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Abstract

This talk is the last one in the Essen seminar on quaternigebehs. It is based on the
paper by Takeshi Saito on Hilbert modular forms anddic Hodge theory, but | also used talk
notes by Gerard van der Geer and Theo van den Bogaart. Howewade some changes in the
presentation, which may have led to the introduction ofrstréhe reader be warned.

1 Hilbert modular forms and automorphic representations
Notation 1.1 (First part) We fix the following data.
e F/Q, atotally real number field with? : Q] = n > 1.

o [ ={m,...,7} = Hom(F,R), the embeddings df into R.

Op, the ring of integers of'.

D~ = {b € F|Trp/g(Orb) C Z}, the codifferent ideal.

v <1 Op, afixed place which we only need and defineii even.
o (k)= (ki,...k,,w)ann + 1-tuple of integers such that > k; > 2 andk; = w mod 2.

X = PY{(C) — PY(R), the union of the upper and the lower half planés! the upper half
plane.

Adelic Hilbert modular forms

We quickly recall the definition of adelic modular forms, following Saito.
Let X! be then-fold product of X with the leftGL,(IR)!-action

az+b  a;zi+0b;
cz+d ezt dlt

fy.z:(‘ég)z: e x!

for (14) = ( (14 ) ) and= = (z0):. Note that

GLQ(AF) = GLQ(R)I X GLQ(AF’f).
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Via the embeddingsér;) and the diagonal" — Ap ;, we obtain a natural left action &Ly (F)
on X1 x GLy(Apy) by v.(2,9) = (v2,79). There is also a right action &Ls(Ar ) on X! x
GL2(AF f) by right multiplication on the second factor.

A function X7 x GL2(Af s) — Cis calledholomorphicif it induces a locally constant map

)

GLy(Ap) L2 goyxT, ©).

There is a rightGLy(F')-action and a IeﬁGLg(AFf)—action onHol(X! x GL2(Ap ), C), which
are defined as follows. Let € Hol(X! x GLa(Apy),C), v = (24) € GLy(F), z € X! and
g c GLQ(AFVf).

+k;—

+k2

(Y )z 9) =

Letg’ € GLQ(AFJ),
(9:5)(z,9) = f(z,99).

For K C GL2(Ap s) open compact subgroup, the spacadélic Hilbert modular form of multi-
weight(k) on K is

M(CK = {f € Hol(X" x GLa(Apy),C) | ¥*f = f,9:f = [ V7 € GLa(F) Vg € GLa(Ar )}

The union (direct limit) over all open compakt is denoted by\/l((ck).

As explained in Hai's talk, such adelic Hilbert modular forms have a Fouxigamsion, which,
however, | do not intend to recall. Let us just say that for a Hecke &gen(to be defined in a
moment) the Fourier coefficients are (up to some normalisation factor) eqtigdke eigenvalues.
We IetS( andS( ) be thecuspidal subspacege. the subspaces where @ith Fourier coefficients
vanish.

For the applications to Galois representations we introduce one speciatopgact subgroup
for each integral ideal C Op. LetT = Op & D10 be a lattice om,f. Let

Ky(n) = {g € GLa(Ap)lg? = T,g(§) = (1) mod nT}.

Hecke operators

Here we present two points of view on Hecke operators. gLet GL2(Afrr). To g we attach the
operatorl, defined as follows:
(k) res (k) 9 alk) Tr (k)
Sex — S(C,g—lKng T PC,KNgK g1 SeK
where therace magpis given by f +— ZheK/KﬁgKg,l h.f, supposing, of course, th&t is such that
this sum is finite. This description of Hecke operators is nice because it eviteby similar to the
description on Shimura curves to be given later on. But, there is also theksu double coset point



of view: LetT = T, = KgK or letT be any other subsédt -invariant from the left and the right.
Then we have/put

T:f— Y hf

heT/K

We define two important types of Hecke operators:

e Letp be a prime off” andn, a uniformiser of Or),,. Let

Ty := T, with g = (78’(1))

e Letp be a prime off” andr, a uniformiser of Or),,. Let

Ry i=Tywithg = (72 ).
(It may be that one has to impose some conditiongsonBut for sure, the definition is correct
with K;(n) and(p,n) = 1.)
Let L C C be afield containing the Galois closure®foverQ.

Fact 1.2 There areL—structuresS‘gf}( and S(Lk) in ng}( and S((ck), respectively.
Moreover, each(L'f}( is a finite dimensional.-vector space.

Definition 1.3 TheHecke algebraf Sg“}( is defined as

T(Lk,;)K = <Tp> Rp € EndL (S(LIT}() ‘P C OF>L-aIgebra: <Tp7 Rp € End(C (S((c]f}() |IJ C OF>L-algebra

Fact 1.4 The Hecke algebrﬁ‘(Lk)K is a finite dimensional commutativealgebra.

Hence, there exisiecke eigenforms.e. elements oﬁg}{ that are eigenvectors for all elements of
the Hecke algebra. Letbe a Hecke eigenform. Theystem of eigenvalues attachedftis described
by the L-algebra homomorphism

07 : Ty — C, T Ar,

whereAr is the eigenvalue of, i.e. Tf =Tf = A\rf.

As already said above, if is suitably normalised, the eigenvalue@f is equal to the Fourier
coefficient atp (times the norm op, according to Saito). But, we will not need Fourier coefficients
here (not explicitly, at least).

We let L(f) = im(©), thecoefficient field off (with respect tal). It is a finite extension of,
due to the finite dimensionality of the Hecke algebra. In particulak, i§ a number field (e.g. the
Galois closure of'), then so isL(f).



The automorphic representation attached to a Hilbert newfom

We letr ¢ be theGLa(Af ¢)-orbit of £ in ng) and call it theautomorphicGL2 (A ¢ )-representation
attached tof.

Fact 1.5 AsGL»(Af ¢ )-representations (ovef) we have an isomorphism

S(I(:k) = @ .
f newform
The termrnewformhere only refers to the fact that we do not distinguish between systemeoValig
ues such that th® ; differ only at finitely many.

Eachr, can be defined ovel(f). To be precise, we sometimes writg; r). Then we have by
definitionr 1.y @5y C = 5.

We do not need the following for the sequel but list it nevertheless: We caliéwke eigenforms
f1 and f, Galois conjugatéf there exist embeddings : L(f;) <— C such that(f1) = t2(f2), i.€.
1100y = 1300y, TheGLy(Af ¢)-orbit of (¢(f)|¢ : L(f) — C, | = id) defines an automorphic
representationry, ) over L such that

T @0 C=[[mp)

with the product running through theas above. This yields an isomorphisni, (A r)-represen-

tations (overL)
k)

L @ TL(f)-

f newform up to Galois conjugacy

1

2 Main Theorem

We now come to Galois representations.

We fix algebraic closure® andQ, for all p and we considef" as a subfield of) (i.e. we fix an
embedding) and, as a subfield o@p (also by fixing an embedding) for every prirpeof F'. We
choose embeddings

p:Q—=Q,
whose restriction td is equal to
F— I, — @p

via the natural (resp. fixed) embeddings. Note that the choieg obrresponds to the choice of a
prime ideal for each finite extensidn C M C Q which are compatible with intersection. We also
obtain an embedding of absolute Galois groups

Gal(Q,/Fy) — Gal(Q/F), o L;l 00 0 L.

Note that this definition makes sense, si@éF is a normal extension. If we have two such embed-
dings:,, and,, then the two embeddings of Galois groups are conjugatglbybgj.
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Call I, the residue field of. We have the natural exact sequence
0 — I, — Gal(Q,/Fy) — Gal(F,/Fy) — 0,

wherel, is the inertia group ap. Of course, we suppose thatdivides the rational prime. The
right hand side map is the natural one. Byob, we denote tharithmetic Frobenius elemen
Gal(F,/Fy), i.e. the one given by — x4 with ¢ = #F,. (There is always some confusion about
geometric and arithmetic Frobenius elements. | prefer the latter.) We also danéieb, any
preimage irGal@p/Fp, which is, of course, not well defined. So we have to handle it with dare,
we will...
Theorem 2.1 Let f € S(.(ck}( (w)
K1
T(l/]i)l(l(n) — C. LetA be a prime ofL(f). Then there is d&alois representation.e. a continuous
group homomorphism

be a newform corresponding to tliealgebra homomorphisr® :

pga = p: Gal(Q/F) — GLa(L(f)a)
which satisfies:

e Itis unramified outside/ with (¢) = AN Z, i.e. p(I,) = 0 for all p with (p,nf) = 1; hence,
p(Frob,) is well-defined for thesg.

e Tr(p(Froby)) = ©(T}) forall (p,nl).
e det(p(Froby)) = ©f(Ry) Nm(p) for all (p,ns).

This theorem is due to many people, in particular Carayol, Blasius, RogandKraylor. | think
itis proved in the above generality, but | have not checked it. In this leeterwill need the additional
assumption (if /' : Q] is even) thatr is discrete series at. | won't explain what this means.

The theorem is, in fact, more precise. The restrictiop ® Gal(Q,/F}) can be described at
all placesp, not only the unramified ones. This can be formulated in terms of Weil-Deligpeef
sentations (see the seminar a year ago). For the places ébtie is the result proved in Saito’s
article.

3 Quaternionic automorphic forms and epresentations

Notation 3.1 (Second part) e B, the quaternion algebra (unique up to isomorphism) o¥er
which is split atr; and ramified at, . . ., 7, (@ndv, if n is even). l.e. we have

B ®gR = Maty(R) x H x -+ x H

n—1 copies

with H the Hamiltonian quaternion algebra.

e G = Resp/pB™, the Weil restriction.



e L/Q, a Galois number field containing and splittingB, i.e.
B ®p L = Maty(L).

Note that

Gap) =] ] GL2(F) x (B®rF)*.
P plp,pFv
Recall the Shimura curve

Mg(C) = GQ\(X x G(Af)/K)
of level K. It has a modeM over F'. We let
M(C) = G(Q\(X x G(Ay)).

Kay defined several objects. We shall only list them here (maybe, westigitly change them),
but will not recall the precise definitions.

. P}f’L a constructible sheaf di-vector spaces o/ (C).

° ng’), a sheaf ofL-vector spaces o/ (C).

o P\"), an étale sheaf af,-vector spaces oi/y for some maximal ideal < O such that
HI(M(C), P @y, Ly = H (Mp x Q, P{).

V}?), alocally freeO, (c)-module of rankl.

o V¥, alocally free0,(c)-module of ranki.
k K

o Let W%) = Vﬁ() D0xc ) Wi (©)°

o LetW® =V @0, o Qe

The principal result from Kay'’s talk is the following theorem.

Theorem 3.2 (Analog of Eichler-Shimura) There is an isomorphism:

H'(M(C), P{P) @1, € = HO(M(C), WH)) & HO(M (C), W),

A similar result holds at finite levek .

Definition 3.3 We call
k k
' = B (Mie(C), Wi)
the space ofuaternionic automorphic forms of lev&l and multi-weight(k). Analogously, we let

(takinglim )
K
' = HO(M(C), W),

This definition is unsatisfactory, it should be made explict. But that is impossilslag this talk,
for time reasons (also time reasons during preparation...). | think/hopenthatith find a description
similar to that of adelic Hilbert modular forms.



Hecke operators

The definition is analogous to the one given for adelic Hilbert modular fotrasg € G(Af). We
start on the Shimura curve (@ipoints, but also on the model ovEr the mapy is right multiplication
by g on the second factor):

9
MK — MngflKg — -lnK — MK,

9Ky

where the outer maps are the natural projections.
On the quaternionic automorphic forms and, more generally, on cohomolegg thaps induce
an operatofly, as follows:

Hi(MKa ) = Hi(MKﬂg_lKga ) 2, Hi(MgKg_lﬁKa ) T HZ(MKa )
Of course, thel; also give maps ofim , i.e. aG(A)-action, in particular orS’yj) and on thaTll(.).

K
The naturality of all maps in the above theorem makes the following theorenvaiake

Theorem 3.4 The map from Theore®12 is compatible with thé&/(A f)-action.

Letp # v. SinceB ®r F, = GLo(IF,), it makes sense to defifig and R, as for Hilbert modular
forms, i.e. ag, for g = (7 V) org = (7[)" N

, ) respectively. However, we won't need them for the
sequel.
Automorphic representation of G(A )

An automorphic representation 6f(A ;) is an irreducible constituent <ﬁ’((ck) = Ho(M(C), wk),

4 The Jacquet-Langlands correspondence and hint on the proof

Theorem 4.1 (Jacquet-Langlands)Let f be an adelic Hilbert newform and, the associated au-
tomorphic GL2(Af ¢)-representation such that; , is discrete series (ifK : Q] is even). Then
there exists a unique automorphic representatignof G(A¢) such thatry, = 7, as GLa(F)-
representations for alp # v. Moreover,w} has a model oveL(f), denoted byr}’L(f) (as hasry,
see above).

Theorem 4.2 (Multiplicity one) There is an isomorphism 6f(A )-representations (over)

k ~
S0 = HO(M(C), WW) = o .

f newform, not discrete seriesat

Corollary 4.3 There is an isomorphism 6f(A ¢)-representations (over)

H'(M(C), Py @, C = D (7 & ).

f newform, not discrete seriesat



Hence,H!(M(C), P\") @, L(f) containsr’; |

all other constituents are non-isomorphicrtp; ..

i ; ; / _
) precisely twice, since’, ; ;) = L) and

Corollary 4.4 (a) Homga ) ('} 1, H'(M(C), P{Y) @1 L(f)) = L(f) & L(f) (sincer’, , , is
absolutely irreducible).

(b) LetA be a prime ideal of.( f) dividing A\. Then
Homea ) (7} 15y @) L(F)a, H (M(C), P @r L(f)a) = L(f)a ® L(f)a-
Now we use the comparison from above (after tensoring With) , overL)):
H'(M(C), Py) ®1 L(f)a = Hyy (M x Q. PYY) @1, L(f)a-
Corollary 4.5 The2-dimensionalL( f),-vector space
Homga ) (7} £y @rep) L(F)as He(Mp x Q, P @1y L(f)a) = L(f)a @ L(f)a
carries a continuous linea@al(Q/ F)-action.

This is theGal(Q/ F)-representation that we are looking for. Unfortunately, we cannatictie
claimed properties in this talk.
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