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Plan

(I) Congruences mod ℓn.

(II) Computing them.

(III) Applications to modular forms,
Galois representations
and abelian varieties.
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Congruences mod ℓn

Fix Q →֒ Qℓ. Consider K/Qℓ with πK uniformizer.

We want:

Congruence mod ℓ

should be

congruence mod πK .

If K/Qℓ is unramified, then

congruence mod ℓn

should be

congruence mod (πn) = (ℓn).
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Congruences mod ℓn

Define congruences mod ℓn for a, b ∈ Zℓ.

For L/K/Qℓ finite extensions (inside Qℓ) define

γL/K(n) := (n − 1)eL/K + 1

with eL/K the ramification index.

Properties:

γL/K(1) = 1,

γM/K(n) = γM/L(γL/K(n)) for M/L/K,

⌈
γL/K(n)

eL/K
⌉ = n.
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Congruences mod ℓn

Define congruences mod ℓn for a, b ∈ Zℓ.

The definition γL/K(n) := (n − 1)eL/K + 1 ensures:

Z/ℓnZ →֒ OK/(π
γK/Qℓ

(n)

K ) →֒ OL/(π
γL/Qℓ

(n)

L ).

Define

a ≡ b mod ℓn ⇔ a − b ∈ (π
γK/Qℓ

(n)

K )

for any K/Qℓ containing a, b.
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Computing congruences mod ℓn

Problem: Let P,Q ∈ Z[X] be monic coprime polynomials.

For which prime powers ℓn are there α, β ∈ Z such that

(i) P (α) = Q(β) = 0 and

(ii) α ≡ β mod ℓn?

(Partial) Solution:

Reduced resultant (Kristin Lauter’s talk)

= Congruence ideal/number (our name for it).
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Congruence number

P (X) =
∑u

k=0 akX
u−k, Q(X) =

∑v
k=0 bkX

v−k ∈ Z[X].

Sylvester map:

Z[X]<v × Z[X]<u
(r,s)7→rP+sQ
−−−−−−−−→ Z[X]<u+v

{Xv−1, . . . , X, 1} {Xu−1, . . . , X, 1} {Xu+v−1, . . . , X, 1}.

Sylvester matrix (for column vectors) with u = 3 and v = 2:

















a0 0 b0 0 0

a1 a0 b1 b0 0

a2 a1 b2 b1 b0

a3 a2 0 b2 b1

0 a3 0 0 b2
















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Congruence number

P (X) =
∑u

k=0 akX
u−k, Q(X) =

∑v
k=0 bkX

v−k ∈ Z[X].
















a0 0 b0 0 0

a1 a0 b1 b0 0

a2 a1 b2 b1 b0

a3 a2 0 b2 b1

0 a3 0 0 b2

















Want to know its image for the basis {Xu+v−1, . . . , X, 1}.

May multiply by invertible integer matrices from the right.

I.e. may perform integral column operations.

◦

















∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

















=
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Congruence number

P (X) =
∑u

k=0 akX
u−k, Q(X) =

∑v
k=0 bkX

v−k ∈ Z[X].

=

















∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ c

















Want to know its image for the basis {Xu+v−1, . . . , X, 1}.

Congruence number c(P,Q) is the bottom right entry!

It divides the resultant of P,Q (determinant of S(P,Q)).
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Congruence number
P (X) = X − a, Q(X) = X − b.

S(P,Q) =

(

1 1

−a −b

)

(

1 1

−a −b

)(

1 −1

0 1

)

=

(

1 0

−a a − b

)

.

⇒ Congruence number c(P,Q) = a − b.
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Congruence number

P (X) = X2 + X + 1, Q(X) = X − 1.

S(P,Q) =







1 1 0

1 −1 1

1 0 −1






∼







1 0 0

0 1 0

2 2 3






.

⇒ Congruence number c(P,Q) = 3.
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Congruence number

P (X) = X2 + X + 1, Q(X) = (X − 1)(X + 2) = X2 + X − 2.

S(P,Q) =











1 0 1 0

1 1 1 1

1 1 −2 1

0 1 0 −2











∼











1 0 0 0

0 1 0 0

0 1 3 0

2 1 0 3











⇒ Congruence number c(P,Q) = 3.

(The resultant is 9.)

Computing congruences ofmodular formsmodulo prime powers(extended version) – p.12/20



Congruence number

P (X) = X2 + 5X + 3, Q(X) = X2 + 2X + 3.

S(P,Q) =











1 0 1 0

5 1 2 1

3 5 3 2

0 3 0 3











∼











1 0 0 0

0 1 0 0

2 2 3 0

3 3 0 9











⇒ Congruence number c(P,Q) = 9.

(The resultant is 27.)
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Congruence number
Theorem. Let P,Q ∈ Z[X].

Let r, s ∈ Z[X] such that for the congruence number

ℓn || c(P,Q) = rP + sQ.

Suppose one of the following holds:

Neither P nor Q has a multiple factor mod ℓ.

P has no multiple factor mod ℓ and P and r are coprime mod ℓ.

Q has no multiple factor mod ℓ and Q and s are coprime mod ℓ.

Then there are α, β ∈ Z such that

(i) P (α) = Q(β) = 0 and

(ii) α ≡ β mod ℓn.
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Computing modular forms
Let f be a newform (level N , weight k) with Fourier
expansion:

f = f(z) =
∑

∞

m=1 am(f)qm with q = q(z) = e2πiz.

Fact: All the am(f) are integers of some number field.

Gal(Q/Q) naturally acts on the Fourier expansion.
 [f ] := Z-span of Gal(Q/Q).f .

Fact that makes computations possible:

ap(f) is a zero of the minimal polynomial Pf,p ∈ Z[X] of the
Hecke operator Tp acting on [f ].

Pf,p is easy to compute!
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Congruences of modular forms mod ℓn

f =
∑

∞

m=1 am(f)qm a newform (level Nf , weight k).

g =
∑

∞

m=1 am(g)qm a newform (level Ng, weight k).

Definition. f and g are congruent modulo ℓn if

ap(f) ≡ ap(g) mod ℓn for (almost) all primes p.

If f and g are congruent mod ℓn, then
Pf,p and Pg,p have zeros which are congruent mod ℓn.
(Recall: Pf,p, Pf,p minimal polynomials of Tp on [f ] and [g].)

Some propositions (+ a very believable hypothesis)
⇒ converse is true if compute ’enough’ p.

 Perfect for use of congruence numbers!
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Congruences of modular forms mod ℓn

Algorithm:

c2 := c(Pf,2, Pg,2)

c3 := c(Pf,3, Pg,3)

c5 := c(Pf,5, Pg,5)

. . . .

⇒ Upper bound u := gcd(c2 · 2
∞, c3 · 3

∞, c5 · 5
∞, . . . ).

Prop. f and g are incongruent mod ℓm whenever ℓm ∤ u.

From Theorem (before) often get (under hypothesis):

f ≡ g mod ℓn with ℓn || u.
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A question of Frey
Let f, g two newforms of weight 2.

 Shimura’s construction: Af , Ag abelian varieties over Q.

Suppose f ≡ g mod ℓn. Then

Af [ℓn] ∼= Ag[ℓ
n] as Gal(Q/Q)-modules.

How big can M with

Af [M ] ∼= Ag[M ]

be without Af ∼ Ag (i.e. f Galois conjugate to g)?
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Level raising mod ℓn

Question. Given: f in level N , weight k, a prime p such that
ℓn | c(Pf,p, X − (p + 1)) or ℓn | c(Pf,p, X + (p + 1)).

Is there g in level Np, weight k such that f ≡ g mod ℓn?

(Famous theorem by Ribet (Diamond, Taylor) for n = 1.)

Example. f in level 17, weight 2. Coefficients in Z.
a59(f) = 12: congruence numbers

9 || c(X − 12, X + (59 + 1)) = −72,
3 || c(X − 12, X − (59 + 1)) = 48.

In level 17 · 59, weight 2, ∃ 3 newforms g1, g2, g3 s.t.
gi ≡ f mod 3 for all i = 1, 2, 3,

but there is no i s.t. gi ≡ f mod 9!
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Level raising mod ℓn

Level raising does not generalise so easily!

Does a weaker statement hold?
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