Properties of the Eigencurve

Gabor Wiese

27th January 2010

Abstract

These are notes for my talk in the seminar ‘The Eigencurvisi@tUniversitat Duisburg-Essen
on 28 January 2010. The aim of the seminar is to go througheitménsl paper by Coleman and
Mazur first defining the eigencurve. The present notes trpteicmost parts of Chapter 7. The
philosophy was to completely disregard technicalities tartty to stress the underlying ideas.

The reader be warned that | learned the subject only whilegpiieg this talk (part time during
less than 2 weeks), so misunderstandings and, hence, wrongprecise statements are very
likely.

1 Introductory words

In Johan’s talk, the eigencurve was constructed. In this talk, we retioe@ilreduction of the eigen-
curve by patching together the affinoid spaces attached to certain Hgekeas.
In short:

(1) Atthe basis of the eigencurve is the theorem (Hida, Gouvéa) thatdeeanonvergent eigenform
one can attach a pseudo representation. This allows one to see oesgerm\eigenforms inside
X, x Al, whereX,, is the rigid analytic space attached to a universal deformation ring of pseud
representations.

The eigencurve, is by construction the subspace oX,, x A' whoseC,-points are the images
of the overconvergent eigenforms under the Hida-Gouvéa consmmuctio

Like this, the geometry is hidden. It is even not a priori clear that the eigeads a curve.
(2) Today we will construct a curv® (it is obviously a curve) by patching together rigid analytic
spaces associated with certain Hecke algebras. It will turn oufthathe nilreduction of”),.

| am speculating that the French translation ‘courbe de Hecke’ for eigea refers to this con-
struction.



2 Collection of definitions and statements
2.1 Standing assumptions and notation
e p an odd prime number.

e C, the completion of a fixed algebraic cIosm@g of Q.

2.2 Notions from rigid analytic geometry

Definition 2.1 (i) BI0,p"|x = Max(Ok(p™T)) is the closed disc of radius™ at the origin. It
is the rigid analytic subspace df}; whoseC,-valued points ardz € C, | |z| < p™}.

(i) If Ais a complete noetherian local ring, thefi4 is the attached rigid analytic space ovAr.
TheC,-valued points are the continuolx-algebra homomorphismé — C,, i.e. X 4(Cp) =
Homp, (4, C)).

(iii) The spectral semi-norror supremum norm

[fl:= pomax £ ()],
where f(z) == f +m, € A/m, — K. Note that we writem, for x to remind us that
we are talking about maximal ideals. Note also thAtr)| is independent of the embedding

A/m; — K.

(iv) If Y is a rigid analytic variety ovelrs, then A(Y") is the K-algebra of rigid analytic functions.

A%(Y') is the Ok -subalgebra ofd(Y") consisting of rigid analytic functions with spectral semi-
norm< 1.

(v) Arigid spaceX over a complete non-archimedean valued figlés callednestedf it admits an
admissible covering by a countable increasing sequence of affinottbewns

XoCXpC---CX.

Definition 2.2 (Power series)Let A be a topological ring.

n—oo

(i) AT) ={f=>,"gaT" | ay —— 0}, theTate algebra of restricted or strictly convergent
power series on the closed unit ball

(i) AssumeA is a local ring with maximal ideam. Then

A{TY ={f = ZanT" | 3, € RStcp/n 2% 0o anda, € m™ V n}

n=0

are the entire power series over. They are precisely those series having an infinite radius of
convergence.



2.3 Fredholm

Definition 2.3 (i) Let A be alocal ring. AFredholm series ovet is an element’ € A{{T'}} with
constant terni.

(i) Let X be arigid analytic space. Aredholm series oveX is an entire power series ovet(X)
with constant termi.

For more, see Stefan’s talk.

2.4 Weight space

For simplicity, | only list the tame level weight space.

Definition 2.4 Thelwasawa algebra is defined as

—

A= Z,[[Z)]) = lim Z,[(Z/p"Z)"].

Theweight space of tame levélis defined as the rigid analytic space ov@s Vv := W, associated
with A.

The lwasawa algebrA is a complete regular local ring of Krull dimensi@n SinceA can also
be equipped with the structure of a Hopf algebra, the weight spatea commutative rigid analytic
group object. Note

W(C,) = Homes(Z),C,) = Cp-values characters @

We mention that the-cyclotomic character defines a surjectigp : Gal(Q/Q) — Z, and by the
Kronecker-Weber theorem an isomorphié@o{p oo} = Ly
For more, see Panos’ talk.

2.5 Overconvergent modular forms

See Ralf’s talk.

2.6 Pseudo representations

Let py,...,p, be the distincp-modular Galois representatiofi#; (,, ; — GLa2(F,) and letRj,
be the universal deformation rings attached to the corresponding@sepiesentations. P, =
Ry, x --- x R; and letX, be the associated rigid analytic space d@gr

We recall the rigid analytic map,,; : X, — W defined in Juan’s talk. This map comes from a
continuous ring homomorphism,; : A — R,, equippingR, with a A-algebra structure. We now
explain this notion. Leti := G 0} @nd letp : G — GLa(R) be any continuous-dimensional



(pseudo-) representation for any topological rifig Let det(p) be the determinant gf. There is a
mapuqe; Making the following diagram commutative:

det(p)

RX

Hdet(p)

ab = 7.
G Xp p

Recall thatdet(ps) = X’;‘l for a classical modular form of weight(and trivial nebentype). We find
thatﬂdet(pf) sendsy € Z toy*~! € R. In order to recovet; (instead oft — 1), one defineg: (for
givenp) as
fiwt 2 Ly — Ry, 7 =Y fhdet(p) (7)-
This continuous group homomorphism extends uniquely to the desired
Pt 2 A = Zp[[ZSH — Ry,
hence, giving rise to
fwt 2 Xp — W.

The meaning ofiy is just that it sends a pseudo-representalan X, (C,) to its weight character
Lwt(A) =: Ky € W(C,).
For more, see Juan’s talk.

3 The Eigencurve

In this section, we will recall the description of the eigencurveCgrpoints. In fact, in the whole talk
we are mostly going to tredt,-points and we shall not so much worry about the structures as rigid
analytic spaces.

Recall that

o H :=A[T,: { # pprime] = A[T,Ts,...,T,,...], therestricted abstract Hecke algebra
e H :=H'[U,), thefull abstract Hecke algebra

e .:'H' — R, is theA-algebra homomorphism defined by sendiido the trace of the universal
pseudo-reprsentation Rtoby.

e Fora € H' suchthat(a) € R we have the Fredholm power seriBg.y, (T) € A{{T'}}
which is the unique power series satisfying the following assertion: Foy wght (character)
k: A — C, (i.e. every point of the weight spad®), the power series obtained by applying
to the coefficients is the Fredholm determinant

Pliyu, (T) = det(1 = (()U,)TIME(Cy)) = [[(1 = wiT) € C,{{T}}.

%



Thew; are precisely the eigenvalues of the operatanU,, on the spacM,I(Cp)) of overcon-
vergent modular forms of weight (and tame level, as always).

The spectral curve,, := Z,,)y, is the rigid analytic subspace &V x Al cut out by P, (ayv, -
We have the following description on tli&,-points:

Za(Cp) = {(k,u™") € W x A)(Cp) | Py, (u™) = 0}

={(k,u”
= {(r,u™") € W x AN)(Cp) | 3f € MI(Cy) : ((a))Upf = uf}.

As | am taking inverses, | should treat zero explicitly. | just ignore this.

One defines a rigid analytic map, : X, x Al — W x Al which can explicitly be given on

C,-points like this:
t

M)

Note that\(:(«v)) is just the evaluation of the pseudo representatior?, — C, at the image
of the Hecke operatax. If o = Ty, then this is just evaluated at the trace dfob, under the
universal pseudo-representation.

()\, t) — (/i)\,

We have furthermore:

ra (Z2a)(Cy)

A\ u™t) € (Xp x AN(Cy) | (kas (A(())u) ™) € Za(Cp)}
Au :

{
{vu™) € (Xp x AY)(Cy) | 3f € ML, (Cp) : (@) Upf = Ae(@))uf}.

The eigencurve’, (of tame levell) is by definition the rigid analytic space

C, = m N (Z2,).

a€H’ : (a)ERY
For (A, u™t) € (X, x A1)(C,) the following statements are equivalent:

(i) (N u™t) € Cp(Cy).

(if) For all « € H’ such that(a) € R there exists a normalised overconvergent Hecke
eigenformf ¢ MlA (C,) satisfying

((@)Up) f = Ae(@))uf.

By a theorem of Gouvéa and Hida, one can attach a pseudo represeRjatoany normalised
overconvergent Hecke eigenforfn This provides one with a map

. : - froOpug?
{ normalised overconv. eigenforms of finite slope ollgr} M (X, x AN(CTy),

whereu is theU),-eigenvalue off.



e The main theorem from Johan’s talk is that this map is a bijection 6p{@,).

This is not a miracle at all. The construction@f as the intersection of the ! (Z2,,) was made
precisely to have this property.

The idea is that due to the flexibility given by the choiceagfall eigenvalues at all’; can
be encoded as eigenvalues.6&)U,. This forces the following assertion, which is the key
point in the proof presented in Johan's talk: Givenu=') € C,(C,). For alln, there is
some overconvergent modular forfp of weight ) such that itsy-expansion coincides with
the formalg-expansion of\ up ton and such that it§/,-eigenvalue is..

4 Construction of a reduced eigencurve

In this section, we shall construct a curiewhich will be isomorphic to the nilreduction a¥,.
Conceptually, there are the following differences with

e We do not use single weights, but we work locally over the weight space.

e The curveD will be patched together from pieces which are locally finite over the weigitesp
They are hence curves, so that al3as a curve.

Here is the plan for the construction BX. First take anyv € H’ such that(a) € R)\. We will
constructl-dimensional piece®, (V). This will take up most of the time. Then the curiz, will
be patched together from the, (V). Finally, we will setD := D, state its properties and relate it
to C,.

4.1 Construction of the1-dimensional pieceD, (V')

We start by constructing,, (V) and, hence, fixx as above for the time being. Consider the morphism:

natural inclusion 1 first projection
el e son

W x A W.

T & Za

Fact: If V C Z, is an affinoid subdomain, then, (V') C W is also an affinoid subdomain.
Let

Co = {V C Z, affinoid subdomain V' Jo, (V) is finite, V admissibly closed-open i&, }

and
CIm .= {V € C, | V irreducible}.

Fact: C, is an admissible covering &,,.
Fact: Fix an affinoidY” C W with ring of rigid analytic functionsA := A(Y). Then the set

(Ve |m(V)=Y}

is in bijection with the set of tuple®, H) € A[T] x A{{T}} such that
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- the constant term af is 1 and the leading term a unit iA (think of asQ = Hle(l —u;T)),
- ged(Q, H) =1and

- PL(a)Up = QH.

I am wondering whether the condition th@tis irreducible is missing. Explicitly, the bijection is
such thatV’ = Sp(A(T)/(Q*(T))), whereQ* is the polynomial@ ‘the other way around’, i.e.
Q*(T) = T¥MQ(T-1). ThatQ is a polynomial is a consequence of the assumed finiteness of
V X% 7, (V). We shall sometimes writ®y to indicate the relationship betwe&handQ.

By construction, we have the
Fact: The degree ofr,, : V — Y is equal tod := deg(Q).

We just pause for a second to explicit what the finiteness mearis, goints: For every: <
Y (C,) there are generically precisedypoints (x,u; ') € V(C,), namely the occuring; are pre-
cisely the zeros of)™*. (Recall that) € A[T]. Specialising to a weight means applying the weight
characterx to the coefficients of) making it a polynomial)® € C,[T].) We know by what we
recalled in the previous section that there are overconvergent eigenéd the chosen weight with
the.(a)Up-eigenvalues.;.

It is not this discrete point of view, i.e. singkes, that we want to assume. Instead, we use the fact
that overconvergent eigenforms come in families; in particular, we will nomsicler theA-module
Mf, (see Ralf’s talk), which consists of families of overconvergent moduolan$ overy'.
Fact: The polynomial@ = Q(V) cutsM; into two pieces (closed (Y')-submodules)

M = No(V) & Fo(V)

such thatQ*(«()Up) acts invertibly onF,, (V') and kills N, (V).

The A-module N, (V') is called the space averconvergent finite slope modular forms over
An element of this space is a family of overconvergent modular eigenfoithsagights inY” which
we regard as eigenfunctions fqr) U, with eigenvalues one of the zeros@f.

Fact: N, (V) is (of course) Hecke stable and it is locally free of rahi deg(Q)) as and = A(Y)-
module.

We want a geometric object whose points are precisely the overconvergelular forms just
described.The principal idea of the present construction is to use the rigid ankytic space asso-
ciated with a suitable Hecke algebra.

We define theverconvergent finite slope Hecke algebra oveas theA = A(Y')-module

To(V) :=im (H ®) A — Enda(Na(V))).

Let us make the important observation that the map

T—u(e)

A(V) = AW NTY/(Q*(T)) =22, 1,(v)

is a well-definedA-algebra homomorphism, since by construction the endomorphiant/,, of
N, (V) is the zero map.



Fact: T, (V) and N, (V) are ‘almost’ dual under thg-expansion pairing:

(T, f) = ar(fIT),

in the sense that we have an injectBp(V') — Hom (N, (V'), A) with cokernel corresponding to
the eigenforms with constaptexpansion (if they exist for the allowed weighf3.
Finally, we can define the desired piebg (V') as

By the above observation, it comes equipped with maps
Da(V) 2V 22 Y

and (from the ‘almost’ duality) we conclude the
Fact: The mapD, (V) — Y is finite flat of degreel = deg(Q).
Recall thatV was chosen iﬁfgf. For general/ € C, suchthaty = Vi U---UV, withV; € cgr
we define
Do(V) := Do(Vi)U -+ U Dyo(Vy).

It is now obvious thaD,, (V') is 1-dimensional Note thatD,(V')(C,) are overconvergent eigen-
forms with weight inY'(C,,) and¢(«)U,-eigenvalue a zero @@};" € C,[T].

Moreover, we have the
Fact: If Qv (7)) is squarefree, then the mdp, (V') — V is generically an isomorphism and bdth

andD,, (V) are reduced.

We summarise what we did so far. We still keepc H’ with (o) € R} fixed. Also fix an
affinoid subdomairt” € W.

My (Na(V)} = {Ta(V)} < {Da(V)}
!
Zy | {VeClCyma(V)=Y} < {Qv}

The passage from the spectral curve to the overconvergent moduizs fs made via the polyno-
mials @y, thus retaining the information on the eigenvalues(ef)U,.

4.2 Glueing

Also in this subsection, we shall keepc H' with .(a) € RS fixed. The aim is to obtain a curdg,,

by glueing theD,, (V') together. We shall be short and only describe the main steps.

Fact: Let V1, V5 € Co. ThenVi NV, € C,,.

Fact: Suppose, moreover, thit C V5. ThenD,, (V1) C D, (V2).
As a consequence, fof, V € C,, we haveD,(UNV') C D,(U). Denote the image b, (U, V')

(thenD,(V,U), of course, is the image B, (V)).

Fact: D, (U,V) = D, (V,U).



Looking only atC,-points (which we explicited above), the previous two facts are obviouseM
precisely, the assumptidi C V5 translates to a surjection

AT)/(Qvy) — AT/ (Qvs),
i.e. to the conditiorQy, |Q7,. Due to

Da(Vi)(Cp) = {f € MI(Cp) | & € ma(Vi)(Cy), f eigenform
W(a)Upf = uf for u such thaQy"(u) = 0},

we find D, (V1)(C,p) € Do (V2)(C,).

The final fact forC,-points means that thB, (1")(C,) can be glued together (as sets).
Fact: The D,(V') can be glued together to give a rigid analytic cuivg. Moreover, the maps
D, (V) 2% vV X2 Y give rise to rigid analytic morphisms

7Dy 25 Z, TS oW,
Proposition 4.1 (a) z, is a finite morphism.

(b) = is locally in-the-domain finite flatD,, is covered by affinoid subdomains, namely ihgV),
which have the property that their imag¥s:= 7 (D, (V)) C W are affinoid subdomains ot
and moreoveD, (V) is finite flat overY".

(c) D, is a curve (equidimensional of dimension

That D,, is a curve follows from the fact that all thB, (V') are 1-dimensional (or alternatively
from the finiteness over the weight space, which is a curve).

4.3 The curveD

Let T, be the Katz Hecke algebra of tame leve(see Tommaso’s talk), which is defined as the
completion of the image ot in the endomorphisms of the spa®eof all Katz p-adic modular
functions of tame level (with respect to the compact-open topology on the ring géndomorphisms
of V).

Proposition 4.2 Let o, 3 € ‘H' such thati(a),«(3) € Rj. If the images oix and 3 in T, are
associate (i.e. they generate the same principal ideal), then there is aahestoimorphismD,, = Dg.

| imagine this proposition somehow like this. The assumptiomv@nd 3 means that the slopes
of the operators(«)U, and«(3)U, are the same. The patches from whidh is made up are just
something like translates of the patchesfy. Itis certainly possible to work this out on points, too,
but | have not done so.

In particular,D,, = D, for all o such that the image ef in T, is a unit. We let

D = Dl.



Proposition 4.3 The rigid analytic curveD is reduced, nested and each irreducible componeif? of
maps surjectively and generic isomorphically onto a Fredholm hyperserfa

| cannot say much about the proof of this proposition during the talk. ds tise ‘flexibility’ in
choosing ‘gooda locally. The ‘nestedness’ implies thatis the union of its irreducible components.
Recall the decomposition

A=2Z,(2)]) = Z[(Z/p2)* x ) =[]  ZllZy))-
i€(Z/pL)>
Fact: Every irreducible componer®® of D maps almost surjectively onto one of th&;, where
‘almost surjectively’ means that at most a finite number of points are missed.
The vague reason for this is that the Fredholm power sdfigsalso factors into a product

Hie(Z/pZ)X Py, i-

4.4 Relationship betweerC, and D

We will now present the construction of a rigid analytic morphism
§:D — X, x A\ {0},

which onC,-points is given by
1
c— ()\07 ;)7

wherec is an overconvergent eigenform (as seen in the constructian)ofith attached pseudo-
reprsentatior\. andU,-eigenvalues,.

We descibe the mape — X, andD — A! \ {0}. Disregarding some slight complications and
just takingD, (V') instead ofD, the first map is just the one coming fraR), — T, (V') (attaching the
pseudo-representation). The second map is the composite

1 2nd projection
_

DL Z W xA Al

The key point is thab factors through the eigencurvg,. On C,-points this seems quite clear
(the points correspond to overconvergent eigenforms with finite sidjme that we are disregarding
some subtleties concerning the comparison between overconvergentditdKatz modular forms.

Theorem 4.4 The above map induces an isomorphiBnae C;ed.

As D is reduced, the map factors not only through but also througl@lged. We have seen that it
is a bijection onC,-points. | cannot say anything on the two pages of proof showing thaaitigid
analytic isomorphism.
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5 Summary and main theorems

In this final part, we gather and explain, as well as possible, the main stateofahe paper by
Coleman and Mazur appearing in Sections 1.5 and 7.6.
Theclassical modular locus of tame levels the set of points

M C (X, x AN)(Tp)

consisting oft; = (Ag, 1/uy) for f running through all classical modular eigenforms of finite slope
onT'y(p™) for anyn. As above,\; denotes the corresponding pseudo-representation:aritie
Up-eigenvalue.

Theorem 5.1 The eigencurve, is the Fredholm closure oM, i.e. the smallest Fredholm variety
containing M.

A Fredholm variety is — by definition — an arbitrary intersection of Fredholpehsurfaces.
These, in turn, are those rigid analytic subspacesX(pfx A') cut out by a Fredholm series. As
Cp = NaTa (Za), itis clear thatC, is a Fredholm variety. Moreover, it clearly containg. Since
among the zeros of eadh )y, (after specialising to any integral weight character) there are some
corresponding to the invergé,-eigenvalue of a classical modular form, it should be possible to show
thatC), is indeed the Fredholm closure. But, to be honest, | cannot turn this intmectproof right
now.

From Propositions 4.1 and 4.3 and Theorem 4.4 we obtain:

Theorem 5.2 (a) The eigencurvé’, is a curve.

(b) The natural projection of any irreducible component of the redugigencurve to weight space
is component-wise almost surjective in the sense that given any irreducibiponent of the
reduced eigencurve the complement of its image in the unique irreducbipanent of weight
space containing that image (is empty, or) consists of at most a finitearwhiwveights.

(c) The projection of the reduced eigencurve to weight space is locatheitomain finite flat in the
sense tha(?;;eOl is covered by admissible affinoid domaifisuch that the restriction of projection
to weight space tél is a finite flat mapping off onto its image inV.

Next, recall thatk, was made in Juan’s talk by taking the direct product of the universak-def
mation rings of the pseudo-reprsentations of the finitely many semi-simple aégicuwodular Galois
representations. Whenever we writewe now mean one of those residual representations. Hence,

X,=| |X; and X, x Al =] |(X5 x A").
13 P

Define
Cp = Cp N Xﬁ.
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Theorem 5.3 (a) We havel, = |_|ﬁ (5, so that theC; are admissibly closed opend, (in the sense
that they are disjoint and form an admissible coveringgy.

(b) If two classical modular points; andz, (in the notation above) lie on the same connected com-
ponent of the reduced eigencurve, then the reductions of their Foexansions are congruent
moduloOc, (at almost all prime coefficients) and their attached semi-simple resiGadbis
representations are equivalent.

Theorem 5.4 The reduced eigencurve is the rigid Zariski closure of the classicaliaotbcus.

This theorem, which we will not prove, needs a deep theorem of Colenaanisput: Every
overconvergent eigenform of integral weightind slope less thakh — 1 and different from% is
classical. The proof then uses that every irreducible component oétheed eigencurve contains
forms of all integral weights bigger than a certain(depending on the component) due to the almost
surjectivity.

We will finish with the following theorem.

Theorem 5.5 If (f,), is a sequence of normalised eigenforms (of tame [Evelith Fourier coeffi-
cients inC,, such thatf,, has weightx,, and the sequence of slop@ga,(f.)))» is bounded inde-
pendently of: and the sequence gfexpansions i, [[¢]](1/q) converges coefficient-wise to a series
f(q), then the sequence of weights converges to a weigimd f(q) is the Fourier expansion of an
overconvergent modular eigenform of tame leijeleightx and finite slope.

Since the weights can be read off from thexpansions, it should be an almost formal conse-
guence that the weights converge (Coleman and Mazur refer to an agti@erke, which | did not
look up). The pointis that due to the convergence of the weights, e\lsraillahe f,, will correspond
to C,-points onD; (V') for someV € C;. Denote by, : T1(V) — C, the corresponding ring homo-
morphisms so that, = >, 7,(T,»)¢™. The point-wise convergence of theexpansions now means
that for eachm, then,,(7,,) converge to some(T,,). As the images of;,, generate all ofl'; ('),
like this one obtains a limit function : T, (V') — C,, i.e. the desired overconvergent modular form.
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