Modulformen und das inverse Galois-Problem

Gabor Wiese

Université du Luxembourg

Vortrag auf der DMV-Jahrestagung 2012 in Saarbrücken

19. September 2012

Inverse Galois Problem

Question of Hilbert:

Given a finite group G. Is there a Galois extension K/\mathbb{Q} such that

 $Gal(K/\mathbb{Q}) \cong G$?

Inverse Galois Problem

Question of Hilbert:

Given a finite group G. Is there a Galois extension K/\mathbb{Q} such that

$$Gal(K/\mathbb{Q}) \cong G$$
?

In this talk focus on two cases:

- The GL_2 -case: $G = \operatorname{PSL}_2(\mathbb{F}_{\ell^d})$.
- The GSp_{2n} -case: $G=\mathrm{PSp}_{2n}(\mathbb{F}_{\ell^d})$.

Consider a cuspidal modular form

$$f = \sum_{n=1}^{\infty} a_n q^n \qquad (q = e^{2\pi i z})$$

s.t. $a_1 = 1$ (normalised), Hecke eigenform, no CM, any weight, on $\Gamma_1(N)$, nebentype $\psi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.

Consider a cuspidal modular form

$$f = \sum_{n=1}^{\infty} a_n q^n \qquad (q = e^{2\pi i z})$$

s.t. $a_1=1$ (normalised), Hecke eigenform, no CM, any weight, on $\Gamma_1(N)$, nebentype $\psi:(\mathbb{Z}/N\mathbb{Z})^{\times}\to\mathbb{C}^{\times}$.

Theorem (Deligne, Shimura, Eichler, Igusa, Serre).

For each prime ℓ , \exists Galois representation

$$\overline{\rho}_{f,\ell}^{\mathrm{proj}}: G_{\mathbb{Q}} \xrightarrow{\overline{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell})$$

unramified outside $N\ell$ such that for all $p \nmid N\ell$

$$\operatorname{Tr}(\overline{\rho}_{f,\ell}(\operatorname{Frob}_p)) \equiv a_p \text{ 'mod } \ell$$
'.

One speaks of a compatible system.

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep. $\overline{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\overline{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell})$.

Questions/Tasks:

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep. $\overline{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\overline{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell})$.

Questions/Tasks:

(I) Smallest d such that $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep. $\overline{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\overline{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell})$.

Questions/Tasks:

- (I) Smallest d such that $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?
- (II) Image of $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$?

Note: $\operatorname{Gal}(\overline{\mathbb{Q}}^{\ker(\overline{\rho}_{f,\ell}^{\operatorname{proj}})}/\mathbb{Q}) \cong \overline{\rho}_{f,\ell}^{\operatorname{proj}}(G_{\mathbb{Q}}).$

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep. $\overline{
ho}_f^{\mathrm{proj}}:G_{\mathbb{Q}}\xrightarrow{
ho_{f,\ell}}\mathrm{GL}_2(\overline{\mathbb{F}}_\ell)\xrightarrow{\mathsf{nat. proj.}}\mathrm{PGL}_2(\overline{\mathbb{F}}_\ell)$.

Questions/Tasks:

- (I) Smallest d such that $\overline{\rho}_{f,\ell}^{\text{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?
- (II) Image of $\overline{\rho}_{f,\ell}^{\text{proj}}$?

Note: $\operatorname{Gal}(\overline{\mathbb{Q}}^{\ker(\overline{\rho}_{f,\ell}^{\operatorname{proj}})}/\mathbb{Q}) \cong \overline{\rho}_{f,\ell}^{\operatorname{proj}}(G_{\mathbb{Q}}).$

(III) Prove the existence of f such that for fixed ℓ, d :

 $\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}}) \cong \mathrm{PSL}_2(\mathbb{F}_{\ell^d}),$

i.e. realise $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}:G_{\mathbb{Q}}\xrightarrow{\overline{
ho}_{f,\ell}}\mathrm{GL}_{2}(\overline{\mathbb{F}}_{\ell})\xrightarrow{\mathrm{nat.\ proj.}}\mathrm{PGL}_{2}(\overline{\mathbb{F}}_{\ell})$$
.

(I) Smallest d such that $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep. $\overline{\rho}_{f,\ell}^{\mathrm{proj}} : G_{\mathbb{Q}} \xrightarrow{\overline{\rho}_{f,\ell}} \mathrm{GL}_2(\overline{\mathbb{F}}_{\ell}) \xrightarrow{\mathrm{nat. proj.}} \mathrm{PGL}_2(\overline{\mathbb{F}}_{\ell})$.

(I) Smallest d such that $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over \mathbb{F}_{ℓ^d} ?

Answer:

If $\overline{\rho}_{f,\ell}$ is irreducible, then $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ can be defined over residue field (above ℓ) of the global field $\mathbb{Q}(\frac{a_p^2}{\psi(p)}\mid p\nmid N)$

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}:G_{\mathbb{Q}}\xrightarrow{\overline{
ho}_{f,\ell}}\mathrm{GL}_{2}(\overline{\mathbb{F}}_{\ell})\xrightarrow{\mathsf{nat. proj.}}\mathrm{PGL}_{2}(\overline{\mathbb{F}}_{\ell})$$
.

(II) Image of $\overline{
ho}_{f,\ell}^{\mathrm{proj}}$?

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}:G_{\mathbb{Q}}\xrightarrow{\overline{
ho}_{f,\ell}}\mathrm{GL}_{2}(\overline{\mathbb{F}}_{\ell})\xrightarrow{\mathrm{nat.\ proj.}}\mathrm{PGL}_{2}(\overline{\mathbb{F}}_{\ell})$$
.

(II) Image of $\overline{
ho}_{f,\ell}^{\mathrm{proj}}$?

Answer:

From (I): $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ definable over \mathbb{F}_{ℓ^d} . By Dickson (\sim 1900):

$$\overline{
ho}_{f,\ell}^{\operatorname{proj}}(G_{\mathbb Q})$$
 is

- \bullet PSL₂(\mathbb{F}_{ℓ^d}), PGL₂(\mathbb{F}_{ℓ^d})
- dihedral
- $\bullet \subseteq \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right)$
- \bullet A_4, S_4, A_5

For $f = \sum_{n=1}^{\infty} a_n q^n$ and each prime ℓ , \exists Galois rep.

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}:G_{\mathbb{Q}}\xrightarrow{\overline{
ho}_{f,\ell}}\mathrm{GL}_{2}(\overline{\mathbb{F}}_{\ell})\xrightarrow{\mathrm{nat.\ proj.}}\mathrm{PGL}_{2}(\overline{\mathbb{F}}_{\ell})$$
 .

(II) Image of $\overline{
ho}_{f,\ell}^{\mathrm{proj}}$?

Answer:

From (I): $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ definable over \mathbb{F}_{ℓ^d} . By Dickson (\sim 1900):

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$$
 is

- \bullet PSL₂(\mathbb{F}_{ℓ^d}), PGL₂(\mathbb{F}_{ℓ^d})
- dihedral
- $\bullet \subseteq \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right)$
- \bullet A_4, S_4, A_5

huge image induced reducible

exceptional

For
$$f = \sum_{n=1}^{\infty} a_n q^n$$
 and each prime ℓ , \exists Galois rep.

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}:G_{\mathbb{Q}}\xrightarrow{\overline{
ho}_{f,\ell}}\mathrm{GL}_{2}(\overline{\mathbb{F}}_{\ell})\xrightarrow{\mathsf{nat. proj.}}\mathrm{PGL}_{2}(\overline{\mathbb{F}}_{\ell})$$
.

(II) Image of $\overline{
ho}_{f,\ell}^{\mathrm{proj}}$?

Answer:

From (I): $\overline{\rho}_{f,\ell}^{\mathrm{proj}}$ definable over \mathbb{F}_{ℓ^d} . By Dickson (\sim 1900):

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$$
 is

- \bullet PSL₂(\mathbb{F}_{ℓ^d}), PGL₂(\mathbb{F}_{ℓ^d})
- dihedral
- $\bullet \subseteq \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right)$
- \bullet A_4, S_4, A_5

huge image induced

reducible

exceptional

Ribet: For almost all ℓ: huge image.

(III) Prove the existence of f such that for fixed ℓ, d :

$$\overline{
ho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}}) \cong \mathrm{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

(III) Prove the existence of f such that for fixed ℓ, d :

$$\overline{\rho}_{f,\ell}^{\operatorname{proj}}(G_{\mathbb{Q}}) \cong \operatorname{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Partial Answers:

Theorem A (W. 2008). Given ℓ , \exists infinitely many d s.t. $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$ (for some f depending on d) with only ℓ and one other prime (dep. on d) ramifying.

(III) Prove the existence of f such that for fixed ℓ, d :

$$\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}}) \cong \mathrm{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Partial Answers:

Theorem A (W. 2008). Given ℓ , \exists infinitely many d s.t. $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$ (for some f depending on d) with only ℓ and one other prime (dep. on d) ramifying.

Theorem B (Dieulefait, W. 2011). Given d, \exists positive density set of primes \mathcal{L} s.t. $\forall \ell \in \mathcal{L}$: $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$ with only ℓ and at most three other primes (not dep. on ℓ) ramifying.

(III) Prove the existence of f such that for fixed ℓ, d :

$$\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}}) \cong \mathrm{PSL}_2(\mathbb{F}_{\ell^d}),$$

i.e. realise $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ as Galois group over \mathbb{Q} .

Partial Answers:

Expected Theorem (W. 2012). Given d. Assume Maeda's conjecture on level 1 modular forms (the Galois closure of the coefficient field of every newform $f \in S_k(1)$ is $\operatorname{Sym}_{\dim S_k(1)}$).

Then the density of the set of primes ℓ such that $\mathrm{PSL}_2(\mathbb{F}_{\ell^d})$ occurs as $\overline{\rho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$ with only ℓ ramifying is 1.

(Proof needs to be checked and written up.)

Generalisation to GSp_{2n} any n:

Theorem A (Khare, Larsen, Savin, 2008).

Given ℓ , \exists infinitely many d s.t. $\mathrm{PSp}_{2n}(\mathbb{F}_{\ell^d})$ or $\mathrm{PGSp}_{2n}(\mathbb{F}_{\ell^d})$ occurs as image of the residual Galois representation attached to a suitable automorphic form on GL_{2n} over \mathbb{Q} .

Generalisation to GSp_{2n} any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

 (I) Determine projective field of definition of compatible system of symplectic Galois representations.
 (DONE. Explain now.)

Generalisation to GSp_{2n} any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

- (I) Determine projective field of definition of compatible system of symplectic Galois representations.
 (DONE. Explain now.)
- (II) Classify images of symplectic representations under some constraint.(DONE. Show result now.)

Generalisation to GSp_{2n} any n:

Joint work with Sara Arias-de-Reyna and Luis Dieulefait:

- (I) Determine projective field of definition of compatible system of symplectic Galois representations.
 (DONE. Explain now.)
- (II) Classify images of symplectic representations under some constraint.(DONE. Show result now.)
- (III) Generalise Theorem B.(ALMOST DONE, subject to a 'promised theorem' by others).

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\operatorname{proj}}: G_{\mathbb{Q}} \xrightarrow{\rho} \operatorname{GSp}_{2n}(\overline{K}) \xrightarrow{\operatorname{nat. proj.}} \operatorname{PGSp}_{2n}(\overline{K}).$$

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\operatorname{proj}}: G_{\mathbb{Q}} \xrightarrow{\rho} \operatorname{GSp}_{2n}(\overline{K}) \xrightarrow{\operatorname{nat. proj.}} \operatorname{PGSp}_{2n}(\overline{K}).$$

Def.:
$$\rho_1^{\mathrm{proj}} \sim \rho_2^{\mathrm{proj}}$$
 if $\exists M \in \mathrm{GSp}_{2n}(\overline{K})$ s.t.
$$\rho_1^{\mathrm{proj}} = (M\rho_2 M^{-1})^{\mathrm{proj}}.$$

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\operatorname{proj}}: G_{\mathbb{Q}} \xrightarrow{\rho} \operatorname{GSp}_{2n}(\overline{K}) \xrightarrow{\operatorname{nat. proj.}} \operatorname{PGSp}_{2n}(\overline{K}).$$

Def.:
$$\rho_1^{\mathrm{proj}} \sim \rho_2^{\mathrm{proj}}$$
 if $\exists M \in \mathrm{GSp}_{2n}(\overline{K})$ s.t.
$$\rho_1^{\mathrm{proj}} = (M\rho_2 M^{-1})^{\mathrm{proj}}.$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\operatorname{proj}}: G_{\mathbb{Q}} \xrightarrow{\rho} \operatorname{GSp}_{2n}(\overline{K}) \xrightarrow{\operatorname{nat. proj.}} \operatorname{PGSp}_{2n}(\overline{K}).$$

Def.:
$$\rho_1^{\mathrm{proj}} \sim \rho_2^{\mathrm{proj}}$$
 if $\exists M \in \mathrm{GSp}_{2n}(\overline{K})$ s.t.
$$\rho_1^{\mathrm{proj}} = (M\rho_2 M^{-1})^{\mathrm{proj}}.$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Simple observations:

• Let $\epsilon: G_{\mathbb{Q}} \to \overline{K}^{\times}$ char. $\Rightarrow (\rho \otimes \epsilon)^{\operatorname{proj}} = \rho^{\operatorname{proj}}$.

Let K be a field, \overline{K} separable closure. Consider:

$$\rho^{\operatorname{proj}}: G_{\mathbb{Q}} \xrightarrow{\rho} \operatorname{GSp}_{2n}(\overline{K}) \xrightarrow{\operatorname{nat. proj.}} \operatorname{PGSp}_{2n}(\overline{K}).$$

Def.:
$$\rho_1^{\mathrm{proj}} \sim \rho_2^{\mathrm{proj}}$$
 if $\exists M \in \mathrm{GSp}_{2n}(\overline{K})$ s.t.
$$\rho_1^{\mathrm{proj}} = (M\rho_2 M^{-1})^{\mathrm{proj}}.$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Simple observations:

- Let $\epsilon: G_{\mathbb{Q}} \to \overline{K}^{\times}$ char. $\Rightarrow (\rho \otimes \epsilon)^{\operatorname{proj}} = \rho^{\operatorname{proj}}$.
- Suppose $ho_1^{
 m proj} \sim
 ho_2^{
 m proj}$.

Put
$$\epsilon(g) := M^{-1}\rho_1(g)M\rho_2(g)^{-1} \in \overline{K}^{\times}$$
.

$$\Rightarrow \rho_1 \sim \rho_2 \otimes \epsilon$$
.

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider

$${}^{\sigma}\rho:G_{\mathbb{Q}}\xrightarrow{\rho}\mathrm{GSp}_{2n}(\overline{K})\xrightarrow{\sigma}\mathrm{GSp}_{2n}(\overline{K}).$$

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider ${}^{\sigma}\rho: G_{\mathbb{Q}} \xrightarrow{\rho} \mathrm{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \mathrm{GSp}_{2n}(\overline{K})$.

Def.: A pair (σ, ϵ) with $\sigma \in G_K$ and $\epsilon : G_{\mathbb{Q}} \to \overline{K}^{\times}$ character is called an inner twist if $\sigma \rho \sim \rho \otimes \epsilon$ ($\Leftrightarrow (\sigma \rho)^{\operatorname{proj}} \sim \rho^{\operatorname{proj}}$).

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider ${}^{\sigma}\rho: G_{\mathbb{Q}} \xrightarrow{\rho} \mathrm{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \mathrm{GSp}_{2n}(\overline{K})$.

Def.: A pair (σ, ϵ) with $\sigma \in G_K$ and $\epsilon : G_{\mathbb{Q}} \to \overline{K}^{\times}$ character is called an inner twist if $\sigma \rho \sim \rho \otimes \epsilon$ ($\Leftrightarrow (\sigma \rho)^{\operatorname{proj}} \sim \rho^{\operatorname{proj}}$).

 ρ has complex multiplication (CM) if $\sigma = id$, $\epsilon \neq 1$.

Qu.: Smallest $L \subseteq \overline{K}$ s.t. $\rho^{\operatorname{proj}} \sim (G_{\mathbb{Q}} \to \operatorname{PGSp}_{2n}(L))$?

Galois action on coefficients: for $\sigma \in G_K$ consider ${}^{\sigma}\rho: G_{\mathbb{Q}} \xrightarrow{\rho} \mathrm{GSp}_{2n}(\overline{K}) \xrightarrow{\sigma} \mathrm{GSp}_{2n}(\overline{K})$.

Def.: A pair (σ, ϵ) with $\sigma \in G_K$ and $\epsilon : G_{\mathbb{Q}} \to \overline{K}^{\times}$ character is called an inner twist if $\sigma \rho \sim \rho \otimes \epsilon$ ($\Leftrightarrow (\sigma \rho)^{\operatorname{proj}} \sim \rho^{\operatorname{proj}}$).

 ρ has complex multiplication (CM) if $\sigma = id$, $\epsilon \neq 1$.

Suppose ρ is irreducible and has no CM. Then:

$$\sigma \rho \sim \rho \otimes \epsilon \Leftrightarrow \sigma(\operatorname{Tr}(\rho(\operatorname{Frob}_p))) = \operatorname{Tr}(\rho(\operatorname{Frob}_p))\epsilon(\operatorname{Frob}_p) \ \forall \text{ unramified } p.$$

Def.: $H_{\rho}:=\bigcap_{\epsilon}\ker(\epsilon)\lhd G_{\mathbb{Q}}$ for ϵ occurring in an inner twists. $\Gamma_{\rho}:=\{\sigma\in G_{K}\mid \sigma \text{ occurs in an inner twist}\}.$ $K_{\rho}:=\overline{K}^{\Gamma_{\rho}}$, called projective field of definition of ρ .

Def.: $H_{\rho} := \bigcap_{\epsilon} \ker(\epsilon) \triangleleft G_{\mathbb{Q}}$ for ϵ occurring in an inner twists. $\Gamma_{\rho} := \{\sigma \in G_K \mid \sigma \text{ occurs in an inner twist}\}.$ $K_{\rho} := \overline{K}^{\Gamma_{\rho}}$, called projective field of definition of ρ .

Theorem (Arias-de-Reyna, Dieulefait, W., 2012).

Suppose $\rho|_{H_o}$ is irreducible. Then:

- (1) $\exists \rho'$ such that $\rho'^{\text{proj}} \sim \rho^{\text{proj}}$ and ρ'^{proj} factors through K_{ρ} .
- (2) K_{ρ} is the smallest subfield of \overline{K} with this property.

Morale: The inner twists determine the smallest field over which $\rho^{\rm proj}$ can be defined.

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi : G_{\mathbb{Q}} \to L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \cdots \in L[X]$.

A compatible system ρ_{\bullet} is:

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi: G_{\mathbb{Q}} \to L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \cdots \in L[X]$.

A compatible system ρ_{\bullet} is:

for each λ place of L a Galois representation

$$\rho_{\lambda}:G_{\mathbb{Q}}\to \mathrm{GSp}_{2n}(L_{\lambda})$$
 such that

- abs. irred., unramified outside $N\ell$ (for $\Lambda \mid \ell$),
- $\forall p \nmid N\ell : \operatorname{charpoly}(\rho_{\lambda}(\operatorname{Frob}_p)) = P_p$,
- similitude factor of ρ_{λ} is $\psi \chi_{\ell}^{k}$ (for χ_{ℓ} cyclotomic char.).

Let $n\in\mathbb{N}$, L/\mathbb{Q} Galois number field, $N,k\in\mathbb{N}$, $\psi:G_{\mathbb{Q}}\to L^{\times}$, for all $p\nmid N$: $P_p(X)=X^{2n}-a_pX^{2n-1}+\cdots\in L[X]$.

A compatible system ρ_{\bullet} is:

for each λ place of L a Galois representation

$$\rho_{\lambda}:G_{\mathbb{Q}}\to\mathrm{GSp}_{2n}(L_{\lambda})$$
 such that

- ullet abs. irred., unramified outside $N\ell$ (for $\Lambda \mid \ell$),
- $\forall p \nmid N\ell : \operatorname{charpoly}(\rho_{\lambda}(\operatorname{Frob}_p)) = P_p$,
- similitude factor of ρ_{λ} is $\psi \chi_{\ell}^{k}$ (for χ_{ℓ} cyclotomic char.).

Sources: algebraic, essentially conjugate self-dual cuspidal automorphic representations for GL_{2n} over \mathbb{Q} .

Let $n \in \mathbb{N}$, L/\mathbb{Q} Galois number field, $N, k \in \mathbb{N}$, $\psi: G_{\mathbb{Q}} \to L^{\times}$, for all $p \nmid N$: $P_p(X) = X^{2n} - a_p X^{2n-1} + \cdots \in L[X]$.

A compatible system ρ_{\bullet} is:

for each λ place of L a Galois representation

$$\rho_{\lambda}:G_{\mathbb{Q}}\to\mathrm{GSp}_{2n}(L_{\lambda})$$
 such that

- ullet abs. irred., unramified outside $N\ell$ (for $\Lambda \mid \ell$),
- $\forall p \nmid N\ell : \operatorname{charpoly}(\rho_{\lambda}(\operatorname{Frob}_p)) = P_p$,
- similitude factor of ρ_{λ} is $\psi \chi_{\ell}^{k}$ (for χ_{ℓ} cyclotomic char.).

Sources: algebraic, essentially conjugate self-dual cuspidal automorphic representations for GL_{2n} over \mathbb{Q} .

We consider: $\overline{\rho}_{\lambda}$ (residual representation), $\rho_{\lambda}^{\mathrm{proj}}$, and $\overline{\rho}_{\lambda}^{\mathrm{proj}}$.

Let ρ_{\bullet} be a compatible system.

Def.: (σ, ϵ) (with $\sigma \in \operatorname{Gal}(L/K)$ and $\epsilon : G_{\mathbb{Q}} \to L^{\times}$) inner twist of ρ_{\bullet} if $\sigma(a_p) = a_p \cdot \epsilon(\operatorname{Frob}_p)$ for all $p \nmid N$.

Let ρ_{\bullet} be a compatible system.

Def.: (σ, ϵ) (with $\sigma \in \operatorname{Gal}(L/K)$ and $\epsilon : G_{\mathbb{Q}} \to L^{\times}$) inner twist of ρ_{\bullet} if $\sigma(a_p) = a_p \cdot \epsilon(\operatorname{Frob}_p)$ for all $p \nmid N$.

Def.: $\Gamma_{\rho_{\bullet}} := \{ \sigma \in \operatorname{Gal}(L/K) \mid \sigma \text{ occurs in an inner twist of } \rho_{\bullet} \}.$ $K_{\rho_{\bullet}} := L^{\Gamma_{\rho_{\bullet}}}$, called projective field of definition of ρ_{\bullet} .

Let ρ_{\bullet} be a compatible system.

Def.: (σ, ϵ) (with $\sigma \in \operatorname{Gal}(L/K)$ and $\epsilon : G_{\mathbb{Q}} \to L^{\times}$) inner twist of ρ_{\bullet} if $\sigma(a_p) = a_p \cdot \epsilon(\operatorname{Frob}_p)$ for all $p \nmid N$.

Def.: $\Gamma_{\rho_{\bullet}} := \{ \sigma \in \operatorname{Gal}(L/K) \mid \sigma \text{ occurs in an inner twist of } \rho_{\bullet} \}.$ $K_{\rho_{\bullet}} := L^{\Gamma_{\rho_{\bullet}}}$, called projective field of definition of ρ_{\bullet} .

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).

Assume moreover: ρ_{\bullet} is *strictly compatible with regular Hodge-Tate weights* and $\overline{\rho}_{\lambda}$ is absolutely irreducible for almost all λ .

Then for almost all places λ of L, the residue field at λ of $K_{\rho_{\bullet}}$ is $K_{\overline{\rho}_{\lambda}}$.

Theorem 1 (Arias-de-Reyna, Dieulefait, W., 2012).

Assume moreover: ρ_{\bullet} is *strictly compatible with regular Hodge-Tate weights* and $\overline{\rho}_{\lambda}$ is absolutely irreducible for almost all λ .

Then for almost all places λ of L, the residue field at λ of $K_{\rho_{\bullet}}$ is $K_{\overline{\rho}_{\lambda}}$.

Morale: The global field $K_{\rho_{\bullet}}$ (depending only on the inner twists) determines the projective field of definition of $\overline{\rho}_{\lambda}^{\mathrm{proj}}$.

This field is the GSp_{2n} -replacement of $\mathbb{Q}(\frac{a_p^2}{\psi(p)}\mid p\nmid N)$.

Classification result

Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).

Let $\ell \geq 5$ and $\overline{\rho}: G \to \mathrm{GSp}_{2n}(\overline{\mathbb{F}}_{\ell})$ be irreducible.

Assume: $\overline{\rho}(G)$ contains a non-trivial transvection.

Then either $\overline{\rho}(G) \supseteq \mathrm{PSp}_{2n}(\mathbb{F}_{\ell})$ (huge image) or $\overline{\rho}$ is induced from a lower dimensional representation.

Classification result

Theorem 2 (Arias-de-Reyna, Dieulefait, W., 2012).

Let $\ell \geq 5$ and $\overline{\rho}: G \to \mathrm{GSp}_{2n}(\overline{\mathbb{F}}_{\ell})$ be irreducible.

Assume: $\overline{\rho}(G)$ contains a non-trivial transvection.

Then either $\overline{\rho}(G) \supseteq \mathrm{PSp}_{2n}(\mathbb{F}_{\ell})$ (huge image) or $\overline{\rho}$ is induced from a lower dimensional representation.

Morale: Our replacement of Dickson's theorem for GL_2 :

Recall: $\overline{
ho}_{f,\ell}^{\mathrm{proj}}(G_{\mathbb{Q}})$ is

- $\operatorname{PSL}_2(\mathbb{F}_{\ell^d})$, $\operatorname{PGL}_2(\mathbb{F}_{\ell^d})$
- dihedral
- $\bullet \subseteq \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right)$
- \bullet A_4, S_4, A_5

huge image induced reducible exceptional

Inverse Galois Problem

Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).

Let ρ_{\bullet} be as in Theorem 1. Assume moreover:

- $\overline{\rho}_{\lambda}(G_{\mathbb{Q}})$ contains a transvection for almost all λ .
- 'Good dihedral prime' (Khare, Wintenberger, Larsen, Savin):

 \exists prime q, \exists suitable character $\delta:G_{\mathbb{Q}_{q^{2n}}}\to L^{\times}$ of order 2t

(t prime), $2n \mid (t-1)$ such that $\overline{\rho}_{\lambda}|_{G_{\mathbb{Q}_q}} \sim \operatorname{Ind}_{G_{\mathbb{Q}_{q^{2n}}}}^{G_{\mathbb{Q}_q}}(\delta)$.

Then for all $d \mid \frac{t-1}{2n}$, the set of places λ of L such that $\mathrm{PSp}_{2n}(\mathbb{F}_{\ell^d})$ or $\mathrm{PGSp}_{2n}(\mathbb{F}_{\ell^d})$ equals $\overline{\rho}_{\lambda}^{\mathrm{proj}}(G_{\mathbb{Q}})$ has a positive density.

Inverse Galois Problem

Theorem 3 (Arias-de-Reyna, Dieulefait, W., 2012).

Let ρ_{\bullet} be as in Theorem 1. Assume moreover:

- $\overline{\rho}_{\lambda}(G_{\mathbb{Q}})$ contains a transvection for almost all λ .
- 'Good dihedral prime' (Khare, Wintenberger, Larsen, Savin): \exists prime q, \exists suitable character $\delta: G_{\mathbb{Q}_{q^{2n}}} \to L^{\times}$ of order 2t (t prime), $2n \mid (t-1)$ such that $\overline{\rho}_{\lambda}|_{G_{\mathbb{Q}_q}} \sim \operatorname{Ind}_{G_{\mathbb{Q}_{2n}}}^{G_{\mathbb{Q}_q}}(\delta)$.

Then for all $d \mid \frac{t-1}{2n}$, the set of places λ of L such that $\mathrm{PSp}_{2n}(\mathbb{F}_{\ell^d})$ or $\mathrm{PGSp}_{2n}(\mathbb{F}_{\ell^d})$ equals $\overline{\rho}_{\lambda}^{\mathrm{proj}}(G_{\mathbb{Q}})$ has a positive density.

Morale: If such a ρ_{\bullet} exists, then we obtain the desired application to the inverse Galois problem.

Vielen Dank für Ihre Aufmerksamkeit.

