Computing congruences of modular forms modulo prime powers (extended version)

Gabor Wiese

(joint work with Xavier Taixés i Ventosa)

Institut für Experimentelle Mathematik

Universität Duisburg-Essen

3 April 2009

Plan

- (I) Congruences mod ℓ^n .
- (II) Computing them.
- (III) Applications to modular forms, Galois representations and abelian varieties.

Congruences mod ℓ^n

Fix $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{\ell}$. Consider K/\mathbb{Q}_{ℓ} with π_K uniformizer.

We want:

 Congruence mod l should be congruence mod π_K.
 If K/Q_l is unramified, then congruence mod lⁿ should be congruence mod (πⁿ) = (lⁿ).

Congruences mod ℓ^n

Define congruences mod ℓ^n for $a, b \in \overline{\mathbb{Z}}_{\ell}$.

For $L/K/\mathbb{Q}_{\ell}$ finite extensions (inside $\overline{\mathbb{Q}}_{\ell}$) define

$$\gamma_{L/K}(n) := (n-1)e_{L/K} + 1$$

with $e_{L/K}$ the ramification index.

Properties:

•
$$\gamma_{L/K}(1) = 1$$
,
• $\gamma_{M/K}(n) = \gamma_{M/L}(\gamma_{L/K}(n))$ for $M/L/K$,

$$\int \frac{\gamma_{L/K}(n)}{e_{L/K}} \rceil = n.$$

Congruences mod ℓ^n

Define congruences mod ℓ^n for $a, b \in \overline{\mathbb{Z}}_{\ell}$.

The definition $\gamma_{L/K}(n) := (n-1)e_{L/K} + 1$ ensures:

$$\mathbb{Z}/\ell^n\mathbb{Z} \hookrightarrow \mathcal{O}_K/(\pi_K^{\gamma_{K/\mathbb{Q}_\ell}(n)}) \hookrightarrow \mathcal{O}_L/(\pi_L^{\gamma_{L/\mathbb{Q}_\ell}(n)}).$$

Define

$$a \equiv b \mod \ell^n \Leftrightarrow a - b \in (\pi_K^{\gamma_{K/\mathbb{Q}_\ell}(n)})$$

for any K/\mathbb{Q}_{ℓ} containing a, b.

Computing congruences mod ℓ^n

Problem: Let $P, Q \in \mathbb{Z}[X]$ be monic coprime polynomials.

For which prime powers ℓ^n are there $\alpha, \beta \in \overline{\mathbb{Z}}$ such that

- (i) $P(\alpha) = Q(\beta) = 0$ and
- (ii) $\alpha \equiv \beta \mod \ell^n$?

(Partial) Solution:

Reduced resultant (Kristin Lauter's talk)

= Congruence ideal/number (our name for it).

 $P(X) = \sum_{k=0}^{u} a_k X^{u-k}, \quad Q(X) = \sum_{k=0}^{v} b_k X^{v-k} \in \mathbb{Z}[X].$ Sylvester map:

 $\mathbb{Z}[X]_{<v} \times \mathbb{Z}[X]_{<u} \xrightarrow{(r,s)\mapsto rP+sQ} \mathbb{Z}[X]_{<u+v}$ $\{X^{v-1},\ldots,X,1\} \quad \{X^{u-1},\ldots,X,1\} \quad \{X^{u+v-1},\ldots,X,1\}.$

Sylvester matrix (for column vectors) with u = 3 and v = 2:

 $P(X) = \sum_{k=0}^{u} a_k X^{u-k}, \quad Q(X) = \sum_{k=0}^{v} b_k X^{v-k} \in \mathbb{Z}[X].$

Want to know its image for the basis $\{X^{u+v-1}, \ldots, X, 1\}$. May multiply by invertible integer matrices *from the right*. I.e. may perform integral column operations.

$$P(X) = \sum_{k=0}^{u} a_k X^{u-k}, \quad Q(X) = \sum_{k=0}^{v} b_k X^{v-k} \in \mathbb{Z}[X].$$
$$= \begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & c \end{pmatrix}$$

Want to know its image for the basis $\{X^{u+v-1}, \ldots, X, 1\}$.

Congruence number c(P,Q) is the bottom right entry! It divides the resultant of P,Q (determinant of S(P,Q)).

$$P(X) = X - a, \quad Q(X) = X - b.$$

$$S(P,Q) = \begin{pmatrix} 1 & 1 \\ -a & -b \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ -a & -b \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -a & a -b \end{pmatrix}.$$

 \Rightarrow Congruence number c(P,Q) = a - b.

$$P(X) = X^{2} + X + 1, \quad Q(X) = X - 1.$$
$$S(P,Q) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 3 \end{pmatrix}.$$

 \Rightarrow Congruence number c(P,Q) = 3.

 $P(X) = X^2 + X + 1$, $Q(X) = (X - 1)(X + 2) = X^2 + X - 2$.

$$S(P,Q) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & -2 & 1 \\ 0 & 1 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 2 & 1 & 0 & 3 \end{pmatrix}$$

 \Rightarrow Congruence number c(P,Q) = 3.

(The resultant is 9.)

$$P(X) = X^{2} + 5X + 3, \quad Q(X) = X^{2} + 2X + 3.$$
$$S(P,Q) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 5 & 1 & 2 & 1 \\ 3 & 5 & 3 & 2 \\ 0 & 3 & 0 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 3 & 0 \\ 3 & 3 & 0 & 9 \end{pmatrix}$$

 \Rightarrow Congruence number c(P,Q) = 9.

(The resultant is 27.)

Theorem. Let $P, Q \in \mathbb{Z}[X]$. Let $r, s \in \mathbb{Z}[X]$ such that for the congruence number

 $\ell^n \mid\mid c(P,Q) = rP + sQ.$

Suppose one of the following holds:

- Neither P nor Q has a multiple factor mod ℓ .
- P has no multiple factor mod ℓ and P and r are coprime mod ℓ .
- ${}$ Q has no multiple factor mod ℓ and Q and s are coprime mod ℓ .

```
Then there are \alpha, \beta \in \overline{\mathbb{Z}} such that

(i) P(\alpha) = Q(\beta) = 0 and

(ii) \alpha \equiv \beta \mod \ell^n.
```

Computing modular forms

Let f be a newform (level N, weight k) with Fourier expansion:

$$f = f(z) = \sum_{m=1}^{\infty} a_m(f)q^m$$
 with $q = q(z) = e^{2\pi i z}$.

Fact: All the $a_m(f)$ are integers of some number field.

 $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ naturally acts on the Fourier expansion. $\rightsquigarrow [f] := \mathbb{Z}$ -span of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).f$.

Fact that makes computations possible:

 $a_p(f)$ is a zero of the minimal polynomial $P_{f,p} \in \mathbb{Z}[X]$ of the Hecke operator T_p acting on [f].

 $P_{f,p}$ is easy to compute!

Congruences of modular forms mod ℓ^n

 $f = \sum_{m=1}^{\infty} a_m(f)q^m$ a newform (level N_f , weight k). $g = \sum_{m=1}^{\infty} a_m(g)q^m$ a newform (level N_g , weight k).

Definition. f and g are congruent modulo ℓ^n if

 $a_p(f) \equiv a_p(g) \mod \ell^n$ for (almost) all primes p.

If f and g are congruent mod ℓ^n , then $P_{f,p}$ and $P_{g,p}$ have zeros which are congruent mod ℓ^n . (Recall: $P_{f,p}$, $P_{f,p}$ minimal polynomials of T_p on [f] and [g].)

Some propositions (+ a very believable hypothesis)

 \Rightarrow converse is true if compute 'enough' p.

→ Perfect for use of congruence numbers!

Congruences of modular forms mod ℓ^n

Algorithm:

. . . .

 $c_{2} := c(P_{f,2}, P_{g,2})$ $c_{3} := c(P_{f,3}, P_{g,3})$ $c_{5} := c(P_{f,5}, P_{g,5})$

⇒ Upper bound $u := gcd(c_2 \cdot 2^{\infty}, c_3 \cdot 3^{\infty}, c_5 \cdot 5^{\infty}, ...).$ Prop. *f* and *g* are incongruent mod ℓ^m whenever $\ell^m \nmid u$. From Theorem (before) often get (under hypothesis): $f \equiv g \mod \ell^n$ with $\ell^n \parallel u$.

A question of Frey

```
Let f, q two newforms of weight 2.
\rightsquigarrow Shimura's construction: A_f, A_q abelian varieties over \mathbb{Q}.
Suppose f \equiv q \mod{\ell^n}. Then
        A_f[\ell^n] \cong A_q[\ell^n] as \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})-modules.
How big can M with
        A_f[M] \cong A_q[M]
be without A_f \sim A_g (i.e. f Galois conjugate to g)?
```

Level raising mod ℓ^n

Question. Given: f in level N, weight k, a prime p such that $\ell^n \mid c(P_{f,p}, X - (p+1)) \text{ or } \ell^n \mid c(P_{f,p}, X + (p+1)).$ Is there g in level Np, weight k such that $f \equiv g \mod \ell^n$? (Famous theorem by Ribet (Diamond, Taylor) for n = 1.) **Example.** f in level 17, weight 2. Coefficients in \mathbb{Z} . $a_{59}(f) = 12$: congruence numbers $9 \parallel c(X - 12, X + (59 + 1)) = -72,$ $3 \parallel c(X - 12, X - (59 + 1)) = 48.$ In level $17 \cdot 59$, weight 2, $\exists 3$ newforms g_1, g_2, g_3 s.t. $g_i \equiv f \mod 3$ for all i = 1, 2, 3, but there is no *i* s.t. $g_i \equiv f \mod 9!$

Level raising mod ℓ^n

Level raising does not generalise so easily!

Does a weaker statement hold?