Math Prep Camp: Sets and Functions

Winter Term 2020/2021

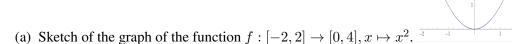
University of Luxembourg Prof. Dr. Gabor Wiese **Exercise sheet 2 with solutions**

1. Describing a map.

Let $A := \{0, 1, 2\}$ and $B := \{X, Y\}$ be sets.

Which of the following lines describe a map $g : A \to B$? If not, why?

- (a) g(2) = X, g(0) = Y, g(1) = X: This is a valid description of a map.
- (b) g(0) = X, g(2) = Y, g(0) = X: Invalid because g(1) is not defined.
- (c) g(0) = X, g(2) = Y, g(0) = Y: Invalid because g(1) is not defined (and also because g(0) is assigned to different values).
- (d) g(0) = Y, g(1) = Y, g(2) = Y: This is a valid description of a map.
- 2. *Image and preimage.* Consider the function $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$.
 - (a) $9 = f(3) = 3^2$ is the image of 3 under *f*.
 - (b) $(1+x)^2 = 1 + 2x + x^2 = f(1+x)$ is the image of 1 + x under f for $x \in \mathbb{R}$.
 - (c) The interval [4, 9] is the image of the interval [2, 3] under f.
 - (d) 2 and -2 are exactly the preimages of 4 under f because they are the only elements in \mathbb{R} the square of which equals 4.
 - (e) $[-2, -1] \sqcup [1, 2]$ is the preimage of the interval [1, 4] under f.
- 3. Graphs.



(b) If we reflect your sketch at the line x = y (i.e. swap x- and y-axis), then it is no longer the graph of a function because for any x, there would be two values for y.

4. Injectivity, surjectivity, bijectivity.

For each of the following functions, state if they are injective, surjective or bijective (or none of these).

- (a) $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$: not injective, for example f(-1) = 1 = f(1); not surjective because -1 is not in the image.
- (b) $f : \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto x^2$: injective.
- (c) $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$: injective, surjective and bijective.

(d) $f: \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$: not injective, but surjective; not bijective.

Here $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}.$

- 5. Composition.
 - (a) Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ and $g : \mathbb{R} \to \mathbb{R}, x \mapsto x + 1$. For $x \in \mathbb{R}$, we have

$$(f \circ g)(x) = f(g(x)) = (x+1)^2 = x^2 + 2x + 1$$

and

$$(g \circ f)(x) = g(f(x)) = x^2 + 1.$$

(b) Let $f : \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$ and $g : \mathbb{R}_{\geq 0} \to \mathbb{R}, x \mapsto \sqrt{x}$. For $x \in \mathbb{R}$, we have

$$(f \circ g)(x) = f(g(x)) = (\sqrt{x})^2 = x$$

and

$$(g \circ f)(x) = g(f(x)) = \sqrt{x^2} = |x|.$$

- 6. Inverse map.
 - (a) The inverse of $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$ is the map $g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto \sqrt{x}$.
 - (b) Let $A := \{0, 1, 2\}$, $b := \{a, b, c\}$ and let $f : A \to B$ be given by f(0) = b, f(1) = a, f(2) = c. Its inverse is the map $g : B \to A$ given by g(a) = 1, g(b) = 0, g(c) = 2.
- 7. Injectivity, surjectivity, bijectivity (2).

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c, d\}$.

- (a) Describe a surjective map from A to B. Solution: For example: f(1) = a, f(2) = b, f(3) = c, f(4) = d, f(5) = a.
- (b) Describe a map from A to B which is neither surjective nor injective.
 Solution: For example: f(1) = a, f(2) = a, f(3) = a, f(4) = a, f(5) = a.
- (c) Does there exist an injective map from A to B? Why?
 Solution: No, because if there were such an injective map f, then we'd have #im(f) = #A = 5 and im(f) ⊆ B, but B does not possess a subset of cardinality 5 because #B = 4, contradiction.
- (d) Describe an injective map from B to A.
 Solution: For example: g(a) = 1, g(b) = 2, g(c) = 3, g(d) = 4.
- (e) Describe a map from B to A which is neither surjective nor injective. Solution: For example: g(a) = 1, g(b) = 1, g(c) = 1, g(d) = 1.
- (f) Does there exist a surjective map from B to A? Why?
 Solution: No, because if g : B → A were surjective, then we would have 4 = #B ≥ #A = 5, contradiction.
- 8. Domain, image, preimage
 - (a) Let f be a map from N to Z defined by f(n) = n³ and g a map from Z to N defined by g(n) = n². Calculate the image of 2 under f and determine f ∘ g.
 Solution: f(2) = 2³ = 8, f ∘ g(n) = f(g(n)) = f(n²) = (n²)³ = n⁶.

(b) Let f be a map from $E = \{1, 2, 3, 4\}$ to $F = \{0, 1, 3, 5, 7, 10\}$ such that f(1) = 3, f(2) = 5, f(3) = 5 and f(4) = 0.

Solution: $f(\{2,3\}) = \{5\}, im(f) = \{0,3,5\}.$ $f^{-1}(\{5\}) = \{2,3\}, f^{-1}(\{0,1,3\}) = \{3,4\}, f^{-1}(\{1,10\}) = \emptyset.$ The map *f* is not injective because f(2) = f(3) and it is not surjective (e.g. 10 is not in the image), consequently it is not bijective either.

- 9. More on injectivity, surjectivity, bijectivity.
 - (a) Find an injective but not bijective map from \mathbb{N} to \mathbb{N} . Solution. For example: $f : \mathbb{N} \to \mathbb{N}, n \mapsto 2n$.
 - (b) Find a surjective but not bijective map from \mathbb{N} to \mathbb{N} .

Solution. For example: $f : \mathbb{N} \to \mathbb{N}, n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$

(c) Find a bijection between $\mathbb Z$ and $\mathbb N.$

Solution. For example:
$$f : \mathbb{N} \to \mathbb{Z}$$
, $n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$

10. Some proofs concerning maps.

Let A, B, C be sets and $f : A \to B$ and $g : B \to C$ maps. Prove:

(a) If f and g are both injective (resp. surjective, resp. bijective), then $g \circ f$ is injective (resp. surjective, resp. bijective).

Solution. Suppose f, g are injective. Let $a_1, a_2 \in A$ such that $g \circ f(a_1) = g \circ f(a_2)$. This means $g(f(a_1)) = g(f(a_2))$. As g is injective, we infer $f(a_1) = f(a_2)$. Further, as f is injective we arrive at $a_1 = a_2$. Thus we have shown that $g \circ f$ is injective.

Suppose f, g are surjective. Let $c \in C$. As g is surjective, there is $b \in B$ such that g(b) = c. Further, as f is surjective, there is $a \in A$ such that f(a) = b. Putting things together we have $g \circ f(a) = g(f(a)) = g(b) = c$, showing that $g \circ f$ is surjective.

The statement about bijectivity follows immediately from the statements about injectivity and surjectivity.

(b) If $g \circ f$ is injective, then f is injective.

Solution. Let $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$. We conclude $g(f(a_1)) = g(f(a_2))$, that is, $g \circ f(a_1) = g \circ f(a_2)$. Using now that $g \circ f$ is injective, we infer $a_1 = a_2$. This now means that f is injective.

(c) If $g \circ f$ is surjective, then g is surjective.

Solution. Let $c \in C$ be given. As $g \circ f$ is surjective, there is $a \in A$ such that $g \circ f(a) = c$. Putting $b := f(a) \in B$ we see g(b) = c, showing the surjectivity of g.

(d) Suppose that both f and g are bijective with inverses f^{-1} and g^{-1} , respectively. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Solution. We use the fact that we can put brackets as we like and compute:

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \mathrm{id} \circ g^{-1} = g \circ g^{-1} = \mathrm{id}$$

and

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ id \circ f = f^{-1} \circ f = id.$$

11. Invertibility

Consider the function

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} |x+1| \text{ if } x < 0\\ |x-1| \text{ if } x \ge 0. \end{cases}$$

Make a sketch of f.

- (a) Is the function f a bijection? Solution. No, for instance f(-1) = f(1) = 0.
- (b) Find the biggest closed interval [a, 10] ⊆ ℝ such that f restricted to [a, 10] is injective. Solution. [1, 10]
- (c) Write $g : [a, 10] \to f([a, 10])$ for the restriction of f to [a, 10] with a from (b). Now g is bijective. Describe the inverse of g explicitly.

Solution. On [1, 10], the function f simply is f(x) = x - 1. Its inverse is $h : [0, 9] \rightarrow [1, 10]$ such that $x \mapsto x + 1$.

12. Involution

Let E be a set and $f : E \to E$ a map such that: $f \circ f = id_E$. Prove that f is bijective. What is its inverse?

Solution. Since $f \circ f$ is the identity, it is bijective. From exercises 4(b) and 4(c), we thus obtain that f is injective and surjective, hence bijective. The inverse is simply f itself.

13. Sine function

Let $sin : \mathbb{R} \to [-1, 1]$ be the sine function (known from school):

(a) Is sin bijective?

Solution. No, it is not injective. For instance, $sin(0) = sin(\pi) = 0$.

- (b) $\sin^{-1}(\{0\}) = \{n\pi \mid n \in \mathbb{Z}\}.$
- (c) $\sin^{-1}(\{1\}) = \{\frac{\pi}{2} + 2\pi n \mid n \in \mathbb{Z}\}.$

14. Maps and power sets.

Let E be a non-empty set, $\mathcal{P}(E)$ its power set, and $A, B \in \mathcal{P}(E)$. One defines

 $f: \mathcal{P}(E) \to \mathcal{P}(E): X \mapsto (A \cap X) \cup (B \cap \overline{X}^E),$

where $\overline{X}^E = E \setminus X$ is the complement of X in E. Analyse the equality $f(X) = \emptyset$.

Deduce a necessary condition for f to be bijective.

Solution. We have $f(X) = \emptyset$ if and only if $A \cap X = \emptyset$ and $B \cap \overline{X}^E = \emptyset$. The second condition is equivalent to $B \subseteq X$. We thus have proved the equivalence:

$$f(X) = \emptyset \Leftrightarrow A \cap X = \emptyset \land B \subseteq X.$$

If f is bijective, then, in particular, \emptyset is in the image of f. This, however, means that a subset $X \subseteq E$ exists such that $X \cap A = \emptyset$ and $B \subseteq X$. This implies that $A \cap B = \emptyset$. That A and B are disjoint is hence a necessary condition for f to be surjective.

15. Increasing maps.

Let $I \subseteq \mathbb{R}$ and $J \subseteq \mathbb{R}$ be two intervals in \mathbb{R} . Let $f: I \longrightarrow J$ be a strictly increasing function.

(a) Show that f is injective.

Solution. Strictly increasing means that for any $x_1 < x_2$ one has $f(x_1) < f(x_2)$. This immediately implies injectivity.

(b) Determine the unique subset K ⊆ J such that f : I → K is bijective.
 Solution. The sought for set K is just im(f).

16. *Maps from* \mathbb{N} *to* \mathbb{N}

Consider a map $u : \mathbb{N} \to \mathbb{N}$ and assume that

$$\forall k \in \mathbb{N} : u(k+1) > u(k).$$

(a) Show rigorously (justifying each step of your argument) that for any $k, l \in \mathbb{N}$ with k < l, one has u(k) < u(l).

Solution. This can be proved by induction. More precisely, for any $k \in \mathbb{N}, k \ge 1$ we perform an induction in order to prove the assertion: $\forall n \ge 1 : u(k) < u(k+n)$.

Initialisation: The assertion for n = 1 is precisely the assumption.

Induction step: Suppose the assertion is proved for n, we now prove it for n + 1:

$$u(k) < u(k+n) < u((k+n)+1),$$

where the second inequality is the assumption applied to k + n.

- (b) Is u necessarily injective? Justify your answer by a precise argument or by a counterexample. Solution. Let k, l ∈ N be distinct. By possibly renaming them, we may suppose k < l. By (a) we have u(k) < u(l), in particular, u(k) ≠ u(l). This proves the injectivity.</p>
- (c) Is u necessarily surjective? Justify your answer by a precise argument or by a counterexample. Solution. No. A counterexample is provided by $u : \mathbb{N} \to \mathbb{N}$ given by u(n) = 2n.