On the arithmetic of modular forms
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Is —1 a square mod p?
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—1=22 mod 5

7 —1 no square mod 7
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13| —1=5% mod 13

19 | —1 no square mod 19
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5 —1=22 mod5
7 —1 no square mod 7

11 | —1 no square mod 11

13| —1=52 mod 13
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29 | —1=122 mod 29
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Is —1 a square mod p?

=~ 01w

1
13
19
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29
31
37

—1 no square mod 3
—1=22 mod 5

—1 no square mod 7
—1 no square mod 11
—1=5% mod 13

—1 no square mod 19
—1 no square mod 23
—1 =122 mod 29
—1 no square mod 31
—1=31%2 mod 37

—1 is a square modulo p
4
p=2orp=1 mod 4.

Proof. (Z/pZ)* is cyclic of order p — 1.
It contains an element of order 4 < 4 | p — 1.
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Reformulation:
Does X2 + 1 factor into linear polynomials modulo p?
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Is —1 a square mod p?

Reformulation:
Does X2 + 1 factor into linear polynomials modulo p?

Examples.
—1=5 mod 13 = X2 +1=(X—-5)-(X+5) mod 13.
X2 + 1 is irreducible modulo 3.

Proposition.
X2+1=(X—%)-(X+x)=()() mod p&p=1,2 mod 4.
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Is —1 a square mod p?

Generalisation:
How does P(X) = X® — 6X* + 9X? + 23 factor modulo p?

p factorisation

5 [ (X2+3)(XZ+ X+ 1)(X2+4X +1)

13 | (X3 +10X +4)(X3+ 10X +9)

17 | (X2 +3)(X? +2X 4+ 6)(X? + 15X + 6)

19 | (X249)(X?+ X + 12)(X2 + 18X + 12)

31 | (X3 +28X +15)(X3 428X + 16)

47 | (X3 + 44X 4 20)(X3 + 44X +27)

53 | (X2 +22)(X2 +5X + 25)(X? + 48X + 25)

59 (X+9)(X+21)(X+29)(X+30)(X+38)(X+50)
73 | (X3 + 70X + 14)(X3 4+ 70X + 59)

97 | (X2 4 39)(X? 4+ 41X + 42)(X? + 56X + 42)

101 | (X +4)(X + 28)(X + 32)(X + 69)(X + 73)(X + 97)




Is —1 a square mod p?

Generalisation:
How does P(X) = X® — 6X* + 9X? + 23 factor modulo p?

p factorisation
5 1000
13100

171 000

19 1000
31100

47 100

53 1 000

59 1 000000
73100

97 1 000

101 | ()OO000




Is —1 a square mod p?

Generalisation:
How does P(X) = X® — 6X* + 9X? + 23 factor modulo p?

p factorisation

5 1000

13100

171 000

19 1000

31100

47 100

53 1 000

59 1 000000

73100

97 1 000

101 | ()OO000
Rule 7777

The answer is given by a modular form...



What is a modular form?

Es gibt fiinf Grundoperationen: Addition, Subtraktion,
Multiplikation, Division und Modulformen.

Martin Eichler (1912-1992)



What is a modular form?

Es gibt fiinf Grundoperationen: Addition, Subtraktion,
Multiplikation, Division und Modulformen.

Martin Eichler (1912-1992)

J'aime bien les formes modulaires. [...] C'est un sujet sur lequel on
n'a jamais de mauvaises surprises: si I'on devine un énoncé, c'est
un énoncé encore plus beau qui est vrai !

Jean-Pierre Serre (*¥1926)



What is a modular form?

A modular form is an object from
geometry and/or (harmonic) analysis

(according to taste...)



What is a modular form?

A modular form is an object from
geometry and/or (harmonic) analysis

(according to taste...)

Their coefficients are

arithmetically significant.
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Modular forms are highly symmetric functions.




What is a modular form?

Modular forms are highly symmetric functions.

» Complex Analysis: Fourier series with certain transformation
properties.



What is a modular form?

Modular forms are highly symmetric functions.

» Complex Analysis: Fourier series with certain transformation
properties.

» Geometry: Differential forms on modular curves.
Modular curves are curves parametrising elliptic curves.
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A modular form is an object from geometry and/or analysis.
Definition. A modular form of weight k is a holomorphic function
fH={zeC| Im(z) >0} - C

such that

> f(iﬁIZ = (cz + d)*f(2) for all (i 3) € SLy(Z)
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What is a modular form?

A modular form is an object from geometry and/or analysis.

Definition. A modular form of weight k is a holomorphic function

fH={zeC| Im(z) >0} - C

such that
> F(ZE5) = (cz+ d)*f(2) for all (25) € SLy(Z)
> (special case) f(z+ 1) = f(z) for (25) =(}1)
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» f(z) => 72 0anq" where g =e



What is a modular form?

A modular form is an object from geometry and/or analysis.

Definition. A modular form of weight k is a holomorphic function
fH={zeC| Im(z) >0} - C

such that
> f(f;ig = (cz + d)*f(2) for all (25) € SLy(2)
> (special case) f(z+ 1) = f(z) for (25) =(}1)
> f(z) = 3%, anq" where q = %72

This is the definition for level 1. More generally, level N € N.




What is a modular form?

Hecke eigenforms are modular forms
with special arithmetic.

Erich Hecke (1887-1947)
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andm = anm if gcd(n, m) = 1.



What is a modular form?

Hecke eigenforms are modular forms
with special arithmetic.

Erich Hecke (1887-1947)

The Fourier coefficients of a Hecke eigenform satisfy

andm = anm if gcd(n, m) = 1.

The Fourier coefficients of Hecke eigenforms a,, are algebraic
integers.
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Examples (19th century):

Gotthold Eisenstein (1823-1852) Carl Jacobi (1804-1851)
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Arithmetic significance of coefficients of modular forms
Examples (19th century):

Gotthold Eisenstein (1823-1852) Carl Jacobi (1804-1851)
Eisenstein series

1
E, = -
k=t Z (mz + n)k

(n,m)€Z2\{(0,0)}
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Arithmetic significance of coefficients of modular forms
Examples (19th century):

Gotthold Eisenstein (1823-1852) Carl Jacobi (1804-1851)
Eisenstein series

(k=1)! Z 2
E . _ 7TIZ’
k = (27TI Ok— 1 , gq=2¢€

where o4_1(n) = > o qjn dkt

Coefficients: Special zeta-value and divisor function.
Matching Jacobi's Theta-series with Eisenstein series, one gets:

#{Ix €T | X+ x3+x3+x3=n}=8 Z d.
44d|n,1<d<n
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Symmetries of equations

Evariste Galois (1811-1832)

Idea (Galois): Equations satisfy symmetries.

Algebraically speaking: a symmetry is a field automorphism.
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Consider X3 —6X? +9X + 23 = 0. Three solutions a, b, c € C:
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Symmetries of equations
Consider X3 —6X? +9X + 23 = 0. Three solutions a, b, c € C:

Im
. .

2i
/

-3 -2
—i \
c

-2i
~ B

There are 6 symmetries in this example.
The symmetry group is called the Galois group.
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Arithmetic significance of coefficients of modular forms

Another view on Eisenstein series.
Recall: £ = S=J8 - (k) + 252y o 1(n) - ™.

Fix a prime /.

¢-adic cyclotomic character: x(Frob,) = p.

X : Gp = Gal(Q/Q) — Z]

given by the action on the /-power roots of unity:

(¢em) = (7.

x(Frobp)

Particularly, Frob,(¢em) = (5 = , whence x(Frob,) = p
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Consider the reducible semi-simple Galois representation
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In particular,
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Arithmetic significance of coefficients of modular forms

Another view on Eisenstein series.
Recall: E, = ((I; l)k C(k)+ 302 ok-1(n) - g

Fix a prime /.

¢-adic cyclotomic character: x(Frob,) = p.

Consider the reducible semi-simple Galois representation

pi=1@x1: Gy — GLa(Zy), plo) = ((1, kai(g)) .
In particular,
10
(FrOb ) (0 k= 1(Frobp)> <0 pk—1> .

= Tr(p(Frobp)) = 1+ p*~1 = o4 _1(p).
This is the p-th coefficient of the Eisenstein series of weight k.
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Another view on Eisenstein series.

Fix a prime £.

We constructed a Galois representation
_ 1 0
p=16x"1: Gy = GLa(Zo), plo) = (50

such that
the trace of Frobenius at any prime p # ( is the p-th coefficient of
the Eisenstein series of weight k:

Tr(p(Frob,)) = 1+ p*~* = o4 _1(p).



Arithmetic significance of coefficients of modular forms

Another view on Eisenstein series.

Fix a prime £.

We constructed a Galois representation
_ 1 0
p=16x"1: Gy = GLa(Zo), plo) = (50

such that
the trace of Frobenius at any prime p # / is the p-th coefficient of
the Eisenstein series of weight k:

Tr(p(Frob,)) = 1+ p*~* = o4 _1(p).

In a sense, the modular form is the character of the Galois
representation.

One says that p is attached to the Eisenstein series.
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Number Theory
Galois Representations

Hecke eigenforms
f(z) — Ziio anezm'nz
with a; =1
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Galois repres.

p Gal(@/(@) — GLQ(Z[)
s.t. det(p(compl. conj.)) = —1



From Geometry to Number Theory

Geometry/Analysis Number Theory
Modular Forms Galois Representations

REPUBLIQUE
FRANCAISE

Hecke eigenforms } Galois repres. B
f(z) =Y 00, ane?™in p: Gal(Q/Q) — GLa(Zy)
with a; =1 s.t. det(p(compl. conj.)) = —1
f = pf
level N unramified outside N/

Tr(pr (Froby)) = 2,

Shimura, Deligne, Serre.
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representations and look for suitable modular forms f.
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group is G?
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Hilbert

Approach: Use the map from Hecke eigenforms to Galois
representations and look for suitable modular forms f.

Example theorem (Dieulefait-W., W.). Fix d € N even. The
set of primes

{¢ | PSLy(F,q4) is a Galois group over Q}

has positive density.
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Example theorem (Dieulefait-W., W.). Fix d € N even. The
set of primes

{¢ | PSLy(F,q4) is a Galois group over Q}

has positive density.

For d = 2, the density is > 0.99 (computed by Master student).



Inverse Galois Problem

Given a finite group G.
Is there a number field K/Q such that its Galois
group is G?

Hilbert
Approach: Use the map from Hecke eigenforms to Galois
representations and look for suitable modular forms f.

Example theorem (Dieulefait-W., W.). Fix d € N even. The
set of primes

{¢ | PSLy(F,q4) is a Galois group over Q}

has positive density.

For d = 2, the density is > 0.99 (computed by Master student).

Under the assumption of Maeda’s Conjecture, the density is 1.
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How does P(X) = X® — 6X* + 9X?2 + 23 factor modulo p?
p factorisation
5 [ (X2+3)(X2+X+1)(X2+4X+1)
13 | (X3 +10X +4)(X3 +10X +9)
17 | (X2 +3)(X%+2X +6)(X? + 15X +6)
19 | (X2+9)(X?+ X +12)(X2 + 18X + 12)
31 | (X3 428X + 15)(X3 + 28X + 16)

47 | (X3 444X +20)(X3 + 44X +27)
(
(
(
(
(

53 | (X2 +22)(X? +5X + 25)(X? + 48X + 25)

59 | (X +9)(X + 21)(X 4 29)(X + 30)(X + 38)(X + 50)
73 | (X3 4+ 70X + 14)(X3 4+ 70X + 59)

97 | (X2 +39)(X? + 41X 4 42)(X? + 56X + 42)

101 | (X +4)(X +28)(X + 32)(X + 69)(X + 73)(X + 97)




How does P(X) = X® — 6X* + 9X?2 + 23 factor modulo p?

p factorisation
5 1000
13100

171 000
191000

31 100

47 1 ()0

53 1 000

591 000000
73100

97 1 000

101 | )O0000



How does P(X) = X® — 6X* + 9X?2 + 23 factor modulo p?

p factorisation | a,
5 1000 0
13100 -1
171 000 0
191000 0
31 100 -1
47 1 ()0 -1
53 1 000 0
59 1 000000 |2
73100 -1
97 1 000 0
101 | 000000 |2

Proposition.

There is a modular form
(of weight 1 and level 23)
=302 anq" s.t.

3 factors & ap =0,

2 factors < ap = —1,

6 factors < ap = 2.



How does P(X) = X® — 6X* + 9X?2 + 23 factor modulo p?

p factorisation | a,
5 1000 0
13100 -1
171 000 0
191000 0
31 100 -1
47 1 ()0 —1
53 1 000 0
59 1 000000 |2
73100 -1
97 1 000 0
101 | 000000 |2

Proposition.

There is a modular form
(of weight 1 and level 23)
=302 anq" s.t.

3 factors & ap =0,

2 factors < ap = —1,

6 factors < ap = 2.

Proof. The absolute Galois group of
the splitting field of P(X)
is the kernel of pr.



How does P(X) = X® — 6X* + 9X?2 + 23 factor modulo p?

p factorisation | a, Proposition.

53 000 0 1 There is a modular form
17 88() (; (of weight 1 and level 23)
191000 0 = Lo 2nd’ st

31 | 00 1 3 factors < ap, =0,

47 1 2 factors < ap = —1,

53 880 (; 6 factors < ap = 2.

?2 880()()0 31 Proof. The absolute Galois group of
97 | 000 0 the splitting field of P(X)
101 | 000000 |2 is the kernel of pr.

P mod p ‘ Frob, ‘ Frob,) ‘ trace
000000 | identity 5
00 2 3-cycles ) (402 2) ¢ = e2mi/3 1
000 3 2-cycles , (;g) (2(02) 0




How does P(X) = X® — 6X* + 9X?2 + 23 factor modulo p?

p factorisation | a, Proposition.

53 000 0 1 There is a modular form

17 880 (; (of weight 1 and level 23)

191 000 0o L7 Zmimdst

31 00 1 3 factors < ap, =0,

47 1 2 factors < ap = —1,

53 88() (; 6 factors < ap = 2.

?2 880()()0 31 Proof. The absolute Galois group of
97 | 000 0 the splitting field of P(X)

101 ()()()()()() 2 is the kernel of pr.

P mod p ‘ Frob, ‘ Frobp) ‘ trace ‘ ap
000000 | identity 2 2
00 2 3-cycles ) (402 2) C=e¥/3 | 1 1
000 | 32cdes | (3. (25). (25) |0 o




What can one compute explicitly?

Coefficients of modular forms of weight > 2 can be computed using
(co)homological methods (‘modular symbols’).

‘Standard’ implementations in Magma, Sage. ‘Easy’!!
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Galois representations are very hard to compute explicitly!!



What can one compute explicitly?

Coefficients of modular forms of weight > 2 can be computed using
(co)homological methods (‘modular symbols’).

‘Standard’ implementations in Magma, Sage. ‘Easy’!!
Galois representations are very hard to compute explicitly!!

= Compute modular forms to learn about number theory.



Arithmetic significance of coefficients of modular forms

Natural questions:
(I) How are the a, distributed?



Arithmetic significance of coefficients of modular forms

Natural questions:
(I) How are the a, distributed?

(I1) What information is contained in the Galois representation?



Arithmetic significance of coefficients of modular forms

Natural questions:
(I) How are the a, distributed?
(I1) What information is contained in the Galois representation?
(I11) In how far are Galois representations governed by modular
forms?



Distribution of coefficients

Fix a Hecke eigenform f =3"7° a,q".
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For fixed b € Z, what is the density of the set
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Distribution of coefficients

Fix a Hecke eigenform f =3"7° a,q".
(1) Distribution modulo ¢™.

For fixed b € Z, what is the density of the set

{plap=b mod (M}?

(2) ‘Real distribution’.
Normalise the coefficients b, = ﬁ €[-2,2].

How are the b, distributed over [—2,2]?



Distribution of coefficients

Fix a Hecke eigenform f =377, anq".
(1) Distribution modulo £™.

Answer is given by the Theorem of Chebotarev (1922).



Distribution of coefficients

Fix a Hecke eigenform f =377, anq".
(1) Distribution modulo £™.
Answer is given by the Theorem of Chebotarev (1922).

Example: Let f be the Hecke eigenform in our example.

P mod p ‘ Frob, ‘ p(Frob,) ‘ trace ‘ ap
000000 | identity ((10)) ( ) 2 2
00 | 23ecles | (58), (§0) c=emin |1 | 1
000 | 32odes| (93). (&5) (25) |0 |o



Distribution of coefficients

Fix a Hecke eigenform f =377, anq".
(1) Distribution modulo £™.
Answer is given by the Theorem of Chebotarev (1922).

Example: Let f be the Hecke eigenform in our example.

P mod p ‘ Frob, ‘ p(Frob,) ‘ trace ‘ ap
000000 | identity | (57) 2 2
00 23cycles | (§5). (52) c=e | -1 | 1
000 3 2-cycles | (98). (&5). (°5) 0o o
The density of the set {p | a, = b mod 7} equals

b [o|1]2]3]4]5]6

density [ 3 [0 [§[0]0[0]3
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(2) ‘Real distribution’.
Normalise the coefficients b, = ﬁ € [-2,2].

The normalised coefficients b, are equidistributed with respect to
the Sato-Tate measure. Proved very recently by Taylor, etc.
(Hard).



Distribution of coefficients

Fix a Hecke eigenform £ = "7, anq".
(2) ‘Real distribution’.
Normalise the coefficients b, = ﬁ € [-2,2].

The normalised coefficients b, are equidistributed with respect to
the Sato-Tate measure. Proved very recently by Taylor, etc.

(Hard).

Nice illustration by Andrew Sutherland.
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equidistributed.
This is a theorem of Serre (1997)
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these forms contained in a finite extension of F,?
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Distribution of coefficients

Fix a prime number p and consider a sequence of Hecke eigenforms
f, such that weight+level tend to infinity.

(2) ‘Real distribution’.

The normalised coefficients b,(f,) (p fixed and n running!) are
equidistributed.
This is a theorem of Serre (1997)

(1) Distribution modulo £™.
What can one say about a,(f;) mod £ for p fixed and running n?

Related: Let f run through all Hecke eigenforms of weight 2 and all
prime levels. Are the mod ¢ reductions of all the coefficients of all
these forms contained in a finite extension of F,?

| guess ‘no’, but | cannot prove it.

Computations carried out with Marcel Mohyla suggest that the
maximum residue degree in level g with q.



Distribution of coefficients
Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.567464 + x * 0.825435 ———
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Distribution of coefficients
Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.205983 + x * 0.833940
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Distribution of coefficients
Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.404973 + x * 0.866407 ———
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Distribution of coefficients

Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.398383 + x * 0.868597
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Distribution of coefficients

Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.590970 + x * 0.906161
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Distribution of coefficients

Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.608967 + x * 0.917626
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Distribution of coefficients
Degrees of residual coefficient fields mod ¢ for k = 2 in prime levels.

-0.608967 + x * 0.917626 ———
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Arithmetic information in pf

The Galois representation pr attached to f explains arithmetic
significance of the coefficients. What else?

The ramification of the Galois representation can be (partially) read
off from the modular form.

Theorem (Gross, Coleman-Voloch, W.) If f is of weight one,
prime-to-{ level and geometrically defined over Iy, then the
attached Galois representation p¢ is unramified at £.

Moreover, this characterises weight one among all weights (at least
ift>2).
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(over any totally real field F) of parallel weight one, geometrically
defined over [y, of level prime to {. Then the attached Galois
representation

PFf - GF = GaI(?/F) — GL2(F@)

is unramified above /.



Arithmetic information in pf

Modular forms have various generalisations. The simplest one are
Hilbert modular forms.

Theorem (Dimitrov, W.). Let f be a Hilbert modular eigenform
(over any totally real field F) of parallel weight one, geometrically
defined over [y, of level prime to {. Then the attached Galois
representation

PFf - GF = GaI(?/F) — GL2(F@)
is unramified above /.

It is believed and partially proved that this characterises parallel
weight one forms among all Hilbert Hecke eigenforms.
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From Geometry to Number Theory and Back
Geometry/Analysis Number Theory
Modular Forms Galois Representations

REPUBLIQUE

Hecke eigenforms : Galois repres.
f(z) =Y 00 ane?™inz p: Gal(Q/Q) — GLy(F))
with a1 =1 < s.t. det(p(compl. conj.)) = —1
f = pf
level N unramified outside N/

Te(p¢(Frob,)) = ap

Shimura, Deligne, Serre.

Serre's Conjecture (1987).
Khare, Wintenberger, Kisin (2009).
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New York Times of 24 June 1993

At Last, Shout of ‘BEurekal’
In Age-Old Math Mystery

By GINA KOTATA

More than 30 years agn,
Erench maticlan wroté
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1y Dr. Wilen amnenme.ed the result
vesterdsy at the Jast of three lse.
s glven over throe days at
ridge University in Eng-

d,
Vilhin 3 few minutes of the

have been firaved.

Tepossible Is Passible

Mathematicians present at the
lecture saja they felt “an elation”
said Dr. Kenneth Ribot of the Unie
vessy of Calforiy ¢ Berkeioy,
in & telephore itervies feor

rem, an overarching
stement about what Sohnions
are possible for cortain simple
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Pierre de Fermat, a ¥ith. century
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At Last, a ‘Burekal in an Age-Oid Math Mystery

Fermat's Last Theorem:
a"+ b"=c"
for n > 3,
a,b,c€Z~g

impossible!!!




Thank you for your attention!



