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1 Introduction

1.1 Some commutative algebra

We start with a simple case which we will prove directly. LetT be anArtinian algebra, i.e. an
algebra in which every descending chain of ideals becomes stationary. Our main example will be
finite dimensional algebras over a field. That those are Artinian is obvious,since in every proper
inclusion of ideals the dimension diminishes.
For any ideala of T the sequencean becomes stationary, i.e.an = an+1 for all n “big enough”. Then
we will use the notationa∞ for an.

Proposition 1.1. LetT be an Artinian ring.

(a) Every prime ideal ofT is maximal.

(b) There are only finitely many maximal ideals inT.

(c) Letm be a maximal ideal ofT. It is the only maximal ideal containingm∞.

(d) Letm 6= n be two maximal ideals. For anyk ∈ N andk = ∞ the idealsmk andnk are coprime.

(e) The Jacobson radical
⋂

m∈Spec(T) m is equal to the nilradical and consists of the nilpotent ele-
ments.

(f) We have
⋂

m∈Spec(T) m∞ = (0).

(g) (Chinese Remainder Theorem) The natural map

T
a 7→(...,a+m∞,... )
−−−−−−−−−−−→

∏

m∈Spec(T)

T/m
∞

is an isomorphism.

(h) For every maxmimal idealm, the ringT/m∞ is local with maximal idealm and is hence isomor-
phic toTm, the localisation ofT at m.

A useful and simple way to rephrase a product decomposition as in (g) is to use idempotents. In
concrete terms, the idempotents ofT (as in the proposition) are precisely the elements of the form
(. . . , xm, . . . ) with xm ∈ {0, 1} ⊆ T/m∞.
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Definition 1.2. Let T be a ring. Anidempotent ofT is an elemente that satisfiese2 = e. Two
idempotentse, f areorthogonalif ef = 0. An idempotente is primitive, if eT is a local ring. A set of
idempotents{e1, . . . , en} is said to becompleteif 1 =

∑n
i=1 ei.

In concrete terms forT =
∏

m∈Spec(T) T/m∞, a complete set of primitive pairwise orthogonal idem-
potents is given by

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0), (0, . . . , 0, 1).

We now turn to a more general setting, namely working with a finite algebraT over a complete local
ring instead of a field. We will lift the idempotents of the reduction ofT (for the maximal ideal of the
complete local ring) to idempotents ofT by Hensel’s lemma. This gives us a proposition very similar
to Proposition 1.1.

Proposition 1.3. LetO be an integral domain of characteristic zero which is a finitely generatedZ-
module. WriteÔ for the completion ofO at a maximal prime ofO and denote byF the residue field
and byK the fraction field ofÔ. Let furthermoreT be a commutativeO-algebra which is finitely
generated as anO-module. For any ring homomorphismO → S write TS for T ⊗O S. Then the
following statements hold.

(a) The Krull dimension ofT bO
is less than or equal to1, i.e. between any prime ideal and any maximal

idealp ⊂ m there is no other prime ideal. The maximal ideals ofT bO
correspond bijectively under

taking pre-images to the maximal ideals ofTF. Primesp of height0 (i.e. those that do not contain
any other prime ideal) which are properly contained in a prime of height1 (i.e. a maximal prime)
of T bO

are in bijection with primes ofTK under extension (i.e.pTK), for which the notationpe

will be used.

Under the correspondences, one has

TF,m
∼= T bO,m

⊗ bO
F

and
T bO,p

∼= TK,pe .

(b) The algebraT bO
decomposes as

T bO
∼=

∏

m

T bO,m
,

where the product runs over the maximal idealsm of T bO
.

(c) The algebraTF decomposes as
TF

∼=
∏

m

TF,m,

where the product runs over the maximal idealsm of TF.

(d) The algebraTK decomposes as

TK
∼=

∏

p

TK,pe
∼=

∏

p

T bO,p
,

where the products run over the minimal prime idealsp of T bO
which are contained in a prime

ideal of height1.

2



1.2 The Newton method

Here we present a special instance of the Newton method. LetR be a ring andm an ideal (not
necessarily maximal).
Let f ∈ R[X] be a polynomial. We assumethe following: There exista ∈ R and a polynomial
b ∈ R[X] such that

1 = af(X) + b(X)f ′(X).

Let furthera0 ∈ R such thatf(a0) ∈ m. Forn ≥ 1 we make the following recursion:

an := an−1 − f(an−1)b(an−1).

Proposition 1.4. Supposef(a0) ∈ mr for somer ≥ 1. Then for alln ∈ N

f(an) ∈ (mr)2
n

.

Note that the convergence is exponential.

Proof. Take the Taylor expansion of the polynomial around somex0:

f(x) = f(x0) + f ′(x0)(x − x0) + f ′′(x0)
(x − x0)

2

2!
+ . . . .

This is a formal equality valid for allx and allx0.
The proof proceeds by induction onn. The casen = 0 is just the assumption. Let us now suppose
that f(an−1) ∈ (mr)2

n−1

. In the Taylor formula we takex = an = an−1 − f(an−1)b(an−1) and
x0 = an−1, yielding

f(an) = f(an−1) − f ′(an−1)f(an−1)b(an−1) + f ′′(an−1)
f(an−1)

2b(an−1)
2

2!
+ . . .

= f(an−1)(1 − f ′(an−1)b(an−1)) + f ′′(an−1)
f(an−1)

2b(an−1)
2

2!
+ . . .

= f(an−1)
2 · a + f ′′(an−1)

f(an−1)
2b(an−1)

2

2!
+ . . .

= f(an−1)
2 ·

(
a + f ′′(an−1)

b(an−1)
2

2!
+ . . .

)

∈
(
(mr)2

n−1)2
= (mr)2

n

.

This concludes the proof.

1.3 Lifting idempotents

The main idea of the algorithm is to lift idempotents from an algebra defined overFp to Zp up to a
certain precision. We do this by applying the Newton method explained above.
An idempotent is an elemente such thate2 = e. That means, it is a zero of the polynomialf(X) =

X2 − X. We’ll be working withR = T, a commutativeZp-algebra which is finitely generated as
a Zp-module (in fact, we’ll be giving it as a matrix algebra with generators givenas matrices with
Z-entries, so that the algebra is known with full precision). The idealm is pT, i.e. the principal ideal
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generated byp (if we think in terms of matrix algebras,m consists of the matrices all entries of which
are divisible byp).
Our input is an idempotente0 ∈ T/pT, i.e. a root of the polynomialX2 − X ∈ Fp[X]. We denote
also bye0 any lift of e0 to T. Our aim is to enhancee0 to an elementen ∈ T such thate2

n − en ∈ pm
T

for a givenm.
We havef ′(X) = 2X − 1 and

1 = −4(X2 − X) + (2X − 1)(2X − 1), hencea = −4 andb(X) = 2X − 1.

This leads to the recursion forn ≥ 1:

en := en−1 − f(en−1)b(en−1)

= en−1 − (e2
n−1 − en−1)(2en−1 − 1)

= 3e2
n−1 − 2e3

n−1
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2 Usage and Example

The package provides a structure forp-adic algebras, calledpAdicAlgebraFormat. It is the
following record:

pAdicAlgebraFormat := recformat <

p: RngIntElt, // the p of Z_p

R: Any, // the p-adic ring of given precision

dim: RngIntElt, // the dimension of the residual algebra

deg: RngIntElt, // degree of the matrix algebra (i.e. number of rows)

Amod: Any, // the full matrix algebra over the residue field

Aadic: Any, // the full matrix algebra over R

basis: SeqEnum, // matrices forming a basis

adic_coords: Any, // coordinate function wrt basis

mod_coords: Any, // coordinate function wrt basis mod p

ipmod: Any, // a complete set of orthogonal idempotents for Amod

ipadic: Any // the lifts of ipmod to idempotents in Aadic

>;

First attach the packages; the packageArtinAlgebras is required bypAdicAlgebras.

AttachSpec("/home/gabor/Programs/ArtinAlgebras.spec");

AttachSpec("/home/gabor/Programs/pAdicAlgebras.spec");

In our example, we create the algebra using integral Hecke operators. Specify level and weight.

N := 229; k := 2;

Specify the prime at which we work and the desired precision.
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p := 5; prec := 15;

Create the cusp space of modular symbols and compute all Hecke operatorsup to the Sturm bound.

C := CuspidalSubspace(ModularSymbols(N,k,1));

L := [];

for n := 1 to HeckeBound(C) do

Append(~L, IntegralHeckeOperator(C,n));

end for;

Create thep-adic algebra generated by the matrices in the listL for the primep and precisionprec.

A := pAdicAlgebra(L,p : prec := prec);

Compute the decomposition ofA as a product of its localisation at the maximal ideals.

F := pAdicAlgebraFactors(A);

F is a list of tuples<T, phi>, whereT is the factor as ap-adic algebra andphi is the restriction
map fromA to T.
Here are some examples of commands:

F[2][1]‘dim; // the dimension of the second factor

F[3][2](L[7]); // the restriction of the Hecke operator L[7]

// to the third factor

pAdicMatrixAlgebra(F[3][1]); // the third factor as a matrix algebra

Alternatively, one can also calculate one factor after the other, as follows:

_compute_adic_idempotents(~A); // computes the decomposition via idempotents

e := A‘ipadic[1]; // take the first idempotent

H,phi := pAdicAlgebraFactor(A,e); // factor corresponding to the idempotent
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