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Abstract

These are notes of two talks in the local number theory seminar in Leiden on Shimura
varieties given on 26 May and 2 June 2003.

The aim is to treat a very simple example of a Shimura variety, namely the moduli space
of elliptic curves together with a certain limit of level structures, without entering into the
entire formalism. In the first talk, we shall give several descriptions of this space and obtain
a very natural action of the absolute Galois group on it. The second talk will introduce a
very elegant language for dealing with the Galois action on elliptic curves with complex
multiplications by a fixed quadratic imaginary field. We will formulate the main theorem of
complex multiplications on elliptic curves, but won’t prove it.

Both talks were explained to me by Bas Edixhoven. The principal contents can also be
found in Deligne-Rapoport.
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1 Elliptic curves with level structures

In this first part we will establish several bijections, providing us with different descriptions of
the moduli space of elliptic curves with a full level n structure.

Elliptic curves over C and lattices

Let us, however, start without level structures. We denote by Ell(C) the category of elliptic
curves E(C) over C, with isomorphisms as morphisms. We want to relate this to the category
Lat(C) of lattices Λ < C with morphisms given by multiplication by a complex number.

There is a well-known equivalence of categories between Lat(C) and Ell(C) given by sending
a lattice Λ < C to the Riemann surface C/Λ. Recalling that, up to isomorphism, every elliptic
curve over C is of that form, it follows that we have indeed an equivalence of categories. This
implies that there is a bijection of sets

∼=\Lat(C)
bij.
←→ ∼=\Ell(C).

Aside on homology

Since in the actual talk I used things like H1(E(C),Z), I ought to say some words about that
here.

If I understand it well, there really is no need for using this slightly fancy language. For, if
we are working up to isomorphism, we can always take H1(E(C),Z) to be the lattice Λ, and if it
is up to isogeny, well, then we choose some lattice Λ and tensor it with Q, over Z. Having killed
any motivation on this point, I will go on to explain it nevertheless.

We start by recalling the definition of H1(X,Z) for a real manifold X . A short one would be
to say that it is the abelianisation of the fundamental group of X .

Very often, one finds simplicial homology. We do a very special case here. By a path we
mean a continuous map φ : [0, 1] → X . Let Z[paths] be the free abelian group generated by the
paths. There is a natural boundary map ∂1 given uniquely by sending a path φ to φ(1)−φ(0), the
end point minus the starting point in the free abelian group generated by the points. An element
z in the kernel of ∂1 is called a cycle. The set of cycles is denoted Z1(X,Z).

Let ∆2 be the set of elements in (x, y, z) ∈ R3
≥0 such that x+ y+ z = 1. It is a description of

a triangular surface. (If one notices that (x, y) ∈ R2
≥0 with x+y = 1 gives the line segment from

(1, 0) to (0, 1), which is homeomorphic with [0, 1], then it is evident, how to continue to higher
dimensions.) A face is now a continuous map Φ : ∆2 → X . Also faces have boundaries. Namely
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∂2(Φ) is the cycle that is naturally given by the obvious boudary of the triangular surface. The
set of all boundaries of faces is denoted B1(X,Z).

The first homology H1(X,Z) is the quotient (of abelian groups) Z1(X,Z)/B1(X,Z). Given
an abelian group A, one can replace Z by A in the above definition to obtain H1(X,A).

An important theorem says that for a compact oriented complex curve X of genus g, the
group H1(X,Z) is a free abelian group of rank 2g, and that H1(X,A) = H1(X,Z)⊗Z A.

Let now an elliptic curve E(C) be given as C/Λ. It is clear that the universal covering space
of E(C) is C and that the fundamental group is abelian, and generated by any two paths that span
the lattice. Thus we see that H1(E(C),Z) = Λ. Consequently, H1(E(C),R) = C. So, we can
now think of an elliptic curve E(C) as the quotient H1(E(C),R)/H1(E(C),Z).

If one wants to avoid using the description “C/Λ” to obtain “1-dimensional C-vector space
modulo lattice”, one has to use the Abel-Jacobi map. For this we recall that the space Ω1(E(C))

of holomorphic differentials on a compact Riemann surface of genus g is a g-dimensional C-
vector space. Differentials can be integrated along paths. Let us embed H1(E(C),Z) into
Ω1(E(C))∨, by sending a path α to the linear form ω 7→

∫
α
ω. Now we can write down the

Abel-Jacobi map.

E(C)→ Ω1(E(C))∨/H1(E(C),Z), P 7→ (ω 7→

∫ P

0

w).

It is now the theorem of Abel-Jacobi that this is an isomorphism. Thus we find the description C

modulo lattice, used before.
Let us recall that the dual of the holomorphic diffentials is also called the tangent space (at

0): T0(E(C)).

Torsion points and the Tate module

We denote by E(C)[n] the kernel of the multiplication by n map on an elliptic curve E(C):

0→ E(C)[n]→ E(C)
·n
−→ E(C)→ 0

for a non-zero integer n.
If E(C) = C/Λ, then one finds E(C)[n] = 1

n
Λ/Λ. The Tate module T (E(C)) is defined as

the projective limit over the E(C)[n]. Moreover, one (and we, too) uses a lot the Q-vector space
V (E(C)) = T (E(C))⊗Z Q.

In the rather fancy language from above one has

E(C)[n] = H1(E(C),Z/n), T (E(C)) = H1(E(C), Ẑ), V (E(C)) = H1(E(C),Af).
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Level structures and lattices

Now consider level structures. We introduce the category Elln(C) of elliptic curves with a full
level n structure, whose objects are pairs (E(C), φn) with E(C) an elliptic curve and φn an
isomorphism from (Z/n)2 toE(C)[n]. The morphisms are the isogenies (and the zero) respecting
the φns (in the sense one thinks, which I am too lazy to put into a commutative diagram right
now).

We want to relate this category with lattices. Well, the obvious choice is the category Latn(C),
with objects (Λ, φn). Here Λ is a lattice in C, and φn is an isomorphism (of groups) between
(Z/n)2 and 1

n
Λ/Λ. The morphisms are those C-linear maps that respect the φns.

In the same way as above, one obtains a bijection

∼=\Latn(C)
bij.
←→ ∼=\Elln(C).

Complex structures

Let V be a 2-dimensional real vector space. In Robert’s talk complex structures on V were
introduced as R-algebra homomorphisms C → EndR(V ). I call the set of complex structures
CS(V ). Such an R-algebra homomorphism ψ determines what multiplication by a complex
number should be: multiplication by z ∈ C corresponds to application of the matrix ψ(z).

Of course, it is enough to know what multiplication by i does. We have
ψ(i)2 = ψ(i2) = ψ(−1) = −1. So ψ(i) has two eigenvalues i and −i (considering ψ(i) to
act on the complexified vector space VC = V ⊗R C). The eigenspace of VC corresponding to i is
not stabilized by complex conjugation, as otherwise it would also be an eigenspace for −i. For
any non-real 1-dimensional vector space W in VC, there is a ψ(i) such that W is the i-eigenspace
of ψ(i). This yields a bijection between CS(V ) and P(VC) \ P(V ).

We have a GL(V )-action on CS(V ) given by conjugation: (M.ψ)(z) = M(ψ(z))M−1. On
the eigenspace side, this corresponds to M.W = MW .

If we now identify P(VC) \ P(V ) with C \ R = H±, the action on the right space is by
fractional linear transformations. Let us make the resulting bijection CS(V )

bij.
←→ H± explicit.

Given a complex structure ψ : C → EndR(V ), choose a matrix M =

(
a b

c d

)
such that

M

(
0 1

−1 0

)
M−1 equals ψ(i). The element of H± we map to is ai+b

ci+d
.
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Real lattices

Let us introduce the category Latn(R2), whose objects are pairs (Λ, φn) with Λ ≤ R2 a lattice
and φn an isomorphism between (Z/n)2 and 1

n
Λ/Λ. The morphisms are elements of GL2(R)

respecting the φns.
We have a natural bijection

∼=\(CS(R2)× Latn(R2))
bij.
←→ ∼=\Latn(C)

because the isomorphisms on the left are required to respect the complex structure. Hence only
those matrices in GL2(R) are allowed that correspond to multiplication by elements of C∗.

Let us remark that if we have any isomorphism between pairs (ψ1,Λ1) and (ψ2,Λ2)

in CS(R2) × Latn(R2), then there is a matrix M ∈ GL2(R) such that Λ2 = MΛ1 and
ψ2 = M ◦ ψ1 ◦M

−1. Consequently, the isomorphism classes are precisely the GL2(R)-orbits,
yielding a bijection

GL2(R)\(CS(R2)× Latn(R2))
bij.
←→ ∼=\Latn(C)

Rational lattices

This is the point where the first trick comes. One reduces to structures that one has over Q.
Namely, we consider the category Latn(Q2), defined in the obvious way similarly to the others.
In every GL2(R)-orbit of (Λ, ψn) with Λ < R2 there is an element (MΛ,M ◦ ψn) for some
M ∈ GL2(R) such that MΛ < Q2 < R2. This yields the bijection

GL2(R)\(CS(R2)× Latn(R2))
bij.
←→ GL2(Q)\(CS(R2)× Latn(Q2)).

Adelic lattices

The second trick is to consider Ẑ-lattices in Af
2. So, let’s denote by Lat(Af

2) the category of
Ẑ-lattices, whose morphisms are given by GL2(Af).

From Robert’s talk we know that there is a bijection

Lat(Q2)
bij.
←→ Lat(Af

2),

given by Λ < Q2 7→ Λ⊗Z Ẑ and in the other direction by L < Af
2 7→ L ∩Q2.

Analogously to the preceding, we also consider the category Latn(Af
2) of pairs (L, φn), now

with φn : (Z/n)2 → 1
n
L/L. As one has that 1

n
L/L = 1

n
Λ/Λ, one obtains a bijection

Latn(Q2)
bij.
←→ Latn(Af

2).
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We now relate the category Latn(Af
2) to the group GL2(Af ). Let us first note that there

is a natural bijection between the set of Ẑ-lattices L < Af
2 together with an isomorphism

ψ : Ẑ2 → L, just by taking the lattice spanned by the two columns of the matrix. There is
an obvious transitive action by GL2(Af) on it. Now we define the groupKn for a natural number
n by the exact sequence

0→ Kn → GL2(Ẑ)→ GL2(Z/n)→ 0.

The pair (Ẑ2, φn) in Latn(Af
2), with φn the identity, is precisely stabilized by Kn. Hence we

obtain a bijection
Latn(Af

2)
bij.
←→ GL2(Af)/Kn.

Characterisation of the moduli space

We now recall from last year’s geometry seminar that there is an affine scheme over Q, de-
noted YKn

and called the modular curve with full level n structure, whose C-points are precisely
∼=\Elln(C). We ought to remark that YKn

is only a fine moduli space if n ≥ 3.
Putting all the bijections just developped together one obtains

YKn
(C)

bij.
←→ GL2(Q)\

(
H± ×GL2(Af )/Kn

)
.

2 The associated Shimura variety Y

We define the associated Shimura variety Y as the projective limit over the affine Q-schemes
YKn

. Let us remark that if each of the YKn
is given as Spec(An) with a Q-algebra An, then Y

is the spectrum of the injective limit over the An. It is hence, as claimed, again a Q-scheme,
however, not of finite type.

We will again find natural interpretations of the complex points of this scheme as certain
moduli of elliptic curves. Before being able to start that, we will look a bit closer at the structure
of GL2(Af).

Properties of GL2(Af)

Given a topological ring R, the group GL2(R) carries the relative topology as a closed subset in

R5. It is the subset consisting of those (a, b, c, d, e) such that e det

(
a b

c d

)
= 1.
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Let us first apply this to the rings Ẑ and Z/n, the latter with the discrete topology. Taking the
projective limit over the embeddings GL2(Z/n) ↪→ (Z/n)5 we see that the topology on GL2(Ẑ)

as a profinite group equals the topology it carries as a subset of Ẑ5.
The only sensible topology on the group GL2(Af) seems to be the topology as a subset of

Af
5. With it, it is clear that GL2(Ẑ) is open in GL2(Af), since Ẑ is open in Af .

Proposition 2.1 The Kn < GL2(Af) form a basis of open neighbourhoods of 1 ∈ GL2(Af).

Proof. We use both topologies. The profinite one gives us thatKn is open in GL2(Ẑ) because
it is the kernel (with a finite quotient) of a continuous homomorphism. Since the subset topology
has yielded that GL2(Ẑ) is open in GL2(Af), the Kn are also open in GL2(Af). By definition of
the profinite topology they form a basis of open neighbourhoods of 1 ∈ GL2(Ẑ), hence also of
GL2(Af). �

A first bijection

We know that we have the bijection YKn
(C)

bij.
←→ GL2(Q)\

(
H± ×GL2(Af )/Kn

)
.

There is the following proposition (a proof of which I will maybe add later).

Proposition 2.2 Let n ≥ 3. Then GL2(Q) acts freely on H± ×GL2(Af)/Kn.

Corollary 2.3 lim
←−

n

GL2(Q)\
(
H± ×GL2(Af)/Kn

)
∼= GL2(Q)\

(
H± ×GL2(Af )

)
.

Proof. By the topology of GL2(Af) (discussed above), it is clear that lim
←−

n

GL2(Af)/Kn

equals GL2(Af ). Moreover, we have hence a natural surjection

GL2(Q)\
(
H± ×GL2(Af)

)
→ lim

←−

n

GL2(Q)\
(
H± ×GL2(Af )/Kn

)
,

the injectivity of which is left to prove.
Let us regard projective limits as subsets of the direct product∏

GL2(Q)\
(
H± × GL2(Af)/Kn

)
. Given any two x, y ∈ H± × GL2(Af ) mapping to

the same element on the right, we have to show the existence of a g ∈ GL2(Q) such that gx = y.
Write xn, yn for the images in H± × GL2(Af )/Kn. By assumption for each n there is a

gn ∈ GL2(Q) such that gnxn = yn. Next we have to use the compatibility of the GL2(Q)-action
with the transition maps. This implies directly that gnmxn = gnxn for all natural numbers n,m.
At this point we can use the proposition to conclude that gn = gm = gnm, provided n,m ≥ 3.
This finishes the proof because we can choose our g to be g3, which is equal to gn for all n ≥ 3,
and take the projective limit only over those n greater equal 3 (not changing the limit). �
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Consequently, we have a bijection

Y (C)
bij.
←→ GL2(Q)\

(
H± ×GL2(Af )

)
.

Elliptic curves up to isogeny

Let us first describe a construction that works for any additive category using the example Ell(C).
Define the category Ell(C)⊗Q to have as objects E(C)⊗Q (meant formally) with E(C) an

object of Ell(C). The morphisms are defined to be

HomEll(C)⊗Q(E1(C)⊗Q, E2(C)⊗Q) = HomEll(C)(E1(C), E2(C))⊗Z Q.

(We see that all we use is that the morphisms form an abelian group and that composition is
bilinear, which is one of the demands on an additive category.)

The title of this paragraph is justified by the following proposition.

Proposition 2.4 Let E1(C), E2(C) be two elliptic curves. Then E1(C) and E2(C) are isogenous
if and only if E1(C)⊗Q and E2(C)⊗Q are isomorphic.

Proof. Let φ : E1(C)→ E2(C) be an isogeny with kernel K ⊆ E1(C)[n]. We then consider
the composition

E1(C)
φ
−→ E2(C)

ψ
−→ E1(C)/K

·n
−→ E1(C).

It is precisely multiplication by n on E1(C). We can write this as (ψ ⊗ n)(φ ⊗ 1) = id ⊗ n,
which is a unit. Hence, φ⊗ 1 has a left inverse. The existence of a right inverse is also evident.

On the other hand, an isomorphism in Ell(C) ⊗ Q can be written as φ ⊗ 1/n for some
φ : E1(C)→ E2(C). Say, it has left inverse ψ ⊗ 1/r. Then ψ ◦ φ⊗ 1 = id⊗ nr. Consequently,
the kernel of φ is contained in E1(C)[nr], which makes φ an isogeny. �

Earlier, we had a bijection ∼=\Ell(C)
bij.
←→ ∼=\Lat(C). Now replacing Ell(C) by Ell(C)⊗Q,

we obtain a bijection

∼=\Ell(C)⊗Q
bij.
←→ ∼=\{V < C | V a 2-dim. Q-v.s. s.t. V ⊗Q R = C }.

Starting with an elliptic curve C/Λ, we send it to Λ ⊗Z Q. Or in more fancy language
E(C) 7→ H1(E(C),Q). The reason why this works is that if we have two lattices Λ1,Λ2 ∈ V ,
then we always find an n such that nΛ1 ≤ Λ2 ≤

1
n
Λ1.

Also as above, we can go one step further, and obtain a bijection

∼=\Ell(C)⊗Q
bij.
←→ ∼=\{ (V, τ) },

where V is a 2-dimensional Q-vector space, and τ ∈ CS(VR) is a complex structure on
VR = V ⊗Q R.
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A second bijection

Let us continue in the spirit of the preceding paragraph. We introduce the category ShEll(C),
whose objects are pairs (E(C)⊗Q, ψ) with E(C)⊗Q ∈ Ell(C)⊗Q and ψ an isomorphism of
Af -modules Af

2 → V (E(C)). We ought to mention at this point that the functor V from Ell(C)

to Af -modules factors through Ell(C)⊗Q.
From the above, we immediately conclude that we have a bijection

∼=\ShEll(C)
bij.
←→ ∼=\{ (V, τ, ψ) },

with V a 2-dimensional Q-vector space, τ ∈ CS(VR) a complex structure on VR and ψ an Af -
isomorphism Af

2 → V ⊗Q Af .
I should maybe point out that V (E(C) ⊗ Q) = V (E(C)) = H1(E(C),Q) ⊗Q Ẑ. Hence,

V (E) only depends on the isogeny class of E(C).
Instead of the V , let us now always take Q2. Then we have a bijection between

∼=\{ (V, τ, ψ) } and ∼=\{ (τ, ψ) }, now with τ a complex structure on Q2
R = R2 and ψ and

isomorphism Af
2 → Q2 ⊗Q Af = Af

2, i.e. ψ ∈ GL2(Af). The isomorphisms allowed are,
however, only elements of GL2(Q). Consequently, we have a bijection

∼=\{ (V, τ, ψ) }
bij.
←→ GL2(Q)\

(
H± ×GL2(Af)

)
.

Characterisation of Y (C)

Putting the results together, we have bijections

Y (C)
bij.
←→ GL2(Q)\

(
H± ×GL2(Af)

) bij.
←→ ∼=\ShEll(C).

Without proof, I’d like to add that the above sets are also in bijection with

∼=\{ (E, φ) | E ∈ Ell(C), φ : Ẑ2 → T (E(C)) a Ẑ-isom. }.

3 Actions on Y

We have two important group actions on the Q-points of Y . Clearly, Y (Q) is in bijection with
∼=\ShEll(Q), where ShEll(Q) is the subcategory of ShEll(C) whose objects are those defined
over Q.
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Galois action

Let us recall that Y is a scheme over Q. Consequently, one has an action by the absolute Galois
group GQ = G(Q|Q) on Y (Q).

Let σ ∈ GQ. Then one has a bijection E(Q) → σE(Q), given by applying σ to the points.
This also gives us an isomorphism V (E(Q))→ V (σE(Q)), denoted V (σ).

It is clear what the Galois action on Y (Q) corresponds to on ShEll(Q); namely, we send a
pair (E(Q), ψ) to (σE(Q), V (σ) ◦ ψ).

GL2(Af)-action

On Y (Q) we also have a natural action by GL2(Af). Given g ∈ GL2(Af) and a pair (E, ψ) we
define (E, ψ).g to be (E, ψ ◦ g).

Since this action means composing ψ from the right and the Galois action composing from
the left, the associativity of composition of maps yields that the two actions commute.

We would, however, like the GL2(Af)-action to be an action on the scheme Y . That is true,
but does not seem to be completely obvious. One way to do it is the following. We have used that
YKn

is an affine scheme over Q. It is a theorem by Deligne, that for any compact open subgroup
K ∈ GL2(Af ), one has a Q-scheme YK . Then the limit lim

←−

n

YKn
equals lim

←−

K<GL2(Af ) open compact

YK

because the YKn
form a cofinal system. Now given a g ∈ GL2(Af), one has an isomorphism of

Q-schemes
YK → YgKg−1.

Passing to the projective limit, one obtains the desired automorphism of Y corresponding to the
action of g.

In the appendix I treat a functorial point of view on Y , which is technically quite complicated.
However, it also implies that the group GL2(Af) acts on the scheme Y .

4 CM-theory

Elliptic curves with complex multiplication

Let F be an imaginary quadratic field, for which we choose, once and for all, an embedding
ι : F ↪→ C.

Let E(C) be an elliptic curve over C. One says that E(C) has complex multiplication by
F if the endomorphism ring End(E(C)) is an order of F . That is the case if and only if
End(E(C))⊗Z Q = F .
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One way to identify End(E(C)) with an order (as a subring of C) is as follows. Take
φ ∈ End(E(C)), it acts as multiplication by a complex number z on H1(E(C),Z) < C. Send φ
to z. This, moreover, yields a ring homomorphism End(E(C))⊗Q→ C, which is well defined
for an element of Ell(C)⊗Q.

Let OF,c be an order of F . We then have a bijection

CL(OF,c)
bij.
←→ ∼=\{ E(C) | E(C) ∈ Ell(C) with End(E(C)) = OF,c },

given by mapping an ideal a to C/a.
From this it follows that up to isogeny there is just one elliptic curve with complex multipli-

cation by F .

Proposition 4.1 In the isomorphism class of any elliptic curve E(C) ∈ Ell(C) with complex
multiplication, there is a representative that is already defined over Q.

Proof. From the finiteness of class groups it follows that there are only finitely many iso-
morphism classes of elliptic curves with endomorphism ring equal to a given order in F . For
any σ ∈ Aut(C|Q) the rings End(E(C)) and End(σ(E(C))) are isomorphic. Hence the orbit
of j(E(C)) is finite. Consequently, j(E(C)) cannot be transcendental. Thus in the isomorphism
class there is an elliptic curve that is defined over Q. �

Proposition 4.2 For any elliptic curve E(C) over the complex numbers with complex multipli-
cation by the imaginary quadratic field F the AF,f -module V (E(C)) is a free of rank 1.

Proof. End(E(C)) acts by multiplication with an element of F on H1(E(C),Q), as the
discussion at the beginning of this paragraph shows. Hence, we have an action of F on
V (E(C)) = H1(E(C),Q) ⊗Q Af , making the free Af -module of rank 2 into a free rank 1

AF,f -module. �

Moduli of elliptic curves with CM by F

We consider the category ShEllF (C), whose objects are triples (E(C)⊗Q, α, ψ). Here,E(C)⊗Q

is in Ell(C) ⊗ Q. The second component α is a ring homomorphism F → End(E(C)) ⊗ Q,
on which we impose that it is, composed with the embedding End(E(C))⊗Q into C described
above, equal to ι. This serves to choose one of the two possible α. Finally, ψ is an isomorphism
of AF,f -modules AF,f → V (E(C)). Thus the extra structure coming from CM is reflected. The
morphisms are the obvious ones.

Let us denote ∼=\ShEllF (C) by SF (C). From the discussion above we see (with the obvious
definition for ShEllF (Q)) that SF (Q) is in bijection with SF (C).
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In order to establish the connection with Y , we choose a Q-basis of F . This allows us to
see an isomorphism of AF,f -modules ψ : AF,f → V (E) as an isomorphism of Af -modules
Af

2 → V (E). Since the α is unique, we obtain an injection

SF (Q) ↪→ Y (C), ∼=\(E(Q)⊗Q, α, ψ) 7→ ∼=\(E(Q)⊗Q, ψ).

The points in the GL2(Af)-orbits of the images of this map for all F are called CM-points or
special points.

Group actions on SF (Q)

Just as for Y (Q) we have a GF = G(Q|F )-action on SF (Q). We let only GF and not GQ act
because the latter would possibly switch between different α.

Moreover, there also is an obvious AF,f
×-action on it.

Proposition 4.3 The group AF,f
× acts transitively on SF (Q). The stabilizer of any element is

F×.

Proof. The transitivity is clear. For we have already pointed out that up to isogeny, there is
only one elliptic curve with CM by F . So we can just choose one ψ, and obtain the others by
multiplying with AF,f

×.
Let now x ∈ AF,f

× be in the stabilizer of (E, α, ψ). This means that there is an element
φ ⊗ q ∈ End(E) ⊗ Q such that xψ equals V (φ) ◦ ψ, where V (φ) stands for the induced map
on V (E). But that is, as we have seen before, precisely multiplication by some element in F ×.
Consequently, x is in F×, proving the claim. �

The proposition can be reformulated by saying that SF (Q) is an F×\A×
F,f -torsor. Explicitly,

one has a bijection

F×\A×
F,f

bij.
←→ SF (Q) g 7→

(
(R⊗Q F/OF )⊗Q, α, g

)
,

where the α is the only (and evident) one.

Formulation of the main theorem of CM for elliptic curves

Write CF for F×\A×
F,f . We have seen that there are actions by GF and by CF on SF (Q), which

commute. Our aim is to describe the GF -action.
We will use the identification between SF (Q) and CF . In particular, we have a GF -action on

CF .
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Since SF (Q) is a torsor of the commutative group CF , we have a group homomorphism

Φ : Gab
F → CF , σ 7→ (σ.1).

Let us quickly check this. Φ(στ) = σ.(τ.1) = σ((τ.1)1) = (τ.1)(σ.1) = Φ(σ)Φ(τ). Another
way to say this is that σ ∈ Gab

F acts on SF (Q) via multiplication with Φ(σ).
Now let us relate this homomorphism with class field theory. In the case of an imaginary

quadratic field, class field theory provides an isomorphism, the Artin map or the norm residue
symbol,

CF → Gab
F .

Let’s formulate the main theorem of complex multiplication for elliptic curves.

Theorem 4.4 The composition of the Artin map with the homomorphism Φ

CF
Artin
−−→ Gab

F
Φ
−→ CF

sends x ∈ CF to x−1.

Hence, σ ∈ Gab
F acts on an isomorphism class (E ⊗ Q, α, ψ) by multiplying ψ with the

inverse of the image of σ under the inverse Artin map.

A Shimura variety like description of SF (Q)

Considering the fact that this is a seminar on Shimura varieties, I’d now like to mention a Shimura
variety like desciption of CF .

Robert has already mentioned the Weil restriction. We use it here and put

T = ResOF /ZGm,OF
.

It is a commutative group scheme over Z with the property

T (A) = (OF ⊗Z A)×

for all Z-algebras A.
Let’s calculate. T (Q) = (OF ⊗Z Q) = F× and

T (Af) = (OF ⊗Z Af )
× = (OF ⊗Z (Q⊗Z Ẑ))× = (F ⊗Z Ẑ)× = AF,f

×.

Consequently, we can write CF = T (Q)\T (Af).

The formalism of Shimura varieties will be treated by Theo in the next talk. Robert’s and my
talks were the motivation for doing the abstract theory...
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A Appendix - A functorial point of view on Y

In this section we describe Y as a functor, making sense of Y (S) for any Q-scheme S. Of course,
this functor is representable by the Q-scheme Y that we have treated before. Furthermore, we
shall exhibit a GL2(Af )-action on the points Y (S), functorially for all allowed S, which gives
us that the action is already defined over Q.

This treatment was suggested by Bas Edixhoven. The idea is, however, also present in
Deligne-Rapoport, IV.3.11, p. 74.

I should point out that I have not checked all the details. Moreover, I see that the exposition
is not at all good, which makes understanding the actual ideas difficult. Maybe, I’ll rewrite the
appendix later.

Pontryagin duality

It seems to me that I need this paragraph on Pontryagin duality only because of a bad choice
made before, which I will try to “correct” in this and the following paragraph. The aim is to
replace Ẑ2 and lim

←−

n

E[n] by the Pontryagin duals (Q/Z)2 and Etors respectively.

Pontryagin duality is defined on the category T AB of topological abelian groups. One sets:

A∨ = Hom(A,R/Z),

where one, of course, wants the homomorphisms to be continuous. One has that the dual of a
discrete group is compact, that of a compact discrete. Moreover, the dual of a discrete torsion
group is profinite and vice versa. In the case of a discrete torsion group, the R/Z can be replaced
by Q/Z and the continuity assumption is empty.

Important for us are the two formulae: (Q/Z)∨ = Ẑ and Ẑ∨ = Q/Z.
Categorically, the principal theorem of Pontryagin duality can be formulated as follows.

Theorem A.1 For allA,B ∈ T AB Pontryagin duality provides isomorphisms of abelian groups

Hom(A,B) ∼= Hom(B∨, A∨)

and
Isom(A,B) ∼= Isom(B∨, A∨).

Let us now consider the category T AB ⊗ Q, defined analogously to Ell(C) ⊗ Q. In it we
also define a Pontryagin duality in the obvious way:

(A⊗Q)∨ = Hom(A⊗Q,R/Z⊗Q) = Hom(A,R/Z)⊗Z Q = A∨ ⊗Q.
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Proposition A.2 For all A⊗Q, B ⊗Q ∈ T AB ⊗Q Pontryagin duality provides isomorphisms
of abelian groups

Hom(A⊗Q, B ⊗Q) ∼= Hom((B ⊗Q)∨, (A⊗Q)∨)

and
Isom(A⊗Q, B ⊗Q) ∼= Isom((B ⊗Q)∨, (A⊗Q)∨)

Proof. In fact, the proof is just a simple calculation, starting from “usual” Pon-
tryagin duality: Hom(A,B) ∼= Hom(B∨, A∨). We tensor both sides with Q to get
Hom(A ⊗ Q, B ⊗ Q) ∼= Hom(B∨ ⊗ Q, A∨ ⊗ Q). But we have seen above that the right hand
side is equal to Hom((B ⊗Q)∨, (A⊗Q)∨) finishing this proof, since Isom is analogous. �

Let us note another fact. The dual of T (E), i.e. the projective limit over the E[n] for an
elliptic curve, is the injective limit over the E[n], which I denote Etors. If we are given E ⊗Q in
Ell(C)⊗Q, we define (E ⊗Q)tors to be Etors ⊗Q.

Rewriting Y (C)

The first claim I make is that for any elliptic curve E over C the assignment
φ⊗ q 7→ (z ⊗ r 7→ φ(z)⊗ rq) gives an isomorphism of Q-vector spaces

IsomT AB(Ẑ2, T (E))⊗Q ∼= IsomAf−mod.(Ẑ
2 ⊗Q, T (E)⊗Q).

Since every element from the left space is of the form φ ⊗ q, the injectivity is clear. I still have
to check the surjectivity.

From Pontryagin duality we now have isomorphisms of Q-vector spaces

IsomAf−mod(Ẑ
2 ⊗Q, T (E)⊗Q) ∼= IsomT AB((Q/Z)2, Etors)⊗Q

∼= IsomT AB⊗Q

(
(Q/Z)2 ⊗Q, (E ⊗Q)tors

)
.

This establishes that the category ShEll(C) of pairs (E ⊗Q, ψ), which we have regarded earlier,
with E⊗Q ∈ Ell(C)⊗Q and ψ ∈ IsomAf−mod(Ẑ

2⊗Q, T (E)⊗Q), is the same as the one with
ψ replaced by its image in Isom

(
(Q/Z)2, (E⊗Q)tors

)
. We note that Q/Z being discrete we can

forget about continuity.
The same reasoning applies also to the category Êll(C) of pairs (E, φ) with E ∈ Ell(C) and

φ : Ẑ2 → T (E) an isomorphism of Ẑ-modules. We obtain that φ can be replaced by its image in
Isom

(
(Q/Z)2, Etors

)
.

The next claim is that the assignment (E, φ) 7→ (E ⊗Q, φ⊗ 1) gives the bijection of sets

∼=\Êll(C) = ∼=\{ (E, φ) }
bij.
←→ ∼=\{ (E ⊗Q, ψ) } = ∼=\ShEll(C),
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that I have already mentioned in part 2. Surjectivity should be clear, since any ψ is of the form
φ⊗ 1/n. A pair (E ⊗Q, φ⊗ 1/n) is isomorphic to (nE ⊗Q, φ⊗ 1). For the injectivity one has
to check that any two isogenous elliptic curves with isomorphic Tate modules, are isomorphic.
That sounds plausible.

Let us now consider the category ABN of injective systems of abelian groups indexed by
N, which we order by divisibility, with the obvious morphisms. A typical object of this cate-
gory is (Q/Z)2 = ( 1

n
Z/Z)2

n with respect to the inclusions. For an elliptic curve we consider
Etors = (E[n])n, also with respect to the inclusions.

Of course, we can also take the categoryABN⊗Q. We define a new category, called Ẽll(C),
consisting of pairs (E⊗Q, (φn)n⊗Q), withE⊗Q ∈ Ell(C)⊗Q and (φn)n⊗Q an isomorphism
in the categoryABN(C)⊗Q between (Q/Z)2 ⊗Q and (E ⊗Q)tors = Etors ⊗Q.

With these definitions, one has bijections

Y (C)
bij.
←→ ∼=\ShEll(C)

bij.
←→ ∼=\Ẽll(C).

Let us point out that we (still) have a GL2(Af) = GL2(Ẑ
2 ⊗ Q)-action on the injective

systems (defined in the evident way).

Elliptic curves over Q-schemes

We have up to this point reinterpreted Y (C) as the isomorphism classes of a category, namely
Ẽll(C), that seems easier to generalise to arbitrary Q-schemes (instead of C). This generalisation
shall be done now.

We want to use, of course, the results from last semester’s seminar on modular curves, in
which the YKn

were constructed to represent the moduli problem for elliptic curves with a full
level n structure, making sense for every scheme over a given basis. Let us recall the definitions.

We define the category EllQ to have as objects elliptic curves E/S/Q, i.e. E → S a proper
smooth morphism over Spec(Q), whose geometric fibres are connected smooth curves of genus
1, having an S-valued point 0. The morphisms are cartesian diagrams.

For such an E/S ∈ EllQ one denotes by E[n]S the scheme theoretic kernel of multiplication
by the integer n, which is an S-group scheme. For an elliptic curve E/C, one finds that E[n]C

equals the constant C-group scheme on the group of n-torsion points of E(C).
A full level n structure in that setting is an isomorphism of S-group schemes

φn : ( 1
n
Z/Z)S → E[n]S , where the left hand term stands for the constant group scheme.

We know from the geometry seminar last semester that there is a universal object Euniv
Kn

/YKn

in the category EllnQ consisting of pairs (E/S, φn) withE/S ∈ EllQ and φn a full leveln structure.
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One can obtain that the S-points of YKn
correspond to isomorphism classes in EllnQ(S), which is

the category of pairs (E/S, φn) for a fixed scheme S.
We want to imitate the construction made above, and we define the category ABN(S) of

injective systems of commutative S-group schemes in analogy with ABN. Elements are e.g.
(Q/Z)2

S =
(
( 1
n
Z/Z)2

S

)
n

and for an elliptic curve E/S the “torsion” Etors,S =
(
E[n]S

)
n
.

Now we want to introduce a generalisation ẼllQ(S) of Ẽll(C) for affine Q-schemes S. Objects
are pairs (E/S ⊗Q, (φn)n ⊗Q) with E/S ⊗Q in EllQ(S)⊗Q and (φn)n ⊗Q an isomorphism
inABN(S)⊗Q between (Q/Z)2

S ⊗Q and Etors,S ⊗Q.
It should now be possible to check that one thus obtains a bijection for a fixed affine Q-

scheme S
Y (S)

bij.
←→ ∼=\ẼllQ(S).

The GL2(Af)-action

It is clear that we have a GL2(Af) = GL2(Ẑ⊗Q)-action on the set on the right, compatibly for
T → S. Namely, the constant group scheme GL2(Ẑ)S on S acts on the compatible system of
full level n structures.

Yoneda’s lemma applied in the category of affine Q-schemes now implies that the group
GL2(Af) acts on the scheme Y , which was one of the aims of this appendix.

To conclude with, let us remark that the category ẼllQ(S)⊗Q has to be defined differently if
S is not compact.
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