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Abstract

These are notes for my talk in the seminar ‘The Eigencurve’ atthe Universität Duisburg-Essen

on 28 January 2010. The aim of the seminar is to go through the seminal paper by Coleman and

Mazur first defining the eigencurve. The present notes try to cover most parts of Chapter 7. The

philosophy was to completely disregard technicalities andto try to stress the underlying ideas.

The reader be warned that I learned the subject only while preparing this talk (part time during

less than 2 weeks), so misunderstandings and, hence, wrong or imprecise statements are very

likely.

1 Introductory words

In Johan’s talk, the eigencurve was constructed. In this talk, we recover the nilreduction of the eigen-

curve by patching together the affinoid spaces attached to certain Hecke algebras.

In short:

(1) At the basis of the eigencurve is the theorem (Hida, Gouvêa) that to anoverconvergent eigenform

one can attach a pseudo representation. This allows one to see overconvergent eigenforms inside

Xp×A1, whereXp is the rigid analytic space attached to a universal deformation ring of pseudo-

representations.

The eigencurveCp is by construction the subspace ofXp × A1 whoseCp-points are the images

of the overconvergent eigenforms under the Hida-Gouvêa construction.

Like this, the geometry is hidden. It is even not a priori clear that the eigencurve is a curve.

(2) Today we will construct a curveD (it is obviously a curve) by patching together rigid analytic

spaces associated with certain Hecke algebras. It will turn out thatD is the nilreduction ofCp.

I am speculating that the French translation ‘courbe de Hecke’ for eigencurve refers to this con-

struction.
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2 Collection of definitions and statements

2.1 Standing assumptions and notation

• p an odd prime number.

• Cp the completion of a fixed algebraic closureQp of Qp.

2.2 Notions from rigid analytic geometry

Definition 2.1 (i) B[0, pm]K = Max(OK〈pmT 〉) is the closed disc of radiuspm at the origin. It

is the rigid analytic subspace ofA1
K whoseCp-valued points are{x ∈ Cp | |x| ≤ pm}.

(ii) If A is a complete noetherian local ring, thenXA is the attached rigid analytic space overK.

TheCp-valued points are the continuousOK-algebra homomorphismsA→ Cp, i.e.XA(Cp) =

HomOK
(A, Cp).

(iii) The spectral semi-norm(or supremum norm):

|f | := max
x∈Max(A)

|f(x)|,

wheref(x) := f + mx ∈ A/mx →֒ K. Note that we writemx for x to remind us that

we are talking about maximal ideals. Note also that|f(x)| is independent of the embedding

A/mx →֒ K.

(iv) If Y is a rigid analytic variety overK, thenA(Y ) is theK-algebra of rigid analytic functions.

A0(Y ) is theOK-subalgebra ofA(Y ) consisting of rigid analytic functions with spectral semi-

norm≤ 1.

(v) A rigid spaceX over a complete non-archimedean valued fieldK is callednestedif it admits an

admissible covering by a countable increasing sequence of affinoid subdomains

X0 ⊆ X1 ⊆ · · · ⊆ X.

Definition 2.2 (Power series)LetA be a topological ring.

(i) A〈T 〉 := {f =
∑∞

n=0 anTn | an
n→∞
−−−→ 0}, theTate algebra of restricted or strictly convergent

power series on the closed unit ball.

(ii) AssumeA is a local ring with maximal idealm. Then

A{{T}} := {f =
∞

∑

n=0

anTn | ∃cn ∈ R s.t.cn/n
n→∞
−−−→∞ andan ∈ m

cn ∀ n}

are the entire power series overA. They are precisely those series having an infinite radius of

convergence.
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2.3 Fredholm

Definition 2.3 (i) Let A be a local ring. AFredholm series overA is an elementF ∈ A{{T}} with

constant term1.

(ii) Let X be a rigid analytic space. AFredholm series overX is an entire power series overA(X)

with constant term1.

For more, see Stefan’s talk.

2.4 Weight space

For simplicity, I only list the tame level1 weight space.

Definition 2.4 TheIwasawa algebraΛ is defined as

Λ := Zp[[Z
×
p ]] := lim←−

n

Zp[(Z/pnZ)×].

Theweight space of tame level1 is defined as the rigid analytic space overQp W :=W1 associated

with Λ.

The Iwasawa algebraΛ is a complete regular local ring of Krull dimension2. SinceΛ can also

be equipped with the structure of a Hopf algebra, the weight spaceW is a commutative rigid analytic

group object. Note

W(Cp) = Homcts(Z
×
p , Cp) = Cp-values characters ofZ×

p .

We mention that thep-cyclotomic character defines a surjectionχp : Gal(Q/Q) → Z×
p and by the

Kronecker-Weber theorem an isomorphismGab
Q,{p,∞}

∼= Z×
p .

For more, see Panos’ talk.

2.5 Overconvergent modular forms

See Ralf’s talk.

2.6 Pseudo representations

Let ρ1, . . . , ρr be the distinctp-modular Galois representationsGQ,{p,∞} → GL2(Fp) and letRρi

be the universal deformation rings attached to the corresponding pseudo representations. PutRp =

Rρ1
× · · · ×Rρr

and letXp be the associated rigid analytic space overQp.

We recall the rigid analytic mapµwt : Xp → W defined in Juan’s talk. This map comes from a

continuous ring homomorphismµwt : Λ → Rp, equippingRp with a Λ-algebra structure. We now

explain this notion. LetG := GQ,{p,∞} and letρ : G → GL2(R) be any continuous2-dimensional
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(pseudo-) representation for any topological ringR. Let det(ρ) be the determinant ofρ. There is a

mapµdet making the following diagram commutative:

G
det(ρ) //

����

R×

Gab ∼
χp

// Z×
p .

µdet(ρ)

OO

Recall thatdet(ρf ) = χk−1
p for a classical modular form of weightk (and trivial nebentype). We find

thatµdet(ρf ) sendsγ ∈ Z to γk−1 ∈ R. In order to recoverk (instead ofk − 1), one definesµwt (for

givenρ) as

µwt : Z×
p → R×

p , γ 7→ γ · µdet(ρ)(γ).

This continuous group homomorphism extends uniquely to the desired

µwt : Λ = Zp[[Z
×
p ]]→ Rp,

hence, giving rise to

µwt : Xp →W.

The meaning ofµwt is just that it sends a pseudo-representationλ ∈ Xp(Cp) to its weight character

µwt(λ) =: κλ ∈ W(Cp).

For more, see Juan’s talk.

3 The Eigencurve

In this section, we will recall the description of the eigencurve onCp-points. In fact, in the whole talk

we are mostly going to treatCp-points and we shall not so much worry about the structures as rigid

analytic spaces.

Recall that

• H′ := Λ[Tℓ : ℓ 6= p prime] = Λ[T2, T3, . . . , T̂p, . . . ], therestricted abstract Hecke algebra.

• H := H′[Up], thefull abstract Hecke algebra.

• ι : H′ → Rp is theΛ-algebra homomorphism defined by sendingTℓ to the trace of the universal

pseudo-reprsentation atFrobℓ.

• For α ∈ H′ such thatι(α) ∈ R×
p we have the Fredholm power seriesPι(α)Up

(T ) ∈ Λ{{T}}

which is the unique power series satisfying the following assertion: For every weight (character)

κ : Λ → Cp (i.e. every point of the weight spaceW), the power series obtained by applyingκ

to the coefficients is the Fredholm determinant

P κ
ι(α)Up

(T ) = det(1− (ι(α)Up)T |M
†
κ(Cp)) =

∏

i

(1− uiT )ei ∈ Cp{{T}}.
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Theui are precisely the eigenvalues of the operatorι(α)Up on the spaceM †
κ(Cp)) of overcon-

vergent modular forms of weightκ (and tame level1, as always).

• The spectral curveZα := Zι(α)Up
is the rigid analytic subspace ofW × A1 cut out byPι(α)Up

.

We have the following description on theCp-points:

Zα(Cp) = {(κ, u−1) ∈ (W × A1)(Cp) | P
κ
ι(α)Up

(u−1) = 0}

= {(κ, u−1) ∈ (W × A1)(Cp) | ∃f ∈M †
κ(Cp) : (ι(α))Upf = uf}.

As I am taking inverses, I should treat zero explicitly. I just ignore this.

• One defines a rigid analytic maprα : Xp × A1 → W × A1 which can explicitly be given on

Cp-points like this:

(λ, t) 7→ (κλ,
t

λ(ι(α))
).

Note thatλ(ι(α)) is just the evaluation of the pseudo representationλ : Rp → Cp at the image

of the Hecke operatorα. If α = Tℓ, then this is justλ evaluated at the trace ofFrobℓ under the

universal pseudo-representation.

• We have furthermore:

r−1
α (Zα)(Cp) = {(λ, u−1) ∈ (Xp × A1)(Cp) | (κλ, (λ(ι(α))u)−1) ∈ Zα(Cp)}

= {(λ, u−1) ∈ (Xp × A1)(Cp) | ∃f ∈M †
κλ

(Cp) : (ι(α))Upf = λ(ι(α))uf}.

• The eigencurveCp (of tame level1) is by definition the rigid analytic space

Cp =
⋂

α∈H′ : ι(α)∈R×

p

r−1
α (Zα).

For (λ, u−1) ∈ (Xp × A1)(Cp) the following statements are equivalent:

(i) (λ, u−1) ∈ Cp(Cp).

(ii) For all α ∈ H′ such thatι(α) ∈ R×
p there exists a normalised overconvergent Hecke

eigenformf ∈M †
κλ

(Cp) satisfying

(ι(α)Up)f = λ(ι(α))uf.

• By a theorem of Gouvêa and Hida, one can attach a pseudo representation λf to any normalised

overconvergent Hecke eigenformf . This provides one with a map

{ normalised overconv. eigenforms of finite slope overCp }
f 7→(λf ,u−1

f
)

−−−−−−−−→ (Xp × A1)(Cp),

whereuf is theUp-eigenvalue off .
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• The main theorem from Johan’s talk is that this map is a bijection ontoCp(Cp).

This is not a miracle at all. The construction ofCp as the intersection of ther−1
α (Zα) was made

precisely to have this property.

The idea is that due to the flexibility given by the choice ofα, all eigenvalues at allTℓ can

be encoded as eigenvalues ofι(α)Up. This forces the following assertion, which is the key

point in the proof presented in Johan’s talk: Given(λ, u−1) ∈ Cp(Cp). For all n, there is

some overconvergent modular formfn of weightκλ such that itsq-expansion coincides with

the formalq-expansion ofλ up ton and such that itsUp-eigenvalue isu.

4 Construction of a reduced eigencurve

In this section, we shall construct a curveD which will be isomorphic to the nilreduction ofCp.

Conceptually, there are the following differences withCp:

• We do not use single weights, but we work locally over the weight space.

• The curveD will be patched together from pieces which are locally finite over the weight space.

They are hence curves, so that alsoD is a curve.

Here is the plan for the construction ofD. First take anyα ∈ H′ such thatι(α) ∈ R×
p . We will

construct1-dimensional piecesDα(V ). This will take up most of the time. Then the curveDα will

be patched together from theDα(V ). Finally, we will setD := D1, state its properties and relate it

to Cp.

4.1 Construction of the1-dimensional pieceDα(V )

We start by constructingDα(V ) and, hence, fixα as above for the time being. Consider the morphism:

πα : Zα
natural inclusion
−−−−−−−−−→W × A1 first projection

−−−−−−−−→W.

Fact: If V ⊂ Zα is an affinoid subdomain, thenπα(V ) ⊂ W is also an affinoid subdomain.

Let

Cα := {V ⊂ Zα affinoid subdomain| V
πα−→ πα(V ) is finite , V admissibly closed-open inZα}

and

Cirr
α := {V ∈ Cα | V irreducible}.

Fact: Cα is an admissible covering ofZα.

Fact: Fix an affinoidY ⊂ W with ring of rigid analytic functionsA := A(Y ). Then the set

{V ∈ Cirr
α | πα(V ) = Y }

is in bijection with the set of tuples(Q, H) ∈ A[T ]×A{{T}} such that
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- the constant term ofQ is 1 and the leading term a unit inA (think of asQ =
∏d

i=1(1− uiT )),

- gcd(Q, H) = 1 and

- Pι(α)Up
= QH.

I am wondering whether the condition thatQ is irreducible is missing. Explicitly, the bijection is

such thatV = Sp
(

A〈T 〉/(Q∗(T ))
)

, whereQ∗ is the polynomialQ ‘the other way around’, i.e.

Q∗(T ) = T deg(T )Q(T−1). ThatQ is a polynomial is a consequence of the assumed finiteness of

V
πα−→ πα(V ). We shall sometimes writeQV to indicate the relationship betweenV andQ.

By construction, we have the

Fact: The degree ofπα : V → Y is equal tod := deg(Q).

We just pause for a second to explicit what the finiteness means onCp-points: For everyκ ∈

Y (Cp) there are generically preciselyd points(κ, u−1
i ) ∈ V (Cp), namely the occuringui are pre-

cisely the zeros ofQκ,∗. (Recall thatQ ∈ A[T ]. Specialising to a weightκ means applying the weight

characterκ to the coefficients ofQ making it a polynomialQκ ∈ Cp[T ].) We know by what we

recalled in the previous section that there are overconvergent eigenforms of the chosen weightκ with

theι(α)Up-eigenvaluesui.

It is not this discrete point of view, i.e. singleκs, that we want to assume. Instead, we use the fact

that overconvergent eigenforms come in families; in particular, we will now consider theA-module

M †
Y (see Ralf’s talk), which consists of families of overconvergent modular forms overY .

Fact: The polynomialQ = Q(V ) cutsM †
Y into two pieces (closedA(Y )-submodules)

M †
Y = Nα(V )⊕ Fα(V )

such thatQ∗(ι(α)Up) acts invertibly onFα(V ) and killsNα(V ).

TheA-moduleNα(V ) is called the space ofoverconvergent finite slope modular forms overV .

An element of this space is a family of overconvergent modular eigenforms with weights inY which

we regard as eigenfunctions forι(α)Up with eigenvalues one of the zeros ofQ∗.

Fact: Nα(V ) is (of course) Hecke stable and it is locally free of rankd = deg(Q) as anA = A(Y )-

module.

We want a geometric object whose points are precisely the overconvergent modular forms just

described.The principal idea of the present construction is to use the rigid analytic space asso-

ciated with a suitable Hecke algebra.

We define theoverconvergent finite slope Hecke algebra overV as theA = A(Y )-module

Tα(V ) := im
(

H⊗Λ A −→ EndA(Nα(V ))
)

.

Let us make the important observation that the map

A(V ) = A(Y )〈T 〉/(Q∗(T ))
T 7→ι(α)Up
−−−−−−→ Tα(V )

is a well-definedA-algebra homomorphism, since by construction the endomorphismι(α)Up of

Nα(V ) is the zero map.
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Fact: Tα(V ) andNα(V ) are ‘almost’ dual under theq-expansion pairing:

〈T, f〉 = a1(f |T ),

in the sense that we have an injectionTα(V ) →֒ HomA(Nα(V ), A) with cokernel corresponding to

the eigenforms with constantq-expansion (if they exist for the allowed weightsY ).

Finally, we can define the desired pieceDα(V ) as

Dα(V ) := Sp(Tα(V )).

By the above observation, it comes equipped with maps

Dα(V )
zα−→ V

πα−→ Y

and (from the ‘almost’ duality) we conclude the

Fact: The mapDα(V )→ Y is finite flat of degreed = deg(Q).

Recall thatV was chosen inCirr
α . For generalV ∈ Cα such thatV = V1 ⊔ · · · ⊔ Vn with Vi ∈ Cirr

α

we define

Dα(V ) := Dα(V1) ⊔ · · · ⊔Dα(Vn).

It is now obvious thatDα(V ) is 1-dimensional. Note thatDα(V )(Cp) are overconvergent eigen-

forms with weight inY (Cp) andι(α)Up-eigenvalue a zero ofQκ,∗
V ∈ Cp[T ].

Moreover, we have the

Fact: If QV (T ) is squarefree, then the mapDα(V ) → V is generically an isomorphism and bothV

andDα(V ) are reduced.

We summarise what we did so far. We still keepα ∈ H′ with ι(α) ∈ R×
p fixed. Also fix an

affinoid subdomainY ∈ W.

M †
Y {Nα(V )} ↔ {Tα(V )} ↔ {Dα(V )}

l

Zα {V ∈ Cα|πα(V ) = Y } ↔ {QV }

The passage from the spectral curve to the overconvergent modular forms is made via the polyno-

mialsQV , thus retaining the information on the eigenvalues ofι(α)Up.

4.2 Glueing

Also in this subsection, we shall keepα ∈ H′ with ι(α) ∈ R×
p fixed. The aim is to obtain a curveDα

by glueing theDα(V ) together. We shall be short and only describe the main steps.

Fact: Let V1, V2 ∈ Cα. ThenV1 ∩ V2 ∈ Cα.

Fact: Suppose, moreover, thatV1 ⊆ V2. ThenDα(V1) ⊆ Dα(V2).

As a consequence, forU, V ∈ Cα, we haveDα(U∩V ) ⊆ Dα(U). Denote the image byDα(U, V )

(thenDα(V, U), of course, is the image inDα(V )).

Fact: Dα(U, V ) ∼= Dα(V, U).
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Looking only atCp-points (which we explicited above), the previous two facts are obvious. More

precisely, the assumptionV1 ⊆ V2 translates to a surjection

A〈T 〉/(Q∗
V2

) ։ A〈T 〉/(Q∗
V1

),

i.e. to the conditionQ∗
V1
|Q∗

V2
. Due to

Dα(Vi)(Cp) = {f ∈M †
κ(Cp) | κ ∈ πα(Vi)(Cp), f eigenform,

ι(α)Upf = uf for u such thatQκ,∗
Vi

(u) = 0},

we findDα(V1)(Cp) ⊆ Dα(V2)(Cp).

The final fact forCp-points means that theDα(V )(Cp) can be glued together (as sets).

Fact: The Dα(V ) can be glued together to give a rigid analytic curveDα. Moreover, the maps

Dα(V )
zα−→ V

πα−→ Y give rise to rigid analytic morphisms

π : Dα
zα−→ Zα

πα−→W.

Proposition 4.1 (a) zα is a finite morphism.

(b) π is locally in-the-domain finite flat:Dα is covered by affinoid subdomains, namely theDα(V ),

which have the property that their imagesY := π(Dα(V )) ⊂ W are affinoid subdomains ofW

and moreoverDα(V ) is finite flat overY .

(c) Dα is a curve (equidimensional of dimension1).

ThatDα is a curve follows from the fact that all theDα(V ) are1-dimensional (or alternatively

from the finiteness over the weight space, which is a curve).

4.3 The curveD

Let Tp be the Katz Hecke algebra of tame level1 (see Tommaso’s talk), which is defined as the

completion of the image ofH in the endomorphisms of the spaceV of all Katz p-adic modular

functions of tame level1 (with respect to the compact-open topology on the ring ofZp-endomorphisms

of V).

Proposition 4.2 Let α, β ∈ H′ such thatι(α), ι(β) ∈ R×
p . If the images ofα and β in Tp are

associate (i.e. they generate the same principal ideal), then there is a natural isomorphismDα
∼= Dβ.

I imagine this proposition somehow like this. The assumption onα andβ means that the slopes

of the operatorsι(α)Up andι(β)Up are the same. The patches from whichDα is made up are just

something like translates of the patches forDβ. It is certainly possible to work this out on points, too,

but I have not done so.

In particular,Dα
∼= D1 for all α such that the image ofα in Tp is a unit. We let

D := D1.
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Proposition 4.3 The rigid analytic curveD is reduced, nested and each irreducible component ofD

maps surjectively and generic isomorphically onto a Fredholm hypersurface.

I cannot say much about the proof of this proposition during the talk. It uses the ‘flexibility’ in

choosing ‘good’α locally. The ‘nestedness’ implies thatD is the union of its irreducible components.

Recall the decomposition

W =
⊔

i∈(Z/pZ)×

Wi,

corresponding to the isomorphism

Λ = Zp[[Z
×
p ]] = Zp[[(Z/pZ)× × Zp]] ∼=

∏

i∈(Z/pZ)×

Zp[[Zp]].

Fact: Every irreducible componentD of D maps almost surjectively onto one of theWi, where

‘almost surjectively’ means that at most a finite number of points are missed.

The vague reason for this is that the Fredholm power seriesPUp also factors into a product
∏

i∈(Z/pZ)× PUp,i.

4.4 Relationship betweenCp and D

We will now present the construction of a rigid analytic morphism

δ : D → Xp × A1 \ {0},

which onCp-points is given by

c 7→ (λc,
1

uc
),

wherec is an overconvergent eigenform (as seen in the construction ofD) with attached pseudo-

reprsentationλc andUp-eigenvalueuc.

We descibe the mapsD → Xp andD → A1 \ {0}. Disregarding some slight complications and

just takingD1(V ) instead ofD, the first map is just the one coming fromRp → Tα(V ) (attaching the

pseudo-representation). The second map is the composite

D
z1−→ Z1 →֒W × A1 2nd projection

−−−−−−−→ A1.

The key point is thatδ factors through the eigencurveCp. On Cp-points this seems quite clear

(the points correspond to overconvergent eigenforms with finite slope).Note that we are disregarding

some subtleties concerning the comparison between overconvergent andp-adic Katz modular forms.

Theorem 4.4 The above map induces an isomorphismD ∼= Cred
p .

As D is reduced, the map factors not only throughCp, but also throughCred
p . We have seen that it

is a bijection onCp-points. I cannot say anything on the two pages of proof showing that it isa rigid

analytic isomorphism.
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5 Summary and main theorems

In this final part, we gather and explain, as well as possible, the main statements of the paper by

Coleman and Mazur appearing in Sections 1.5 and 7.6.

Theclassical modular locus of tame level1 is the set of points

M⊂ (Xp × A1)(Cp)

consisting ofxf = (λf , 1/uf ) for f running through all classical modular eigenforms of finite slope

on Γ1(p
n) for any n. As above,λf denotes the corresponding pseudo-representation anduf the

Up-eigenvalue.

Theorem 5.1 The eigencurveCp is the Fredholm closure ofM, i.e. the smallest Fredholm variety

containingM.

A Fredholm variety is – by definition – an arbitrary intersection of Fredholm hypersurfaces.

These, in turn, are those rigid analytic subspaces (ofXp × A1) cut out by a Fredholm series. As

Cp =
⋂

α r−1
α (Zα), it is clear thatCp is a Fredholm variety. Moreover, it clearly containsM. Since

among the zeros of eachPι(α)Up
(after specialising to any integral weight character) there are some

corresponding to the inverseUp-eigenvalue of a classical modular form, it should be possible to show

thatCp is indeed the Fredholm closure. But, to be honest, I cannot turn this into a correct proof right

now.

From Propositions 4.1 and 4.3 and Theorem 4.4 we obtain:

Theorem 5.2 (a) The eigencurveCp is a curve.

(b) The natural projection of any irreducible component of the reduced eigencurve to weight space

is component-wise almost surjective in the sense that given any irreduciblecomponent of the

reduced eigencurve the complement of its image in the unique irreducible component of weight

space containing that image (is empty, or) consists of at most a finite number of weights.

(c) The projection of the reduced eigencurve to weight space is locally in-the-domain finite flat in the

sense thatCred
p is covered by admissible affinoid domainsU such that the restriction of projection

to weight space toU is a finite flat mapping ofU onto its image inW.

Next, recall thatRp was made in Juan’s talk by taking the direct product of the universal defor-

mation rings of the pseudo-reprsentations of the finitely many semi-simple residual p-modular Galois

representations. Whenever we writeρ, we now mean one of those residual representations. Hence,

Xp
∼=

⊔

ρ

Xρ and Xp × A1 ∼=
⊔

ρ

(Xρ × A1).

Define

Cρ := Cp ∩Xρ.
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Theorem 5.3 (a) We haveCp =
⊔

ρ Cρ, so that theCρ are admissibly closed open inCp (in the sense

that they are disjoint and form an admissible covering ofCp).

(b) If two classical modular pointsxf andxg (in the notation above) lie on the same connected com-

ponent of the reduced eigencurve, then the reductions of their Fourierexpansions are congruent

moduloOCp (at almost all prime coefficients) and their attached semi-simple residualGalois

representations are equivalent.

Theorem 5.4 The reduced eigencurve is the rigid Zariski closure of the classical modular locus.

This theorem, which we will not prove, needs a deep theorem of Coleman’sas input: Every

overconvergent eigenform of integral weightk and slope less thank − 1 and different fromk−1
2 is

classical. The proof then uses that every irreducible component of the reduced eigencurve contains

forms of all integral weights bigger than a certaink0 (depending on the component) due to the almost

surjectivity.

We will finish with the following theorem.

Theorem 5.5 If (fn)n is a sequence of normalised eigenforms (of tame level1) with Fourier coeffi-

cients inCp such thatfn has weightκn and the sequence of slopes(v(ap(fn)))n is bounded inde-

pendently ofn and the sequence ofq-expansions inCp[[q]](1/q) converges coefficient-wise to a series

f(q), then the sequence of weights converges to a weightκ andf(q) is the Fourier expansion of an

overconvergent modular eigenform of tame level1, weightκ and finite slope.

Since the weights can be read off from theq-expansions, it should be an almost formal conse-

quence that the weights converge (Coleman and Mazur refer to an article by Serre, which I did not

look up). The point is that due to the convergence of the weights, eventually all the fn will correspond

to Cp-points onD1(V ) for someV ∈ C1. Denote byηn : T1(V )→ Cp the corresponding ring homo-

morphisms so thatfn =
∑

m ηn(Tm)qm. The point-wise convergence of theq-expansions now means

that for eachm, theηn(Tm) converge to someη(Tm). As the images ofTm generate all ofT1(V ),

like this one obtains a limit functionη : T1(V )→ Cp, i.e. the desired overconvergent modular form.
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