Exercises in Commutative Algebra

Winter Term 2011/2012

Université du Luxembourg Prof. Dr. Gabor Wiese Sheet 2 26/09/2011

- 1. Finish Sheet 1.
- 2. Let R be a ring and N, M be R-modules. Show that $\operatorname{Hom}_R(M, N)$ is an R-module with respect to pointwise defined + and ., i.e. (f + g)(m) := f(m) + g(m) and (r.f)(m) := r.(f(m)) for all $f, g \in \operatorname{Hom}_R(M, N)$, all $m \in M$ and all $r \in R$.
- 3. Let R be a ring different from the zero-ring (i.e. $0 \neq 1$). Show that the following statements are equivalent:
 - (i) R is a field.
 - (ii) The only ideals of R are (1) and (0).
 - (iii) Every homomorphism of R into a non-zero ring S is injective.
- 4. Let $i = \sqrt{-1} \in \mathbb{C}$. Convince yourself that the ring of Gaussian integers $\mathbb{Z}[i] := \{a+bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ with + and \cdot is a subring of \mathbb{C} .

Show that it is a Euclidean ring with respect to the norm:

$$N(a+ib) := (a+ib)(a-ib) = (a+ib)(a+ib) = a^2 + b^2.$$