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Is −1 a square?



Is −1 a square modulo a prime p?



Is −1 a square mod p?

3 squares modulo 3: {0, 1} 63 −1
5
7
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−1 is a square modulo p
⇔

p = 2 or p ≡ 1 mod 4.

Proof. (Z/pZ)× is cyclic of order p − 1.
It contains an element of order 4 ⇔ 4 | p − 1.
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Does X 2 + 1 factor into linear polynomials modulo p?

Examples.
−1 ≡ 52 mod 13⇒ X 2 + 1 ≡ (X − 5) · (X + 5) mod 13.
X 2 + 1 is irreducible modulo 3.

Proposition.
X 2 + 1 ≡ (X − ∗) · (X + ∗) = ()() mod p ⇔ p ≡ 1, 2 mod 4.
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What is a modular form?

Es gibt fünf Grundoperationen: Addition, Subtraktion,
Multiplikation, Division und Modulformen.

Martin Eichler (1912-1992)

J’aime bien les formes modulaires. [...] C’est un sujet sur lequel on
n’a jamais de mauvaises surprises: si l’on devine un énoncé, c’est
un énoncé encore plus beau qui est vrai !

Jean-Pierre Serre (*1926)
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I Complex Analysis: Fourier series with certain transformation
properties.

I Geometry: Differential forms on modular curves.
Modular curves are curves parametrising elliptic curves.
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What is a modular form?

A modular form is an object from geometry and/or analysis.

Definition. A modular form of weight k is a holomorphic function

f : H = {z ∈ C | Im(z) > 0} → C

such that
I f ( az+b

cz+d ) = (cz + d)k f (z) for all
(

a b
c d

)
∈ SL2(Z)

I (special case) f (z + 1) = f (z) for
(

a b
c d

)
= ( 1 1

0 1 )

I f (z) =
∑∞

n=0 anqn where q = e2πiz .
This is the definition for level 1. More generally, level N ∈ N.
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What is a modular form?

Hecke eigenforms are modular forms
with special arithmetic.

Erich Hecke (1887-1947)

The Fourier coefficients of a Hecke eigenform satisfy

anam = anm if gcd(n,m) = 1.

The Fourier coefficients of Hecke eigenforms an are algebraic
integers.
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Arithmetic significance of coefficients of modular forms
Examples (19th century):

Gotthold Eisenstein (1823-1852) Carl Jacobi (1804-1851)

Eisenstein series

Coefficients: Special zeta-value and divisor function.

Matching Jacobi’s Theta-series with Eisenstein series, one gets:

#{x ∈ Z4 | x2
1 + x2

2 + x2
3 + x2

4 = n} = 8
∑

4-d |n,1≤d≤n

d .
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Algebraically speaking: a symmetry is a field automorphism.
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Symmetries of equations

Consider X 3 − 6X 2 + 9X + 23 = 0. Three solutions a, b, c ∈ C:
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−1−2−3

a

b

c

There are 6 symmetries in this example.

The symmetry group is called the Galois group.
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Arithmetic significance of coefficients of modular forms

Another view on Eisenstein series.

Recall: Ek = (k−1)!
(2πi)k · ζ(k) +

∑∞
n=1 σk−1(n) · qn.

Fix a prime `.

`-adic cyclotomic character: χ(Frobp) = p.

⇒ Tr(ρ(Frobp)) = 1+ pk−1 = σk−1(p).

This is the p-th coefficient of the Eisenstein series of weight k .
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Inverse Galois Problem

Hilbert

Given a finite group G .
Is there a number field K/Q such that its Galois
group is G?

Approach: Use the map from Hecke eigenforms to Galois
representations and look for suitable modular forms f .
Example theorem (Dieulefait-W., W.). Fix d ∈ N even. The
set of primes

{` | PSL2(F`d ) is a Galois group over Q}

has positive density.

For d = 2, the density is > 0.99 (computed by Master student).

Under the assumption of Maeda’s Conjecture, the density is 1.
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How does P(X ) = X 6 − 6X 4 + 9X 2 + 23 factor modulo p?

Proposition.
There is a modular form
(of weight 1 and level 23)
f =

∑∞
n=1 anqn s.t.

3 factors ⇔ ap = 0,
2 factors ⇔ ap = −1,
6 factors ⇔ ap = 2.

Proof. The absolute Galois group of
the splitting field of P(X )
is the kernel of ρf .
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5 (X 2 + 3)(X 2 + X + 1)(X 2 + 4X + 1)
13 (X 3 + 10X + 4)(X 3 + 10X + 9)
17 (X 2 + 3)(X 2 + 2X + 6)(X 2 + 15X + 6)
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What can one compute explicitly?

Coefficients of modular forms of weight ≥ 2 can be computed using
(co)homological methods (‘modular symbols’).

‘Standard’ implementations in Magma, Sage. ‘Easy’ !!

Galois representations are very hard to compute explicitly!!

⇒ Compute modular forms to learn about number theory.
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(I) How are the ap distributed?

(II) What information is contained in the Galois representation?
(III) In how far are Galois representations governed by modular
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Distribution of coefficients

Fix a Hecke eigenform f =
∑∞

n=1 anqn.

(1) Distribution modulo `m.

For fixed b ∈ Z, what is the density of the set

{p | ap ≡ b mod `m}?

(2) ‘Real distribution’.

Normalise the coefficients bp =
ap

p(k−1)/2 ∈ [−2, 2].

How are the bp distributed over [−2, 2]?
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Distribution of coefficients

Fix a Hecke eigenform f =
∑∞

n=1 anqn.

(1) Distribution modulo `m.

Answer is given by the Theorem of Chebotarev (1922).

Example: Let f be the Hecke eigenform in our example.

P mod p Frobp ρ(Frobp) trace ap

()()()()()() identity ( 1 0
0 1 ) 2 2

()() 2 3-cycles
(
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)
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()()() 3 2-cycles ( 0 1
1 0 ),

(
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ζ 0

)
0 0

The density of the set {p | ap ≡ b mod 7} equals
b 0 1 2 3 4 5 6
density 1

2 0 1
6 0 0 0 1

3
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Distribution of coefficients

Fix a Hecke eigenform f =
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n=1 anqn.

(2) ‘Real distribution’.

Normalise the coefficients bp =
ap

p(k−1)/2 ∈ [−2, 2].

The normalised coefficients bp are equidistributed with respect to
the Sato-Tate measure. Proved very recently by Taylor, etc.
(Hard).

Nice illustration by Andrew Sutherland.
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Distribution of coefficients
Fix a prime number p and consider a sequence of Hecke eigenforms
fn such that weight+level tend to infinity.

(2) ‘Real distribution’.

The normalised coefficients bp(fn) (p fixed and n running!) are
equidistributed.
This is a theorem of Serre (1997)

(1) Distribution modulo `m.

What can one say about ap(fn) mod `m for p fixed and running n?

Related: Let f run through all Hecke eigenforms of weight 2 and all
prime levels. Are the mod ` reductions of all the coefficients of all
these forms contained in a finite extension of F`?

I guess ‘no’, but I cannot prove it.

Computations carried out with Marcel Mohyla suggest that the
maximum residue degree in level q with q.
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Distribution of coefficients
Degrees of residual coefficient fields mod ` for k = 2 in prime levels.
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Arithmetic information in ρf

The Galois representation ρf attached to f explains arithmetic
significance of the coefficients. What else?

The ramification of the Galois representation can be (partially) read
off from the modular form.

Theorem (Gross, Coleman-Voloch, W.) If f is of weight one,
prime-to-` level and geometrically defined over F`, then the
attached Galois representation ρf is unramified at `.

Moreover, this characterises weight one among all weights (at least
if ` > 2).
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Arithmetic information in ρf

Modular forms have various generalisations. The simplest one are
Hilbert modular forms.

Theorem (Dimitrov, W.). Let f be a Hilbert modular eigenform
(over any totally real field F ) of parallel weight one, geometrically
defined over F`, of level prime to `. Then the attached Galois
representation

ρf : GF = Gal(F/F )→ GL2(F`)

is unramified above `.

It is believed and partially proved that this characterises parallel
weight one forms among all Hilbert Hecke eigenforms.
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The fabulous world of modular forms

Fermat’s Last Theorem:

an + bn = cn

for n ≥ 3,

a, b, c ∈ Z>0

impossible!!!
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Thank you for your attention!


