be a ring and \mathfrak{m} an ideal (not necessarily maximal).

Let $f \in R[X]$ be a polynomial. We <u>assume</u> the following: There exist $a \in R$ and a polynomial $b \in R[X]$ such that

$$1 = af(X) + b(X)f'(X).$$

Let further $a_0 \in R$ such that $f(a_0) \in \mathfrak{m}$. For $n \ge 1$ we make the following recursion:

$$a_n := a_{n-1} - f(a_{n-1})b(a_{n-1}).$$

Proposition 1.4. Suppose $f(a_0) \in \mathfrak{m}^r$ for some $r \ge 1$. Then for all $n \in \mathbb{N}$

$$f(a_n) \in (\mathfrak{m}^r)^{2^n}.$$

Note that the convergence is exponential.

Proof. Take the Taylor expansion of the polynomial around some x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots$$

This is a formal equality valid for all x and all x_0 .

The proof proceeds by induction on n. The case n = 0 is just the assumption. Let us now suppose that $f(a_{n-1}) \in (\mathfrak{m}^r)^{2^{n-1}}$. In the Taylor formula we take $x = a_n = a_{n-1} - f(a_{n-1})b(a_{n-1})$ and $x_0 = a_{n-1}$, yielding

$$f(a_n) = f(a_{n-1}) - f'(a_{n-1})f(a_{n-1})b(a_{n-1}) + f''(a_{n-1})\frac{f(a_{n-1})^2b(a_{n-1})^2}{2!} + \dots$$

= $f(a_{n-1})(1 - f'(a_{n-1})b(a_{n-1})) + f''(a_{n-1})\frac{f(a_{n-1})^2b(a_{n-1})^2}{2!} + \dots$
= $f(a_{n-1})^2 \cdot a + f''(a_{n-1})\frac{f(a_{n-1})^2b(a_{n-1})^2}{2!} + \dots$
= $f(a_{n-1})^2 \cdot (a + f''(a_{n-1})\frac{b(a_{n-1})^2}{2!} + \dots)$
 $\in ((\mathfrak{m}^r)^{2^{n-1}})^2 = (\mathfrak{m}^r)^{2^n}.$

This concludes the proof.

1.3 Lifting idempotents

The main idea of the algorithm is to lift idempotents from an algebra defined over \mathbb{F}_p to \mathbb{Z}_p up to a certain precision. We do this by applying the Newton method explained above.

An idempotent is an element e such that $e^2 = e$. That means, it is a zero of the polynomial $f(X) = X^2 - X$. We'll be working with $R = \mathbb{T}$, a commutative \mathbb{Z}_p -algebra which is finitely generated as a \mathbb{Z}_p -module (in fact, we'll be giving it as a matrix algebra with generators given as matrices with \mathbb{Z} -entries, so that the algebra is known with full precision). The ideal m is $p\mathbb{T}$, i.e. the principal ideal

generated by p (if we think in terms of matrix algebras, \mathfrak{m} consists of the matrices all entries of which are divisible by p).

Our input is an idempotent $e_0 \in \mathbb{T}/p\mathbb{T}$, i.e. a root of the polynomial $X^2 - X \in \mathbb{F}_p[X]$. We denote also by e_0 any lift of e_0 to \mathbb{T} . Our aim is to enhance e_0 to an element $e_n \in \mathbb{T}$ such that $e_n^2 - e_n \in p^m\mathbb{T}$ for a given m.

We have f'(X) = 2X - 1 and

$$1 = -4(X^2 - X) + (2X - 1)(2X - 1)$$
, hence $a = -4$ and $b(X) = 2X - 1$.

This leads to the recursion for $n \ge 1$:

$$e_n := e_{n-1} - f(e_{n-1})b(e_{n-1})$$

= $e_{n-1} - (e_{n-1}^2 - e_{n-1})(2e_{n-1} - 1)$
= $3e_{n-1}^2 - 2e_{n-1}^3$

Acknowledgements

I thank Gabi Nebe for having explained this simple algorithmic idempotent lifting to me a long time ago.

2 Usage and Example

The package provides a structure for *p*-adic algebras, called pAdicAlgebraFormat. It is the following record:

```
pAdicAlgebraFormat := recformat <</pre>
  p:
              RngIntElt, // the p of Z_p
  R:
                         // the p-adic ring of given precision
              Any,
  dim:
              RngIntElt, // the dimension of the residual algebra
  deg:
              RngIntElt, // degree of the matrix algebra (i.e. number of rows)
                        // the full matrix algebra over the residue field
 Amod:
              Any,
                        // the full matrix algebra over R
 Aadic:
              Any,
              SeqEnum, // matrices forming a basis
 basis:
  adic_coords: Any,
                         // coordinate function wrt basis
 mod_coords: Any,
                         // coordinate function wrt basis mod p
  ipmod:
                        // a complete set of orthogonal idempotents for Amod
         Any,
                        // the lifts of ipmod to idempotents in Aadic
  ipadic:
            Any
>;
```

First attach the packages; the package ArtinAlgebras is required by pAdicAlgebras.

```
AttachSpec("/home/gabor/Programs/ArtinAlgebras.spec");
AttachSpec("/home/gabor/Programs/pAdicAlgebras.spec");
```

In our example, we create the algebra using integral Hecke operators. Specify level and weight.

N := 229; k := 2;

Specify the prime at which we work and the desired precision.

p := 5; prec := 15;

Create the cusp space of modular symbols and compute all Hecke operators up to the Sturm bound.

```
C := CuspidalSubspace(ModularSymbols(N,k,1));
L := [];
for n := 1 to HeckeBound(C) do
   Append(~L, IntegralHeckeOperator(C,n));
end for;
```

Create the *p*-adic algebra generated by the matrices in the list L for the prime p and precision prec.

```
A := pAdicAlgebra(L,p : prec := prec);
```

Compute the decomposition of A as a product of its localisation at the maximal ideals.

```
F := pAdicAlgebraFactors(A);
```

F is a list of tuples <T, phi>, where T is the factor as a p-adic algebra and phi is the restriction map from A to T.

Here are some examples of commands:

Alternatively, one can also calculate one factor after the other, as follows:

```
_compute_adic_idempotents(~A); // computes the decomposition via idempotents
e := A'ipadic[1]; // take the first idempotent
H,phi := pAdicAlgebraFactor(A,e); // factor corresponding to the idempotent
```